1
|
Tan Y, Yang J, Sun S, Zhu H, Jiang Y, Wei X, Chen T, Guo J, Tang J, Huang L. Functional analysis of tandem glycosyltransferases catalyzing the O-glycosylation of flavonoid 4'-O-glycosyl-6-C-glycosides biosynthesis from Isatis indigotica. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 224:109920. [PMID: 40250012 DOI: 10.1016/j.plaphy.2025.109920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 04/08/2025] [Accepted: 04/11/2025] [Indexed: 04/20/2025]
Abstract
Flavonoid O-glycosyl-C-glycosides with promising biological activities including antitumor, antidiabetes, and antibacterials are the primary active ingredients of the medicinal plant Isatis indigotica's leaves. However, O-glycosyltransferases catalyzing flavonoid O-glycosyl-C-glycosides biosynthesis in I. indigotica's leaves remain unclear. In this study, guided by genome-wide investigation and phylogenetic analyses, 89 glycosyltransferases were obtained and clustered into 18 families. In vitro enzyme assays demonstrated that eight novel glycosyltransferases could catalyze the 4'-O-glycosylation of flavonoid 6-C-glycosides, and exhibited different catalytic properties. Moreover, tandem UGT73Bs, IiUGT15 and IiUGT16, could catalyze not only 4'-O-glycosylate flavonoid 6-C-glycosides such as isovitexin, isoorientin, and isoscoparin but also 7-O-glycosylate flavonoids, and hydrolyze the glucose moiety of flavonoid O-glycosides. Homology modeling and site-directed mutagenesis uncovered that the amino acids interacting with acceptors were highly conserved between IiUGT15 and IiUGT16, with various degreed effects on 4'-O-glycosylation, potentially leading to differences in their catalytic activity. Isoorientin-4'-O-β-D-glucoside was synthesized in Escherichia coli without the exogenous supplementation of UDP-glucose. Overall, this study offered new biocatalysts to attain 4'-O-glycosylation of flavonoid C-glycosides for drug discovery and established a foundation for the biomanufacturing of critical flavonoid O-glycosyl-C-glycosides.
Collapse
Affiliation(s)
- Yuping Tan
- Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China; State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jian Yang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Shufu Sun
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Haxiu Zhu
- School of Agriculture and Biological Technique, Yunnan Agricultural University, Kunming, 650201, China
| | - Yinyin Jiang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiaoyan Wei
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Tong Chen
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Juan Guo
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jinfu Tang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Luqi Huang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
2
|
Della Gala V, Dato L, Wiesenberger G, Jæger D, Adam G, Hansen J, Welner DH. Plant-Derived UDP-Glycosyltransferases for Glycosylation-Mediated Detoxification of Deoxynivalenol: Enzyme Discovery, Characterization, and In Vivo Resistance Assessment. Toxins (Basel) 2025; 17:153. [PMID: 40278651 PMCID: PMC12031568 DOI: 10.3390/toxins17040153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/11/2025] [Accepted: 03/20/2025] [Indexed: 04/26/2025] Open
Abstract
Fungal infections of crops pose a threat to global agriculture. Fungi of the genus Fusarium cause widespread diseases in cereal crops. Fusarium graminearum reduces yields and produces harmful mycotoxins such as deoxynivalenol (DON). Plants mitigate DON toxicity through glucose conjugation mediated by UDP-glycosyltransferases (UGTs), forming deoxynivalenol-3-O-glucoside (DON-3-Glc). Few such UGTs have been identified, predominantly from Fusarium-susceptible crops. Given that the presence of this activity in diverse plants and across broader UGT subfamilies and groups was underexplored, we screened a library of 380 recombinant plant UGTs and identified and characterized eight novel enzymes glycosylating DON in vitro. Among these, ZjUGT from Ziziphus jujuba stood out with the highest activity, showing an apparent kcat of 0.93 s-1 and kcat/Km of 2450 M-1 s-1. Interestingly, four enzymes produced primarily a novel, still uncharacterized glucoside. Furthermore, we evaluated the in vivo resistance provided by these UGTs when expressed in a DON-sensitive yeast strain. At least six of the novel UGTs conferred some level of resistance, allowing growth at concentrations of up to 120 mg/L of DON. This study contributes to potential strategies to enhance DON resistance in cereal crops in the future.
Collapse
Affiliation(s)
- Valeria Della Gala
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads 220, DK-2800 Kongens Lyngby, Denmark;
| | - Laura Dato
- River Stone Biotech ApS, Fruebjergvej 3, DK-2100 Copenhagen, Denmark; (L.D.); (D.J.); (J.H.)
| | - Gerlinde Wiesenberger
- Institute of Microbial Genetics, Department of Agricultural Sciences, BOKU University, Konrad Lorenz Strasse 24, AT-3430 Tulln, Austria; (G.W.); (G.A.)
| | - Diana Jæger
- River Stone Biotech ApS, Fruebjergvej 3, DK-2100 Copenhagen, Denmark; (L.D.); (D.J.); (J.H.)
| | - Gerhard Adam
- Institute of Microbial Genetics, Department of Agricultural Sciences, BOKU University, Konrad Lorenz Strasse 24, AT-3430 Tulln, Austria; (G.W.); (G.A.)
| | - Jørgen Hansen
- River Stone Biotech ApS, Fruebjergvej 3, DK-2100 Copenhagen, Denmark; (L.D.); (D.J.); (J.H.)
| | - Ditte Hededam Welner
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads 220, DK-2800 Kongens Lyngby, Denmark;
| |
Collapse
|
3
|
Chen R, Yu J, Yu L, Xiao L, Xiao Y, Chen J, Gao S, Chen X, Li Q, Zhang H, Chen W, Zhang L. The ERF transcription factor LTF1 activates DIR1 to control stereoselective synthesis of antiviral lignans and stress defense in Isatis indigotica roots. Acta Pharm Sin B 2024; 14:405-420. [PMID: 38261810 PMCID: PMC10792966 DOI: 10.1016/j.apsb.2023.08.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/13/2023] [Accepted: 08/07/2023] [Indexed: 01/25/2024] Open
Abstract
Lignans are a powerful weapon for plants to resist stresses and have diverse bioactive functions to protect human health. Elucidating the mechanisms of stereoselective biosynthesis and response to stresses of lignans is important for the guidance of plant improvement. Here, we identified the complete pathway to stereoselectively synthesize antiviral (-)-lariciresinol glucosides in Isatis indigotica roots, which consists of three-step sequential stereoselective enzymes DIR1/2, PLR, and UGT71B2. DIR1 was further identified as the key gene in respoJanuary 2024nse to stresses and was able to trigger stress defenses by mediating the elevation in lignan content. Mechanistically, the phytohormone-responsive ERF transcription factor LTF1 colocalized with DIR1 in the cell periphery of the vascular regions in mature roots and helped resist biotic and abiotic stresses by directly regulating the expression of DIR1. These systematic results suggest that DIR1 as the first common step of the lignan pathway cooperates with PLR and UGT71B2 to stereoselectively synthesize (-)-lariciresinol derived antiviral lignans in I. indigotica roots and is also a part of the LTF1-mediated regulatory network to resist stresses. In conclusion, the LTF1-DIR1 module is an ideal engineering target to improve plant Defenses while increasing the content of valuable lignans in plants.
Collapse
Affiliation(s)
- Ruibing Chen
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China
- State Key Laboratory of Dao-di Herbs, Beijing 100700, China
| | - Jian Yu
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Luyao Yu
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Liang Xiao
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Ying Xiao
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Junfeng Chen
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shouhong Gao
- Department of Pharmacy, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Xianghui Chen
- School of Medicine, Shanghai University, Shanghai 200433, China
| | - Qing Li
- Department of Pharmacy, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Henan Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China
| | - Wansheng Chen
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Department of Pharmacy, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Lei Zhang
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
4
|
Su Y, Huang J, Guo Q, Shi H, Wei M, Wang C, Zhao K, Bao T. Combined metabolomic and transcriptomic analysis reveals the characteristics of the lignan in Isatis indigotica Fortune. Gene 2023; 888:147752. [PMID: 37661029 DOI: 10.1016/j.gene.2023.147752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023]
Abstract
Isatis indigotica Fortune is a plant species containing lignan compounds of significant economic value. Its root plays a crucial role in treating viruses and exhibits antitumor, anti-inflammatory, antibacterial, and other biological activities. Now, I. indigotica has been included in Isatis tinctoria Linnaeus. In this study, the roots of diploid I. indigotica, tetraploid I. indigotica, and Isatis tinctoria Linnaeus were analyzed using metabolome and transcriptome analysis. The metabolomic analysis detected 48 lignan metabolites, including Lirioresinol A, Vladinol A, Syringaresinol, Arctigenin, Acanthoside B, and Sesamin as characteristic compounds, without significant variations among the remaining metabolites. The transcriptomic analysis identified 41 differentially expressed phenylpropanoid synthase genes, which were further analyzed for variations in lignan transcriptome profiles across different samples. RT-qPCR analysis also revealed differential genes expression related to lignan biosynthesis pathway among the three sample groups. The analysis of transcription factors showed that the AP2-EREBP family (Iin24319), MYB family (Iin24843), and WRKY family (Iin08158) displayed expression patterns similar to Iin14549. Phylogenetic analyses also indicate that Iin14549 may play a role in lignan synthesis. These transcription factor families exhibited high expression in tetraploid I. indigotica, moderate expression in diploid I. indigotica, and low expression in I. tinctoria. The findings of this study can serve as a reference for improving the quality of I. indigotica and developing germplasms with high lignan content. Additionally, these results lay a foundation for the functional characterization of UGTs in lignan biosynthesis pathway.
Collapse
Affiliation(s)
- Yong Su
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing City, Jiangsu Province 210095, PR China
| | - Jiabin Huang
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing City, Jiangsu Province 210095, PR China
| | - Qiaosheng Guo
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing City, Jiangsu Province 210095, PR China.
| | - Hongzhuan Shi
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing City, Jiangsu Province 210095, PR China
| | - Min Wei
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing City, Jiangsu Province 210095, PR China; China Resources Sanjiu Medical & Pharmaceutical Co., Ltd, Shenzhen City, Guangdong Province 518000, PR China
| | - Chengxiang Wang
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing City, Jiangsu Province 210095, PR China
| | - Kun Zhao
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing City, Jiangsu Province 210095, PR China
| | - Tao Bao
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing City, Jiangsu Province 210095, PR China
| |
Collapse
|
5
|
Rates ADB, Cesarino I. Pour some sugar on me: The diverse functions of phenylpropanoid glycosylation. JOURNAL OF PLANT PHYSIOLOGY 2023; 291:154138. [PMID: 38006622 DOI: 10.1016/j.jplph.2023.154138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/06/2023] [Indexed: 11/27/2023]
Abstract
The phenylpropanoid metabolism is the source of a vast array of specialized metabolites that play diverse functions in plant growth and development and contribute to all aspects of plant interactions with their surrounding environment. These compounds protect plants from damaging ultraviolet radiation and reactive oxygen species, provide mechanical support for the plants to stand upright, and mediate plant-plant and plant-microorganism communications. The enormous metabolic diversity of phenylpropanoids is further expanded by chemical modifications known as "decorative reactions", including hydroxylation, methylation, glycosylation, and acylation. Among these modifications, glycosylation is the major driving force of phenylpropanoid structural diversification, also contributing to the expansion of their properties. Phenylpropanoid glycosylation is catalyzed by regioselective uridine diphosphate (UDP)-dependent glycosyltransferases (UGTs), whereas glycosyl hydrolases known as β-glucosidases are the major players in deglycosylation. In this article, we review how the glycosylation process affects key physicochemical properties of phenylpropanoids, such as molecular stability and solubility, as well as metabolite compartmentalization/storage and biological activity/toxicity. We also summarize the recent knowledge on the functional implications of glycosylation of different classes of phenylpropanoid compounds. A balance of glycosylation/deglycosylation might represent an essential molecular mechanism to regulate phenylpropanoid homeostasis, allowing plants to dynamically respond to diverse environmental signals.
Collapse
Affiliation(s)
- Arthur de Barros Rates
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, 05508-090, São Paulo, Brazil
| | - Igor Cesarino
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, 05508-090, São Paulo, Brazil; Synthetic and Systems Biology Center, InovaUSP, Avenida Professor Lucio Martins Rodrigues 370, 05508-020, São Paulo, Brazil.
| |
Collapse
|
6
|
Saint-Vincent PMB, Furches A, Galanie S, Teixeira Prates E, Aldridge JL, Labbe A, Zhao N, Martin MZ, Ranjan P, Jones P, Kainer D, Kalluri UC, Chen JG, Muchero W, Jacobson DA, Tschaplinski TJ. Validation of a metabolite-GWAS network for Populus trichocarpa family 1 UDP-glycosyltransferases. FRONTIERS IN PLANT SCIENCE 2023; 14:1210146. [PMID: 37546246 PMCID: PMC10402742 DOI: 10.3389/fpls.2023.1210146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/05/2023] [Indexed: 08/08/2023]
Abstract
Metabolite genome-wide association studies (mGWASs) are increasingly used to discover the genetic basis of target phenotypes in plants such as Populus trichocarpa, a biofuel feedstock and model woody plant species. Despite their growing importance in plant genetics and metabolomics, few mGWASs are experimentally validated. Here, we present a functional genomics workflow for validating mGWAS-predicted enzyme-substrate relationships. We focus on uridine diphosphate-glycosyltransferases (UGTs), a large family of enzymes that catalyze sugar transfer to a variety of plant secondary metabolites involved in defense, signaling, and lignification. Glycosylation influences physiological roles, localization within cells and tissues, and metabolic fates of these metabolites. UGTs have substantially expanded in P. trichocarpa, presenting a challenge for large-scale characterization. Using a high-throughput assay, we produced substrate acceptance profiles for 40 previously uncharacterized candidate enzymes. Assays confirmed 10 of 13 leaf mGWAS associations, and a focused metabolite screen demonstrated varying levels of substrate specificity among UGTs. A substrate binding model case study of UGT-23 rationalized observed enzyme activities and mGWAS associations, including glycosylation of trichocarpinene to produce trichocarpin, a major higher-order salicylate in P. trichocarpa. We identified UGTs putatively involved in lignan, flavonoid, salicylate, and phytohormone metabolism, with potential implications for cell wall biosynthesis, nitrogen uptake, and biotic and abiotic stress response that determine sustainable biomass crop production. Our results provide new support for in silico analyses and evidence-based guidance for in vivo functional characterization.
Collapse
Affiliation(s)
- Patricia M. B. Saint-Vincent
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Anna Furches
- Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, TN, United States
| | - Stephanie Galanie
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Protein Engineering, Merck & Co., Inc., Rahway, NJ, United States
| | - Erica Teixeira Prates
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Jessa L. Aldridge
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Audrey Labbe
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Nan Zhao
- School of Electrical Engineering, Southeast University, Nanjing, China
| | - Madhavi Z. Martin
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Priya Ranjan
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Piet Jones
- Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, TN, United States
| | - David Kainer
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Udaya C. Kalluri
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, TN, United States
| | - Jin-Gui Chen
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, TN, United States
| | - Wellington Muchero
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, TN, United States
| | - Daniel A. Jacobson
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, TN, United States
| | - Timothy J. Tschaplinski
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| |
Collapse
|
7
|
Cai Q, Liu C, Liu L, Ge Y, Cheng X, Luo B, Zhou L, Yang Q. Molecular identification and functional characterization of two glycosyltransferases genes from Fallopia multiflora. FRONTIERS IN PLANT SCIENCE 2022; 13:1017122. [PMID: 36561458 PMCID: PMC9765892 DOI: 10.3389/fpls.2022.1017122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/31/2022] [Indexed: 05/31/2023]
Abstract
The traditional Chinese medicine plant Fallopia multiflora (Thunb.) Harald. contains various pharmacodynamically active glycosides, such as stilbene glycosides, anthraquinone (AQ) glycosides, and flavonoid glycosides. Glycosylation is an important reaction in plant metabolism that is generally completed by glycosyltransferase in the last step of the secondary metabolite biosynthesis pathway, and it can improve the beneficial properties of many natural products. In this study, based on the transcriptome data of F. multiflora, we cloned two Uridine-diphosphate-dependent glycosyltransferases (UGTs) from the cDNA of F. multiflora (FmUGT1 and FmUGT2). Their full-length sequences were 1602 and 1449 bp, encoding 533 and 482 amino acids, respectively. In vitro enzymatic reaction results showed that FmUGT1 and FmUGT2 were promiscuous and could catalyze the glycosylation of 12 compounds, including stilbenes, anthraquinones, flavonoids, phloretin, and curcumin, and we also obtained and structurally identified 13 glycosylated products from both of them. Further experiments on the in vivo function of FmUGT1 and FmUGT2 showed that 2, 3, 5, 4'- tetrahydroxy stilbene-2-O-β-d-glucoside (THSG) content in hairy roots was elevated significantly when FmUGT1 and FmUGT2 were overexpressed and decreased accordingly in the RNA interference (RNAi) groups. These results indicate that FmUGT1 and FmUGT2 were able to glycosylate a total of 12 structurally diverse types of acceptors and to generate O-glycosides. In addition, FmUGT1 and FmUGT2 efficiently catalyzed the biosynthesis of THSG, and promoted the production of AQs in transgenic hairy roots.
Collapse
Affiliation(s)
- Qizhong Cai
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangdong Provincial Research Center on Good AgriculturalPractice and Comprehensive Agricultural Development Engineering Technology of Cantonese Medicinal Materials, Comprehensive Experimental Station of Guangzhou, Chinese Material Medica, China Agriculture Research System (CARS-21-16), Guangzhou, China
- Key Laboratory of State Administration of Traditional Chinese Medicine for Production & Development of Cantonese Medicinal Materials, Guangzhou, China
| | - Changzheng Liu
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lu Liu
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangdong Provincial Research Center on Good AgriculturalPractice and Comprehensive Agricultural Development Engineering Technology of Cantonese Medicinal Materials, Comprehensive Experimental Station of Guangzhou, Chinese Material Medica, China Agriculture Research System (CARS-21-16), Guangzhou, China
- Key Laboratory of State Administration of Traditional Chinese Medicine for Production & Development of Cantonese Medicinal Materials, Guangzhou, China
| | - Yuewei Ge
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xuanxuan Cheng
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangdong Provincial Research Center on Good AgriculturalPractice and Comprehensive Agricultural Development Engineering Technology of Cantonese Medicinal Materials, Comprehensive Experimental Station of Guangzhou, Chinese Material Medica, China Agriculture Research System (CARS-21-16), Guangzhou, China
- Key Laboratory of State Administration of Traditional Chinese Medicine for Production & Development of Cantonese Medicinal Materials, Guangzhou, China
| | - Bi Luo
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangdong Provincial Research Center on Good AgriculturalPractice and Comprehensive Agricultural Development Engineering Technology of Cantonese Medicinal Materials, Comprehensive Experimental Station of Guangzhou, Chinese Material Medica, China Agriculture Research System (CARS-21-16), Guangzhou, China
- Key Laboratory of State Administration of Traditional Chinese Medicine for Production & Development of Cantonese Medicinal Materials, Guangzhou, China
| | - Liangyun Zhou
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangdong Provincial Research Center on Good AgriculturalPractice and Comprehensive Agricultural Development Engineering Technology of Cantonese Medicinal Materials, Comprehensive Experimental Station of Guangzhou, Chinese Material Medica, China Agriculture Research System (CARS-21-16), Guangzhou, China
- Key Laboratory of State Administration of Traditional Chinese Medicine for Production & Development of Cantonese Medicinal Materials, Guangzhou, China
| | - Quan Yang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangdong Provincial Research Center on Good AgriculturalPractice and Comprehensive Agricultural Development Engineering Technology of Cantonese Medicinal Materials, Comprehensive Experimental Station of Guangzhou, Chinese Material Medica, China Agriculture Research System (CARS-21-16), Guangzhou, China
- Key Laboratory of State Administration of Traditional Chinese Medicine for Production & Development of Cantonese Medicinal Materials, Guangzhou, China
| |
Collapse
|