1
|
Chen S, Luo C, Liu Y, Huang C, Li R, Liang R, Guo Y, Zhang Y, Xian Y, Gao H, Wei J, He X. CONSTANS-like 13 homologs MiCOL13 A and MiCOL13B orchestrate flowering time and salt-drought tolerance in mango. PLANTA 2025; 261:136. [PMID: 40349254 DOI: 10.1007/s00425-025-04711-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Accepted: 04/29/2025] [Indexed: 05/14/2025]
Abstract
The CO/COL gene family serves as a central regulator of photoperiod-dependent floral transition and exhibits functional diversification in plant adaptation to abiotic stress conditions. Through comprehensive analysis of the genomic data from the mango cultivar Guire 82 (Mangifera indica L.), two COL13 homologs, designated MiCOL13 A and MiCOL13B, were successfully characterized. Phylogenetic categorization revealed that MiCOL13 A and MiCOL13B cluster within evolutionary clade III of the CONSTANS-like superfamily. These two homologous genes displayed a circadian rhythm and were strongly expressed in the leaves throughout the flowering induction phase. Under short-day (SD) conditions, the flowering time of Arabidopsis strains overexpressing MiCOL13 A and MiCOL13B was significantly delayed. However, overexpression of MiCOL13 A promoted early flowering in Arabidopsis, and MiCOL13B delayed flowering under long-day (LD) conditions. Subcellular localization demonstrated that the nucleus was the location of MiCOL13 A and MiCOL13B. The study also revealed that the overexpression of MiCOL13 A and MiCOL13B enhances Arabidopsis resistance to salt and drought stresses, resulting in overexpressing lines with longer roots and higher survival rates. Investigations of physiological and biochemical parameters revealed that elevated expression of MiCOL13 A/B significantly upregulated the expression of stress-responsive endogenous genes in A. thaliana under saline and drought conditions. Moreover, yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) analyses revealed that the MiCOL13A and MiCOL13B proteins interact with two stress-related proteins, zinc finger protein 4 (MiZFP4) and MYB30-INTERACTING E3 LIGASE 1 (MiMIEL1). Together, our findings indicate that MiCOL13 A and MiCOL13B have dual functions in controlling flowering and responding to abiotic stress in plants.
Collapse
Affiliation(s)
- Shuquan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Cong Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Yuan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Chuting Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Ruoyan Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Rongzhen Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Yihang Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
- College of Agronomy and Horticulture, Huaihua Polytechnic College, Huaihua, Hunan, China
| | - Yuexing Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Yuqing Xian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Haiqing Gao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Jumei Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Xinhua He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China.
| |
Collapse
|
2
|
Wu J, Zhang M, Gao Y, Li S, Jia R, Zhang L. Genome-wide characterization and expression analysis of the CONSTANS-like gene family of Juglans mandshurica Maxim. PeerJ 2025; 13:e19169. [PMID: 40260195 PMCID: PMC12011014 DOI: 10.7717/peerj.19169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/24/2025] [Indexed: 04/23/2025] Open
Abstract
The zinc-finger proteins encoded by the CONSTANS-like (COLs) gene family in Juglans mandshurica Maxim. play a significant role in regulating photoperiod-dependent flowering time, as well as in various processes such as growth and development. In this study, 15 members of the CONSTANS-like gene family were identified based on the genomic data of Juglans mandshurica. All of these proteins possess an N-terminal zinc-finger B-box domain and a C-terminal CCT domain. Phylogenetic analysis indicates that the JmCOLs proteins can be divided into three subgroups, with gene structures and motif compositions varying among these subgroups. Chromosomal analysis reveals that the 15 JmCOLs genes are distributed across nine chromosomes. The promoters of genes in this family contain stress-related cis-acting elements, hormone-related response elements, and other elements associated with growth and development. Notably, the most prominent elements are the light-responsive elements, suggesting that genes in this family are predominantly expressed in leaves. The expression patterns of JmCOLs genes differ among the members. Specifically, JmCOL5 and JmCOL10 are expressed exclusively in flower buds (p < 0.05). Throughout the 10 stages of flower bud development, the overall expression level of JmCOL4a peaks at approximately 50 to 100 times higher than its lowest point. The expression pattern of JmCOL5, which first reaches its maximum during the physiological differentiation stage of protogynous male flower buds before declining, suggests its potential involvement in the development of heteromorphic and dichogamous flowers.
Collapse
Affiliation(s)
- Jingwen Wu
- Breeding and Cultivation of Liaoning Province, Key Laboratory of Forest Tree Genetics, Shenyang, Liaoning, China
- Shenyang Agricultural University, College of Forestry, Shenyang, Liaoning, China
| | - Mengmeng Zhang
- Breeding and Cultivation of Liaoning Province, Key Laboratory of Forest Tree Genetics, Shenyang, Liaoning, China
- Shenyang Agricultural University, College of Forestry, Shenyang, Liaoning, China
| | - Yue Gao
- Breeding and Cultivation of Liaoning Province, Key Laboratory of Forest Tree Genetics, Shenyang, Liaoning, China
- Shenyang Agricultural University, College of Forestry, Shenyang, Liaoning, China
| | - Shuhan Li
- Breeding and Cultivation of Liaoning Province, Key Laboratory of Forest Tree Genetics, Shenyang, Liaoning, China
- Shenyang Agricultural University, College of Forestry, Shenyang, Liaoning, China
| | - Ruoxue Jia
- Breeding and Cultivation of Liaoning Province, Key Laboratory of Forest Tree Genetics, Shenyang, Liaoning, China
- Shenyang Agricultural University, College of Forestry, Shenyang, Liaoning, China
| | - Lijie Zhang
- Breeding and Cultivation of Liaoning Province, Key Laboratory of Forest Tree Genetics, Shenyang, Liaoning, China
- Shenyang Agricultural University, College of Forestry, Shenyang, Liaoning, China
| |
Collapse
|
3
|
Gou J, Sang X, Liu L, Cao J, Liu Y, Ren C, Zhang Z, Jue D, Shi S. Genome-wide identification and functional analysis of the longan CONSTANS (CO) family. BMC PLANT BIOLOGY 2025; 25:418. [PMID: 40175884 PMCID: PMC11963673 DOI: 10.1186/s12870-025-06451-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/24/2025] [Indexed: 04/04/2025]
Abstract
Longans are among the most economically important subtropical fruits. Its flowering is sensitive to the photoperiod, and flowering time has a significant influence on yield and quality. CONSTANS-like (COL) gene plays a key role in regulating induced flowering in longans. However, the specific role of the COL gene family in the regulation of flowering remains unknown. In this study, 10 DlCOL genes were identified in longans using comprehensive bioinformatics analysis and named based on their physical chromosomal locations. Phylogenetic tree analysis showed that DlCOL genes were divided into three subfamilies, each with a conserved domain. When combined with collinearity analysis, we found DlCOL genes were more closely related to COL genes of dicotyledons. DlCOL family genes are differentially expressed in various longan organs, with DlCOL1, DlCOL3, and DlCOL9 expressed in all organs, with the highest expression levels in floral buds. In the differential expression at different flowering induction stages of 'Sijimi' ('SJ') or 'Shixia' longan ('SX'), DlCOL4 expression was upregulated by 3-fold at the "T1-T2" flowering induction stage in 'SJ', but there was no expression during the three flowering induction stages in 'SX'. Subcellular localization analysis indicated that DlCOL4 is localized in the nucleus. Heterologous transformation of Arabidopsis indicated that DlCOL4 can negatively regulate flowering in transgenic plants. The qRT-PCR (Quantitative real-time PCR) results related to flowering genes indicated that DICOL4 may inhibit flowering by interacting with AtTFL and AtCOL. This study demonstrates the potential functional role of the DlCOL gene and the key role of DlCOL4 in regulating longan flowering.
Collapse
Affiliation(s)
- Jinlin Gou
- Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, College of Smart Agriculture/ Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, 402160, China
| | - Xuelian Sang
- Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, College of Smart Agriculture/ Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, 402160, China
| | - Liqin Liu
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524091, China
| | - Jiasui Cao
- Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, College of Smart Agriculture/ Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, 402160, China
| | - Yao Liu
- Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, College of Smart Agriculture/ Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, 402160, China
| | - Ci Ren
- Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, College of Smart Agriculture/ Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, 402160, China
| | - Zhixin Zhang
- Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, College of Smart Agriculture/ Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, 402160, China
| | - Dengwei Jue
- Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, College of Smart Agriculture/ Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, 402160, China.
| | - Shengyou Shi
- National Key Laboratory for Tropical Crop Breeding, College of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Sanya, 572025, China.
| |
Collapse
|
4
|
Cai K, Li X, Liu D, Bao S, Shi C, Zhu S, Xu K, Sun X, Li X. Function diversification of CONSTANS-like genes in Pyrus and regulatory mechanisms in response to different light quality. BMC PLANT BIOLOGY 2025; 25:303. [PMID: 40059159 PMCID: PMC11892235 DOI: 10.1186/s12870-025-06325-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 02/28/2025] [Indexed: 05/13/2025]
Abstract
Pear (Pyrus L.) is a significant commercial fruit globally, with diverse species exhibiting variations in their flowering periods due to environmental factors. CONSTANS-like (COL) genes, known from previous studies in Arabidopsis, are key regulators of flowering time by sensing photoperiod. However, the evolutionary history and functions of COL genes in different pear species remain unclear. In this study, we identified a total of 79 COL genes in different pear species, including 12 COL genes in Pyrus bretschneideri 'DangshanSuli', 9 in Pyrus ussuriensis × hybrid 'Zhongai 1', 11 in Pyrus communis 'Bartlett', 13 in Pyrus betulifolia, 18 in Pyrus pyrifolia 'Cuiguan', 16 in Pyrus pyrifolia 'Nijisseiki'. Analysis of gene structure, phylogenetic tree, and multiple sequences provided valuable insights into the fundamental understanding of COL genes in pear. The impact of selection pressure on the PbrCOLs in Chinese white pear was assessed using Ka/Ks, revealing that the evolution rate of PbrCOLs was influenced by purification selection factors. The study also revealed different tissue-specific expression patterns of PbrCOLs under varying light quality. Real-time quantitative PCR revealed that under natural light conditions, the expression patterns of PbrCOL2, PbrCOL3, and PbrCOL4 are similar to previous studies on CONSTANS gene in Arabidopsis, with increased expression levels during the day and decreased levels at night. However, PbrCOL1, PbrCOL6, and PbrCOL9 exhibit different expression patterns, with decreased expression levels both during the day and at night. After red light treatment, high expression of PbrCOL3 and PbrCOL4 was observed at night, while the expression patterns of the other four genes did not show significant changes. Following blue light treatment, the expression peaks of PbrCOL1 and PbrCOL6 occurred during the night, showing opposite expression patterns compared to the study in Arabidopsis. The overexpression of PbrCOL3 significantly increase the chlorophyll content in pear seedlings, and its expression significantly affected the expression of other key flowering-related genes. Also, overexpression of PbrCOL3 resulted in a late-flowering phenotype in Arabidopsis. These findings indicate diverse responsive mechanisms and functions of PbrCOL genes on flowering time in pear. In conclusion, this study established a foundation for a deeper understanding of the specific roles of PbrCOLs in regulating the reproductive development of pear, particularly in the context of the photoperiodic flowering process.
Collapse
Affiliation(s)
- Kefan Cai
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Xinyi Li
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Dongrui Liu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Sihan Bao
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Cong Shi
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Siting Zhu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Kai Xu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| | - Xuepeng Sun
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| | - Xiaolong Li
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
5
|
Zhao G, Liu W, Lin G, Wen J. Evaluation of reference genes and expression patterns of CONSTANS-LIKE genes in Tetrastigma hemsleyanum under different photoperiods. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23218. [PMID: 39038159 DOI: 10.1071/fp23218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 07/05/2024] [Indexed: 07/24/2024]
Abstract
CONSTANS-LIKE (COL ) genes are a key signalling molecule that regulates plant growth and development during the photoperiod. Our preliminary experiments showed that the photoperiod greatly influence the formation of Tetrastigma hemsleyanum root tubers. In this study, we examined the oscillation patterns and expression characteristics of COL genes in leaves of T. hemsleyanum under different photoperiod conditions. Six genes were selected as candidate reference genes for further analyses: (1) 18S ribosomal RNA (18S rRNA ); (2) α-tubulin (TUBA ); (3) 30S ribosomal RNA (30S rRNA ); (4) TATA binding protein (TBP ); (5) elongation factor 1α (EF-1α ); and (6) RNA polymerase II (RPII ). The geNorm, NormFinder, and BestKeeper software programs were used to evaluate expression stability. Two ThCOL genes were screened in the T. hemsleyanum transcriptome library, and their expression patterns under different photoperiod conditions were analysed using quantitative reverse transcription PCR. The genes EF-1α , TUBA , and 18S rRNA were used to analyse the expression profiles of CONSTANS genes (ThCOL4 and ThCOL5 ) under different photoperiods. The expression peaks of ThCOL4 and ThCOL5 appeared at different times, demonstrating that their oscillation patterns were influenced by the photoperiod. We speculate that these two ThCOL genes may be involved in different biological processes.
Collapse
Affiliation(s)
- Gang Zhao
- Life and Science College, Shangrao Normal University, Shangrao 334000, P. R. China
| | - Wenling Liu
- Life and Science College, Shangrao Normal University, Shangrao 334000, P. R. China
| | - Guowei Lin
- Life and Science College, Shangrao Normal University, Shangrao 334000, P. R. China
| | - Jing Wen
- Life and Science College, Shangrao Normal University, Shangrao 334000, P. R. China
| |
Collapse
|
6
|
Romero JM, Serrano-Bueno G, Camacho-Fernández C, Vicente MH, Ruiz MT, Pérez-Castiñeira JR, Pérez-Hormaeche J, Nogueira FTS, Valverde F. CONSTANS, a HUB for all seasons: How photoperiod pervades plant physiology regulatory circuits. THE PLANT CELL 2024; 36:2086-2102. [PMID: 38513610 PMCID: PMC11132886 DOI: 10.1093/plcell/koae090] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/07/2024] [Accepted: 02/28/2024] [Indexed: 03/23/2024]
Abstract
How does a plant detect the changing seasons and make important developmental decisions accordingly? How do they incorporate daylength information into their routine physiological processes? Photoperiodism, or the capacity to measure the daylength, is a crucial aspect of plant development that helps plants determine the best time of the year to make vital decisions, such as flowering. The protein CONSTANS (CO) constitutes the central regulator of this sensing mechanism, not only activating florigen production in the leaves but also participating in many physiological aspects in which seasonality is important. Recent discoveries place CO in the center of a gene network that can determine the length of the day and confer seasonal input to aspects of plant development and physiology as important as senescence, seed size, or circadian rhythms. In this review, we discuss the importance of CO protein structure, function, and evolutionary mechanisms that embryophytes have developed to incorporate annual information into their physiology.
Collapse
Affiliation(s)
- Jose M Romero
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41092 Seville, Spain
- Department of Plant Biochemistry and Molecular Biology, Universidad de Sevilla, 41012 Seville, Spain
| | - Gloria Serrano-Bueno
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41092 Seville, Spain
- Department of Plant Biochemistry and Molecular Biology, Universidad de Sevilla, 41012 Seville, Spain
| | - Carolina Camacho-Fernández
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41092 Seville, Spain
- Department of Plant Biochemistry and Molecular Biology, Universidad de Sevilla, 41012 Seville, Spain
- Universidad Politécnica de Valencia, Vicerrectorado de Investigación, 46022 Valencia, Spain
| | - Mateus Henrique Vicente
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41092 Seville, Spain
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura “Luiz de Queiroz” (ESALQ), University of São Paulo (USP), Piracicaba, 13418-900 São Paulo, Brazil
| | - M Teresa Ruiz
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41092 Seville, Spain
| | - J Román Pérez-Castiñeira
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41092 Seville, Spain
- Department of Plant Biochemistry and Molecular Biology, Universidad de Sevilla, 41012 Seville, Spain
| | - Javier Pérez-Hormaeche
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41092 Seville, Spain
| | - Fabio T S Nogueira
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura “Luiz de Queiroz” (ESALQ), University of São Paulo (USP), Piracicaba, 13418-900 São Paulo, Brazil
| | - Federico Valverde
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41092 Seville, Spain
| |
Collapse
|
7
|
Schmidt FJ, Grundmann L, Lahme M, Seidemann M, Schwarze A, Lichtenauer S, Twyman RM, Prüfer D, Noll GA. COL2-dependent photoperiodic floral induction in Nicotiana sylvestris seems to be lost in the N. sylvestris × N. tomentosiformis hybrid N. tabacum. FRONTIERS IN PLANT SCIENCE 2024; 14:1249879. [PMID: 38239221 PMCID: PMC10794312 DOI: 10.3389/fpls.2023.1249879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/10/2023] [Indexed: 01/22/2024]
Abstract
Introduction Plants are sessile organisms that maximize reproductive success by adapting to their environment. One of the key steps in the reproductive phase of angiosperms is flower development, requiring the perception of multiple endogenous and exogenous signals integrated via a complex regulatory network. Key floral regulators, including the main transcription factor of the photoperiodic pathway (CONSTANS, CO) and the central floral pathway integrator (FLOWERING LOCUS T, FT), are known in many species. Methods and results We identified several CO-like (COL) proteins in tobacco (Nicotiana tabacum). The NtCOL2a/b proteins in the day-neutral plant N. tabacum were most closely related to Arabidopsis CO. We characterized the diurnal expression profiles of corresponding genes in leaves under short-day (SD) and long-day (LD) conditions and confirmed their expression in phloem companion cells. Furthermore, we analyzed the orthologs of NtCOL2a/b in the maternal LD ancestor (N. sylvestris) and paternal, facultative SD ancestor (N. tomentosiformis) of N. tabacum and found that they were expressed in the same diurnal manner. NtCOL2a/b overexpression or knock-out using the CRISPR/Cas9 system did not support a substantial role for the CO homologs in the control of floral transition in N. tabacum. However, NsCOL2 overexpression induced flowering in N. sylvestris under typically non-inductive SD conditions, correlating with the upregulation of the endogenous NsFTd gene. Discussion Our results suggest that NsFTd is transcriptionally regulated by NsCOL2 and that this COL2-dependent photoperiodic floral induction seems to be lost in N. tabacum, providing insight into the diverse genetics of photoperiod-dependent flowering in different Nicotiana species.
Collapse
Affiliation(s)
- Florentin J. Schmidt
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Lena Grundmann
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Münster, Germany
| | - Michael Lahme
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Münster, Germany
| | - Marvin Seidemann
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Axel Schwarze
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Sophie Lichtenauer
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | | | - Dirk Prüfer
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Münster, Germany
| | - Gundula A. Noll
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Münster, Germany
| |
Collapse
|
8
|
Liu Q, Wen J, Wang S, Chen J, Sun Y, Liu Q, Li X, Dong S. Genome-wide identification, expression analysis, and potential roles under low-temperature stress of bHLH gene family in Prunus sibirica. FRONTIERS IN PLANT SCIENCE 2023; 14:1267107. [PMID: 37799546 PMCID: PMC10548393 DOI: 10.3389/fpls.2023.1267107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/30/2023] [Indexed: 10/07/2023]
Abstract
The basic helix-loop-helix (bHLH) family is one of the most well-known transcription factor families in plants, and it regulates growth, development, and abiotic stress responses. However, systematic analyses of the bHLH gene family in Prunus sibirica have not been reported to date. In this study, 104 PsbHLHs were identified and classified into 23 subfamilies that were unevenly distributed on eight chromosomes. Nineteen pairs of segmental replication genes and ten pairs of tandem replication genes were identified, and all duplicated gene pairs were under purifying selection. PsbHLHs of the same subfamily usually share similar motif compositions and exon-intron structures. PsbHLHs contain multiple stress-responsive elements. PsbHLHs exhibit functional diversity by interacting and coordinating with other members. Twenty PsbHLHs showed varying degrees of expression. Eleven genes up-regulated and nine genes down-regulated in -4°C. The majority of PsbHLHs were highly expressed in the roots and pistils. Transient transfection experiments demonstrated that transgenic plants with overexpressed PsbHLH42 have better cold tolerance. In conclusion, the results of this study have significant implications for future research on the involvement of bHLH genes in the development and stress responses of Prunus sibirica.
Collapse
Affiliation(s)
- Quangang Liu
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory for Silviculture of Liaoning, Shenyang Agricultural University, Shenyang, China
| | - Jiaxing Wen
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory for Silviculture of Liaoning, Shenyang Agricultural University, Shenyang, China
| | - Shipeng Wang
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory for Silviculture of Liaoning, Shenyang Agricultural University, Shenyang, China
| | - Jianhua Chen
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory for Silviculture of Liaoning, Shenyang Agricultural University, Shenyang, China
| | - Yongqiang Sun
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory for Silviculture of Liaoning, Shenyang Agricultural University, Shenyang, China
| | - Qingbai Liu
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory for Silviculture of Liaoning, Shenyang Agricultural University, Shenyang, China
| | - Xi Li
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory for Silviculture of Liaoning, Shenyang Agricultural University, Shenyang, China
| | - Shengjun Dong
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory for Silviculture of Liaoning, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
9
|
Li R, Li T, Wu X, Yao X, Ai H, Zhang Y, Gan Z, Huang X. Genome-Wide Identification, Characterization and Expression Profiling of the CONSTANS-like Genes in Potato ( Solanum tuberosum L.). Genes (Basel) 2023; 14:1174. [PMID: 37372354 PMCID: PMC10297873 DOI: 10.3390/genes14061174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/12/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
CONSTANS-like (COL) genes play important regulatory roles in flowering, tuber formation and the development of the potato (Solanum tuberosum L.). However, the COL gene family in S. tuberosum has not been systematically identified, restricting our knowledge of the function of these genes in S. tuberosum. In our study, we identified 14 COL genes, which were unequally distributed among eight chromosomes. These genes were classified into three groups based on differences in gene structure characteristics. The COL proteins of S. tuberosum and Solanum lycopersicum were closely related and showed high levels of similarity in a phylogenetic tree. Gene and protein structure analysis revealed similarities in the exon-intron structure and length, as well as the motif structure of COL proteins in the same subgroup. We identified 17 orthologous COL gene pairs between S. tuberosum and S. lycopersicum. Selection pressure analysis showed that the evolution rate of COL homologs is controlled by purification selection in Arabidopsis, S. tuberosum and S. lycopersicum. StCOL genes showed different tissue-specific expression patterns. StCOL5 and StCOL8 were highly expressed specifically in the leaves of plantlets. StCOL6, StCOL10 and StCOL14 were highly expressed in flowers. Tissue-specific expression characteristics suggest a functional differentiation of StCOL genes during evolution. Cis-element analysis revealed that the StCOL promoters contain several regulatory elements for hormone, light and stress signals. Our results provide a theoretical basis for the understanding of the in-depth mechanism of COL genes in regulating the flowering time and tuber development in S. tuberosum.
Collapse
Affiliation(s)
- Ruining Li
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China
| | - Ting Li
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China
| | - Xiang Wu
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China
| | - Xuyang Yao
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China
| | - Hao Ai
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China
| | - Yingjie Zhang
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China
- College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Zhicheng Gan
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China
| | - Xianzhong Huang
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China
| |
Collapse
|