1
|
Li X, Wang F, Ta N, Huang J. The compositions, characteristics, health benefits and applications of anthocyanins in Brassica crops. FRONTIERS IN PLANT SCIENCE 2025; 16:1544099. [PMID: 40034154 PMCID: PMC11872724 DOI: 10.3389/fpls.2025.1544099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 01/20/2025] [Indexed: 03/05/2025]
Abstract
Brassica crops, well known for their nutritional and medicinal value, encompass a diverse range of species and varieties, many of which are rich in anthocyanins. These flavonoid pigments not only contribute to the vibrant colors of Brassica plants but also possess significant antioxidant, anti-inflammatory, and neuroprotective properties. This review provides an in-depth analysis of the distribution, composition, and health benefits of anthocyanins in Brassica crops, highlighting their potential applications in the food industry and medicine. We discuss the accumulation patterns of anthocyanins in various Brassica tissues, the influence of genetic and environmental factors on their concentration, and the impact of acylation on their stability and biological activities. This review also explores the antioxidant capacity and cardioprotective effects of Brassica anthocyanins, as well as their roles in protecting against hepatic and renal injury and promoting neuroprotection. Furthermore, we examine the use of anthocyanins as natural food colorants and their integration into intelligent packaging for the real-time monitoring of food freshness. Our findings underscore the multifaceted benefits of Brassica anthocyanins, positioning them as key components in the development of functional foods and sustainable food systems.
Collapse
Affiliation(s)
- Xinjie Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Fan Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Na Ta
- School of Modern Agriculture and Biotechnology, Ankang University, Ankang, China
| | - Jinyong Huang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Ma M, Li R, Li Y, Dai W, Shang J, He Y, Xiang F, Yang Y, Wang J, Huang Z, Luo H, Zhang J, Ning G. Anthocyanin biosynthesis and transport synergistically modulated by RcMYB75 and RcGSTFL11 play a pivotal role in the feedforward loop in response to drought stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17240. [PMID: 39935020 DOI: 10.1111/tpj.17240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/11/2024] [Accepted: 12/19/2024] [Indexed: 02/13/2025]
Abstract
Anthocyanins, the important antioxidants and signaling molecules, are natural polyphenolic compounds widely present in plants and essential for plant defense. However, little is known about the mechanisms underlying plant anthocyanin accumulation in relation to drought stress. This study reveals that drought stress induces significant anthocyanin accumulation in Rosa chinensis, alongside an increase in the expression of the MYB transcription factor (TF) gene RcMYB75 and the glutathione S-transferase (GST) gene RcGSTFL11. When overexpressed, RcMYB75 markedly increases anthocyanin contents in both roses and tobaccos; conversely, reducing its expression significantly lowers anthocyanin contents in rose petals. RcGSTFL11 was confirmed as an anthocyanin transporter and overexpression of RcGSTFL11 can restore the anthocyanin-deficient phenotype in the Arabidopsis tt19 mutant. Transgenic roses overexpressing RcGSTFL11 exhibit enhanced anthocyanin accumulation, while those with downregulated RcGSTFL11 have reduced contents. Transcriptomic analysis indicates that RcMYB75 upregulates the expression of key genes in the anthocyanin biosynthetic pathway and the anthocyanin transport gene RcGSTFL11. Ultimately, we also found that anthocyanin accumulation in these transgenics further enhances plant resistance to drought stress. Taken together, RcMYB75 and RcGSTFL11 promote the synthesis and transport of anthocyanins and play a key role in the feedforward loop responding to drought stress in roses. This study provides insights into the molecular mechanisms by which MYB TFs contribute to anthocyanin biosynthesis and transport, as well as the adaptive strategies of roses in response to drought stress.
Collapse
Affiliation(s)
- Mengni Ma
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- The Institute of Flowers Research, Huazhong Agricultural University, Wuhan, 430070, China
| | - Runhui Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- The Institute of Flowers Research, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yajun Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- The Institute of Flowers Research, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenhao Dai
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- The Institute of Flowers Research, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junzhong Shang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- The Institute of Flowers Research, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yanhong He
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- The Institute of Flowers Research, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fayun Xiang
- Hubei Research Center of Flower/Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Yuanyuan Yang
- Hubei Research Center of Flower/Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Jihua Wang
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Kunming, China
| | - Zifeng Huang
- Dongguan Research Center of Agricultural Sciences, Dongguan, China
| | - Hong Luo
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA
| | - Jie Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- The Institute of Flowers Research, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guogui Ning
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- The Institute of Flowers Research, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
3
|
Medina-Lozano I, Grimplet J, Díaz A. Harnessing the diversity of a lettuce wild relative to identify anthocyanin-related genes transcriptionally responsive to drought stress. FRONTIERS IN PLANT SCIENCE 2025; 15:1494339. [PMID: 39911652 PMCID: PMC11795315 DOI: 10.3389/fpls.2024.1494339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/23/2024] [Indexed: 02/07/2025]
Abstract
Lettuce is a crop particularly vulnerable to drought. A transcriptomic study in the variety 'Romired' and the wild relative Lactuca homblei was conducted to understand the increase in anthocyanins (only significant in L. homblei) in response to drought previously observed. RNA-seq revealed more differentially expressed genes (DEGs), especially upregulated, in the wild species, in which the most abundant and significant GO terms were involved in regulatory processes (including response to water). Anthocyanin synthesis was triggered in L. homblei in response to drought, with 17 genes activated out of the 36 mapped in the phenylpropanoid-flavonoid pathway compared to 7 in 'Romired'. Nineteen candidate DEGs with the strongest change in expression and correlation with both anthocyanin content and drought were selected and validated by qPCR, all being differentially expressed only in the wild species with the two techniques. Their functions were related to anthocyanins and/or stress response and they harboured 404 and 11 polymorphisms in the wild and cultivated species, respectively. Some wild variants had high or moderate predicted impacts on the respective protein function: a transcription factor that responds to abiotic stresses, a heat shock protein involved in stomatal closure, and a phospholipase participating in anthocyanin accumulation under abiotic stress. These genetic variants could explain the differences in the gene expression patterns between the wild (significantly up/downregulated) and the cultivated (no significant changes) species. The diversity of this crop wild relative for anthocyanin-related genes involved in the response to drought could be exploited to improve lettuce resilience against some adverse climate effects.
Collapse
Affiliation(s)
- Inés Medina-Lozano
- Department of Plant Sciences, Agrifood Research and Technology Centre of Aragon (CITA), Zaragoza, Spain
- AgriFood Institute of Aragon – IA2 (CITA-University of Zaragoza), Zaragoza, Spain
| | - Jérôme Grimplet
- Department of Plant Sciences, Agrifood Research and Technology Centre of Aragon (CITA), Zaragoza, Spain
- AgriFood Institute of Aragon – IA2 (CITA-University of Zaragoza), Zaragoza, Spain
| | - Aurora Díaz
- Department of Plant Sciences, Agrifood Research and Technology Centre of Aragon (CITA), Zaragoza, Spain
- AgriFood Institute of Aragon – IA2 (CITA-University of Zaragoza), Zaragoza, Spain
| |
Collapse
|
4
|
Buitrago S, Yang X, Wang L, Pan R, Zhang W. Evolutionary analysis of anthocyanin biosynthetic genes: insights into abiotic stress adaptation. PLANT MOLECULAR BIOLOGY 2024; 115:6. [PMID: 39680184 DOI: 10.1007/s11103-024-01540-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 11/29/2024] [Indexed: 12/17/2024]
Abstract
Anthocyanin regulation can be fruitfully explored from a diverse perspective by studying distantly related model organisms. Land plants pioneers faced a huge evolutionary leap, involving substantial physiological and genetic changes. Anthocyanins have evolved alongside these changes, becoming versatile compounds capable of mitigating terrestrial challenges such as drought, salinity, extreme temperatures and high radiation. With the accessibility of whole-genome sequences from ancient plant lineages, deeper insights into the evolution of key metabolic pathways like phenylpropanoids have emerged. Despite understanding the function of anthocyanins under stress, gaps remain in uncovering the precise metabolic and regulatory mechanisms driving their overproduction under stressful conditions. For example, the regulatory effect of reactive oxygen species (ROS) on well-known transcription factors like MYBs is not fully elucidated. This manuscript presents an evolutionary analysis of the anthocyanin biosynthetic pathway to elucidate key genes. CINNAMATE 4-HYDROXYLASE (C4H) and CHALCONE ISOMERASE (CHI2) received particular attention. C4H exposes remarkable differences between aquatic and land plants, while CHI2 demonstrates substantial variation in gene copy number and sequence similarity across species. The role of transcription factors, such as MYB, and the involvement of ROS in the regulation of anthocyanin biosynthesis are discussed. Complementary gene expression analyses under abiotic stress in Arabidopsis thaliana, Selaginella moellendorffii, and Marchantia polymorpha reveal intriguing gene-stress relationships. This study highlights evolutionary trends and the regulatory complexity of anthocyanin production under abiotic stress, providing insights and opening avenues for future research.
Collapse
Affiliation(s)
- Sebastian Buitrago
- Research Center of Crop Stresses Resistance Technologies/ MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, Yangtze University, Jingzhou, 434025, China
| | - Xinsun Yang
- Hubei Sweet Potato Engineering and Technology Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Lianjun Wang
- Hubei Sweet Potato Engineering and Technology Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Rui Pan
- Research Center of Crop Stresses Resistance Technologies/ MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, Yangtze University, Jingzhou, 434025, China.
| | - Wenying Zhang
- Research Center of Crop Stresses Resistance Technologies/ MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, Yangtze University, Jingzhou, 434025, China.
| |
Collapse
|
5
|
Kaleem Z, Xu W, Ulhassan Z, Shahbaz H, He D, Naeem S, Ali S, Shah AM, Sheteiwy MS, Zhou W. Harnessing the potential of copper-based nanoparticles in mitigating abiotic and biotic stresses in crops. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59727-59748. [PMID: 39373837 DOI: 10.1007/s11356-024-35174-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/24/2024] [Indexed: 10/08/2024]
Abstract
The demand for crops production continues to intensify with the rapid increase in population. Agricultural crops continue to encounter abiotic and biotic stresses, which can substantially hamper their productivity. Numerous strategies have been focused to tackle the abiotic and biotic stress factors in various plants. Nanotechnology has displayed great potential to minimize the phytotoxic impacts of these environmental constraints. Copper (Cu)-based nanoparticles (NPs) have displayed beneficial effects on plant growth and stress tolerance. Cu-based NPs alone or in combination with plant growth hormones or microorganisms have been documented to induce plant tolerance and mitigate abiotic or biotic stresses in different plants. In this review, we have comprehensively discussed the uptake and translocation of Cu-based NPs in plants, and beneficial roles in improving the plant growth and development at various growth stages. Moreover, we have discussed how Cu-based NPs mechanistically modulate the physiological, biochemical, metabolic, cellular, and metabolic functions to enhance plant tolerance against both biotic (viruses, bacterial and fungal diseases, etc.) and abiotic stresses (heavy metals or metalloids, salt, and drought stress, etc.). We elucidated recent advancements, knowledge gaps, and recommendations for future research. This review would help plant and soil scientists to adapt Cu-based novel strategies such as nanofertilizers and nanopesticides to detoxify the abiotic or biotic stresses. These outcomes may contribute to the promotion of healthy food production and food security, thus providing new avenues for sustainable agriculture production.
Collapse
Affiliation(s)
- Zohaib Kaleem
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Wan Xu
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, 325005, China
| | - Zaid Ulhassan
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Hafsah Shahbaz
- Institute of Animal and Dairy Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Di He
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Shoaib Naeem
- Agriculture Officer (Extension) Jauharabad, Office of Assistant Director Agriculture (Extension) Khushab, Punjab, 41000, Pakistan
| | - Sharafat Ali
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Aamir Mehmood Shah
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Mohamed S Sheteiwy
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, Al-Ain, United Arab Emirates University, Abu-Dhabi, United Arab Emirates
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - Weijun Zhou
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
6
|
Lauterberg M, Tschiersch H, Zhao Y, Kuhlmann M, Mücke I, Papa R, Bitocchi E, Neumann K. Implementation of theoretical non-photochemical quenching (NPQ (T)) to investigate NPQ of chickpea under drought stress with High-throughput Phenotyping. Sci Rep 2024; 14:13970. [PMID: 38886488 PMCID: PMC11183218 DOI: 10.1038/s41598-024-63372-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
Non-photochemical quenching (NPQ) is a protective mechanism for dissipating excess energy generated during photosynthesis in the form of heat. The accelerated relaxation of the NPQ in fluctuating light can lead to an increase in the yield and dry matter productivity of crops. Since the measurement of NPQ is time-consuming and requires specific light conditions, theoretical NPQ (NPQ(T)) was introduced for rapid estimation, which could be suitable for High-throughput Phenotyping. We investigated the potential of NPQ(T) to be used for testing plant genetic resources of chickpea under drought stress with non-invasive High-throughput Phenotyping complemented with yield traits. Besides a high correlation between the hundred-seed-weight and the Estimated Biovolume, significant differences were observed between the two types of chickpea desi and kabuli for Estimated Biovolume and NPQ(T). Desi was able to maintain the Estimated Biovolume significantly better under drought stress. One reason could be the effective dissipation of excess excitation energy in photosystem II, which can be efficiently measured as NPQ(T). Screening of plant genetic resources for photosynthetic performance could take pre-breeding to a higher level and can be implemented in a variety of studies, such as here with drought stress or under fluctuating light in a High-throughput Phenotyping manner using NPQ(T).
Collapse
Affiliation(s)
- Madita Lauterberg
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Henning Tschiersch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Yusheng Zhao
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Markus Kuhlmann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Ingo Mücke
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Roberto Papa
- Marche Polytechnic University (UNIVPM), Ancona, Italy
| | | | - Kerstin Neumann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany.
| |
Collapse
|
7
|
Cui C, Zhang K, Chai L, Zheng B, Zhang J, Jiang J, Tan C, Li H, Chen D, Jiang L. Unraveling the mechanism of flower color variation in Brassica napus by integrated metabolome and transcriptome analyses. FRONTIERS IN PLANT SCIENCE 2024; 15:1419508. [PMID: 38933465 PMCID: PMC11199733 DOI: 10.3389/fpls.2024.1419508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024]
Abstract
Brassica napus is one of the most important oil crops in the world. Breeding oilseed rape with colorful flowers can greatly enhance the ornamental value of B. napus and thus improve the economic benefits of planting. As water-soluble flavonoid secondary metabolites, anthocyanins are very important for the synthesis and accumulation of pigments in the petals of plants, giving them a wide range of bright colors. Despite the documentation of over 60 distinct flower shades in B. napus, the intricacies underlying flower color variation remain elusive. Particularly, the mechanisms driving color development across varying flower color backgrounds necessitate further comprehensive investigation. This research undertook a comprehensive exploration through the integration of transcriptome and metabolome analyses to pinpoint pivotal genes and metabolites underpinning an array of flower colors, including beige, beige-red, yellow, orange-red, deep orange-red, white, light-purple, and purple. First, we used a two-way BLAST search to find 275 genes in the reference genome of B. napus Darmor v10 that were involved in making anthocyanins. The subsequent scrutiny of RNA-seq outcomes underscored notable upregulation in the structural genes F3H and UGT, alongside the MYB75, GL3, and TTG1 transcriptional regulators within petals, showing anthocyanin accumulation. By synergizing this data with a weighted gene co-expression network analysis, we identified CHS, F3H, MYB75, MYB12, and MYB111 as the key players driving anthocyanin synthesis in beige-red, orange-red, deep orange-red, light-purple, and purple petals. By integrating transcriptome and weighted gene co-expression network analysis findings with anthocyanin metabolism data, it is hypothesized that the upregulation of MYB75, which, in turn, enhances F3H expression, plays a pivotal role in the development of pigmented oilseed rape flowers. These findings help to understand the transcriptional regulation of anthocyanin biosynthesis in B. napus and provide valuable genetic resources for breeding B. napus varieties with novel flower colors.
Collapse
Affiliation(s)
- Cheng Cui
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Ka Zhang
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Liang Chai
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Benchuan Zheng
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Jinfang Zhang
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Jun Jiang
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Chen Tan
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, China
| | - Haojie Li
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Daozong Chen
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, China
| | - Liangcai Jiang
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| |
Collapse
|
8
|
Jan R, Asif S, Asaf S, Lubna, Khan Z, Kim KM. Unveiling the protective role of anthocyanin in rice: insights into drought-induced oxidative stress and metabolic regulation. FRONTIERS IN PLANT SCIENCE 2024; 15:1397817. [PMID: 38863532 PMCID: PMC11165195 DOI: 10.3389/fpls.2024.1397817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/24/2024] [Indexed: 06/13/2024]
Abstract
This study investigates the impact of anthocyanin treatment on rice plants under drought stress, focusing on phenotypic, molecular, and biochemical responses. Anthocyanin were treated to one month old plants one week before the droughtexposure. Drought stress was imposed by using 10% polyethylene glycol (PEG 6000). Anthocyanin-treated plants exhibited significant enhancements in various traits, including growth parameters and reproductive characteristics, under normal conditions. When subjected to drought stress, these plants displayed resilience, maintaining or improving essential morphological and physiological features compared to non-treated counterparts. Notably, anthocyanin application mitigated drought-induced oxidative stress, as evidenced by reduced levels of reactive oxygen species (ROS) and lipid membrane peroxidation. The study also elucidates the regulatory role of anthocyanins in the expression of flavonoid biosynthetic genes, leading to increased levels of key secondary metabolites. Furthermore, anthocyanin treatment influenced the levels of stress-related signaling molecules, including melatonin, proline, abscisic acid (ABA), and salicylic acid (SA), contributing to enhanced stress tolerance. The enzymatic activity of antioxidants and the expression of drought-responsive genes were modulated by anthocyanins, emphasizing their role in antioxidant defense and stress response. Additionally, anthocyanin treatment positively influenced macronutrient concentrations, particularly calcium ion (Ca+), potassium ion (K+), and sodium ion (Na+), essential for cell wall and membrane stability. The findings collectively highlight the multifaceted protective effects of anthocyanins, positioning them as potential key players in conferring resilience to drought stress in rice plants. The study provides valuable insights into the molecular and physiological mechanisms underlying anthocyanin-mediated enhancement of drought stress tolerance, suggesting promising applications in agricultural practices for sustainable crop production.
Collapse
Affiliation(s)
- Rahmatullah Jan
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu, Republic of Korea
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Saleem Asif
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu, Republic of Korea
| | - Sajjad Asaf
- Natural and Medical Science Research Center, University of Nizwa, Nizwa, Oman
| | - Lubna
- Natural and Medical Science Research Center, University of Nizwa, Nizwa, Oman
| | - Zakirullah Khan
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu, Republic of Korea
| | - Kyung-Min Kim
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu, Republic of Korea
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
9
|
Elkelish A, Alhudhaibi AM, Hossain AS, Haouala F, Alharbi BM, El-Banna MF, Rizk A, Badji A, AlJwaizea NI, Sayed AAS. Alleviating chromium-induced oxidative stress in Vigna radiata through exogenous trehalose application: insights into growth, photosynthetic efficiency, mineral nutrient uptake, and reactive oxygen species scavenging enzyme activity enhancement. BMC PLANT BIOLOGY 2024; 24:460. [PMID: 38797833 PMCID: PMC11129419 DOI: 10.1186/s12870-024-05152-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
Trehalose serves as a crucial osmolyte and plays a significant role in stress tolerance. The influence of exogenously added trehalose (1 and 5 mM) in alleviating the chromium (Cr; 0.5 mM) stress-induced decline in growth, photosynthesis, mineral uptake, antioxidant system and nitrate reductase activity in Vigna radiata was studied. Chromium (Cr) significantly declined shoot height (39.33%), shoot fresh weight (35.54%), shoot dry weight (36.79%), total chlorophylls (50.70%), carotenoids (29.96%), photosynthesis (33.97%), net intercellular CO2 (26.86%), transpiration rate (36.77%), the content of N (35.04%), P (35.77%), K (31.33%), S (23.91%), Mg (32.74%), and Ca (29.67%). However, the application of trehalose considerably alleviated the decline. Application of trehalose at both concentrations significantly reduced hydrogen peroxide accumulation, lipid peroxidation and electrolyte leakage, which were increased due to Cr stress. Application of trehalose significantly mitigated the Cr-induced oxidative damage by up-regulating the activity of reactive oxygen species (ROS) scavenging enzymes, including superoxide dismutase (182.03%), catalase (125.40%), ascorbate peroxidase (72.86%), and glutathione reductase (68.39%). Besides this, applied trehalose proved effective in enhancing ascorbate (24.29%) and reducing glutathione content (34.40%). In addition, also alleviated the decline in ascorbate by Cr stress to significant levels. The activity of nitrate reductase enhanced significantly (28.52%) due to trehalose activity and declined due to Cr stress (34.15%). Exogenous application of trehalose significantly improved the content of osmolytes, including proline, glycine betaine, sugars and total phenols under normal and Cr stress conditions. Furthermore, Trehalose significantly increased the content of key mineral elements and alleviated the decline induced by Cr to considerable levels.
Collapse
Affiliation(s)
- Amr Elkelish
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Abdulrahman M Alhudhaibi
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Abm Sharif Hossain
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Faouzi Haouala
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Basmah M Alharbi
- Biology Department, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Mostafa F El-Banna
- Agricultural Botany Department, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt
| | - Amira Rizk
- Department, Faculty of Agriculture, Tanta University, Tanta City, 31527, Egypt
| | - Arfang Badji
- Department of Agricultural Production, College of Agricultural and Environmental Studies, Makerere University, P.O. Box 7062, Kampala, Uganda.
- Makerere University Regional Centre for Crop Improvement, Makerere University, Kampala, 7062, Uganda.
| | - Nada Ibrahim AlJwaizea
- Department of Biology, College of science, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh, 11671, Saudi Arabia
| | - Ali A S Sayed
- Botany Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| |
Collapse
|
10
|
Ali S, Ulhassan Z, Shahbaz H, Kaleem Z, Yousaf MA, Ali S, Sheteiwy MS, Waseem M, Ali S, Zhou W. Application of magnesium oxide nanoparticles as a novel sustainable approach to enhance crop tolerance to abiotic and biotic stresses. ENVIRONMENTAL SCIENCE: NANO 2024; 11:3250-3267. [DOI: 10.1039/d4en00417e] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Abiotic stresses (heavy metals, drought, salinity, etc.) or biotic pathogens (bacteria, fungi, nematodes, etc.) contribute to major losses in crop yields.
Collapse
Affiliation(s)
- Sharafat Ali
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
| | - Zaid Ulhassan
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
| | - Hafsah Shahbaz
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang, China
| | - Zohaib Kaleem
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
| | - Muhammad Arslan Yousaf
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
| | - Skhawat Ali
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
| | - Mohamed S. Sheteiwy
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, Abu-Dhabi, United Arab Emirates
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - Muhammad Waseem
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
- Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan
| | - Weijun Zhou
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
11
|
Khan AR, Azhar W, Fan X, Ulhassan Z, Salam A, Ashraf M, Liu Y, Gan Y. Efficacy of zinc-based nanoparticles in alleviating the abiotic stress in plants: current knowledge and future perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:110047-110068. [PMID: 37807024 DOI: 10.1007/s11356-023-29993-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 09/16/2023] [Indexed: 10/10/2023]
Abstract
Due to sessile, plants are unable to avoid unfavorable environmental conditions which leads to inducing serious negative effects on plant growth, crop yield, and food safety. Instead, various approaches were employed to mitigate the phytotoxicity of these emerging contaminants from the soil-plant system. However, recent studies based on the exogenous application of ZnO NPs approve of their important positive potential for alleviating abiotic stress-induced phytotoxicity leads to ensuring global food security. In this review, we have comprehensively discussed the promising role of ZnO NPs as alone or in synergistic interactions with other plant growth regulators (PGRs) in the mitigation of various abiotic stresses, i.e., heavy metals (HMs), drought, salinity, cold and high temperatures from different crops. ZnO NPs have stress-alleviating effects by regulating various functionalities by improving plant growth and development. ZnO NPs are reported to improve plant growth by stimulating diverse alterations at morphological, physiological, biochemical, and ultrastructural levels under abiotic stress factors. We have explained the recent advances and pointed out research gaps in studies conducted in earlier years with future recommendations. Thus, in this review, we have also addressed the opportunities and challenges together with aims to uplift future studies toward effective applications of ZnO NPs in stress management.
Collapse
Affiliation(s)
- Ali Raza Khan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310027, China
| | - Wardah Azhar
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310027, China
| | - Xingming Fan
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, 65020, China
| | - Zaid Ulhassan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310027, China
| | - Abdul Salam
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310027, China
| | - Muhammad Ashraf
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yihua Liu
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, 276000, China
| | - Yinbo Gan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
12
|
Amoah JN, Adu-Gyamfi MO, Kwarteng AO. Effect of drought acclimation on antioxidant system and polyphenolic content of Foxtail Millet ( Setaria italica L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1577-1589. [PMID: 38076760 PMCID: PMC10709255 DOI: 10.1007/s12298-023-01366-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 12/17/2023]
Abstract
The impact of climate change-induced drought stress on global food security and environmental sustainability is a serious concern. While previous research has highlighted the potential benefits of drought hardening in improving plants' ability to withstand drought, the exact underlying physiological mechanisms in millet plants (Setaria italica L.) have not been explored. This study aimed to investigate the impact of drought hardening on antioxidant defense and polyphenol accumulation in different millet genotypes ('PI 689680' and 'PI 662292') subjected to different treatments: control (unstressed), drought acclimation (two stress episodes with recovery), and non-acclimation (single stress episode with no recovery). The results showed that drought stress led to higher levels of polyphenols and oxidative damage, as indicated by increased phenolic, flavonoid, and anthocyanin levels. Non-acclimated (NA) plants experienced more severe oxidative damage and inhibition of enzymes associated with the ascorbate glutathione cycle compared to drought-acclimated plants. NA plants also exhibited a significant reduction in photosynthesis and tissue water content. The expression of genes related to antioxidants and polyphenol synthesis was more pronounced in non-acclimated plants. The study demonstrated that drought hardening not only prepared plants for subsequent drought stress but also mitigated damage caused by oxidative stress in plant physiology. Drought-acclimated (DA) plants displayed improved drought tolerance, as evidenced by better growth, photosynthesis, antioxidant defense, polyphenol accumulation, and gene expression related to antioxidants and polyphenol synthesis. In conclusion, the research advocates for the use of drought hardening as an effective strategy to alleviate the negative impacts of drought-induced metabolic disturbances in millet. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01366-w.
Collapse
Affiliation(s)
- Joseph N. Amoah
- Centre for Carbon, Water, and Food, University of Sydney, 380 Werombi Road, Brownlow Hill, Camden, NSW 2570 Australia
| | | | - Albert Owusu Kwarteng
- Department of Plant Sciences, Kimberly Research and Extension Center, University of Idaho, Moscow, ID USA
| |
Collapse
|
13
|
Li F, Gong Y, Mason AS, Liu Q, Huang J, Ma M, Xiao M, Wang H, Fu D. Research progress and applications of colorful Brassica crops. PLANTA 2023; 258:45. [PMID: 37462779 DOI: 10.1007/s00425-023-04205-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/11/2023] [Indexed: 07/21/2023]
Abstract
MAIN CONCLUSION We review the application and the molecular regulation of anthocyanins in colorful Brassica crops, the creation of new germplasm resources, and the development and utilization of colorful Brassica crops. Brassica crops are widely cultivated: these include oilseed crops, such as rapeseed, mustards, and root, leaf, and stem vegetable types, such as turnips, cabbages, broccoli, and cauliflowers. Colorful variants exist of these crop species, and asides from increased aesthetic appeal, these may also offer advantages in terms of nutritional content and improved stress resistances. This review provides a comprehensive overview of pigmentation in Brassica as a reference for the selection and breeding of new colorful Brassica varieties for multiple end uses. We summarize the function and molecular regulation of anthocyanins in Brassica crops, the creation of new colorful germplasm resources via different breeding methods, and the development and multifunctional utilization of colorful Brassica crop types.
Collapse
Affiliation(s)
- Fuyan Li
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yingying Gong
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Annaliese S Mason
- Plant Breeding Department, University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany
| | - Qian Liu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Juan Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Miao Ma
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Meili Xiao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Huadong Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Donghui Fu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
14
|
Dabravolski SA, Isayenkov SV. The Role of Anthocyanins in Plant Tolerance to Drought and Salt Stresses. PLANTS (BASEL, SWITZERLAND) 2023; 12:2558. [PMID: 37447119 DOI: 10.3390/plants12132558] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023]
Abstract
Drought and salinity affect various biochemical and physiological processes in plants, inhibit plant growth, and significantly reduce productivity. The anthocyanin biosynthesis system represents one of the plant stress-tolerance mechanisms, activated by surplus reactive oxygen species. Anthocyanins act as ROS scavengers, protecting plants from oxidative damage and enhancing their sustainability. In this review, we focus on molecular and biochemical mechanisms underlying the role of anthocyanins in acquired tolerance to drought and salt stresses. Also, we discuss the role of abscisic acid and the abscisic-acid-miRNA156 regulatory node in the regulation of drought-induced anthocyanin production. Additionally, we summarise the available knowledge on transcription factors involved in anthocyanin biosynthesis and development of salt and drought tolerance. Finally, we discuss recent progress in the application of modern gene manipulation technologies in the development of anthocyanin-enriched plants with enhanced tolerance to drought and salt stresses.
Collapse
Affiliation(s)
- Siarhei A Dabravolski
- Department of Biotechnology Engineering, Braude Academic College of Engineering, Snunit 51, Karmiel 2161002, Israel
| | - Stanislav V Isayenkov
- Department of Plant Food Products and Biofortification, Institute of Food Biotechnology and Genomics, The National Academy of Sciences of Ukraine, Baidi-Vyshneveckogo Str., 2a, 04123 Kyiv, Ukraine
| |
Collapse
|
15
|
Liu Z, Fu X, Xu H, Zhang Y, Shi Z, Zhou G, Bao W. Comprehensive Analysis of bHLH Transcription Factors in Ipomoea aquatica and Its Response to Anthocyanin Biosynthesis. Int J Mol Sci 2023; 24:5652. [PMID: 36982726 PMCID: PMC10057536 DOI: 10.3390/ijms24065652] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
The basic helix-loop-helix (bHLH) proteins compose one of the largest transcription factor (TF) families in plants, which play a vital role in regulating plant biological processes including growth and development, stress response, and secondary metabolite biosynthesis. Ipomoea aquatica is one of the most important nutrient-rich vegetables. Compared to the common green-stemmed I. aquatica, purple-stemmed I. aquatica has extremely high contents of anthocyanins. However, the information on bHLH genes in I. aquatica and their role in regulating anthocyanin accumulation is still unclear. In this study, we confirmed a total of 157 bHLH genes in the I. aquatica genome, which were classified into 23 subgroups according to their phylogenetic relationship with the bHLH of Arabidopsis thaliana (AtbHLH). Of these, 129 IabHLH genes were unevenly distributed across 15 chromosomes, while 28 IabHLH genes were spread on the scaffolds. Subcellular localization prediction revealed that most IabHLH proteins were localized in the nucleus, while some were in the chloroplast, extracellular space, and endomembrane system. Sequence analysis revealed conserved motif distribution and similar patterns of gene structure within IabHLH genes of the same subfamily. Analysis of gene duplication events indicated that DSD and WGD played a vital role in the IabHLH gene family expansion. Transcriptome analysis showed that the expression levels of 13 IabHLH genes were significantly different between the two varieties. Of these, the IabHLH027 had the highest expression fold change, and its expression level was dramatically higher in purple-stemmed I. aquatica than that in green-stemmed I. aquatica. All upregulated DEGs in purple-stemmed I. aquatica exhibited the same expression trends in both qRT-PCR and RNA-seq. Three downregulated genes including IabHLH142, IabHLH057, and IabHLH043 determined by RNA-seq had opposite expression trends of those detected by qRT-PCR. Analysis of the cis-acting elements in the promoter region of 13 differentially expressed genes indicated that light-responsive elements were the most, followed by phytohormone-responsive elements and stress-responsive elements, while plant growth and development-responsive elements were the least. Taken together, this work provides valuable clues for further exploring IabHLH function and facilitating the breeding of anthocyanin-rich functional varieties of I. aquatica.
Collapse
Affiliation(s)
- Zheng Liu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Xiaoai Fu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Hao Xu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Yuxin Zhang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Zhidi Shi
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Guangzhen Zhou
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Wenlong Bao
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
| |
Collapse
|
16
|
Ghaffar A, Hussain N, Ajaj R, Shahin SM, Bano H, Javed M, Khalid A, Yasmin M, Shah KH, Zaheer M, Iqbal M, Zafar ZU, Athar HUR. Photosynthetic activity and metabolic profiling of bread wheat cultivars contrasting in drought tolerance. FRONTIERS IN PLANT SCIENCE 2023; 14:1123080. [PMID: 36844078 PMCID: PMC9945586 DOI: 10.3389/fpls.2023.1123080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
The rapid increase in population growth under changing climatic conditions causes drought stress, threatening world food security. The identification of physiological and biochemical traits acting as yield-limiting factors in diverse germplasm is pre-requisite for genetic improvement under water-deficit conditions. The major aim of the present study was the identification of drought-tolerant wheat cultivars with a novel source of drought tolerance from local wheat germplasm. The study was conducted to screen 40 local wheat cultivars against drought stress at different growth stages. Barani-83, Blue Silver, Pak-81, and Pasban-90 containing shoot and root fresh weight >60% of control and shoot and root dry weight >80% and 70% of control, respectively, P (% of control >80 in shoot and >88 in root), K+ (>85% of control), and quantum yield of PSII > 90% of control under polyethylene glycol (PEG)-induced drought stress at seedling stage can be considered as tolerant, while more reduction in these parameters make FSD-08, Lasani-08, Punjab-96, and Sahar-06 as drought-sensitive cultivars. FSD-08 and Lasani-08 could not maintain growth and yield due to protoplasmic dehydration, decreased turgidity, cell enlargement, and cell division due to drought treatment at adult growth stage. Stability of leaf chlorophyll content (<20% decrease) reflects photosynthetic efficiency of tolerant cultivars, while ~30 µmol/g fwt concentration of proline, 100%-200% increase in free amino acids, and ~50% increase in accumulation of soluble sugars were associated with maintaining leaf water status by osmotic adjustment. Raw OJIP chlorophyll fluorescence curves revealed a decrease in fluorescence at O, J, I, and P steps in sensitive genotypes FSD-08 and Lasani-08, showing greater damage to photosynthetic machinery and greater decrease in JIP test parameters, performance index (PIABS), maximum quantum yield (Fv/Fm) associated with increase in Vj, absorption (ABS/RC), and dissipation per reaction center (DIo/RC) while a decrease in electron transport per reaction center (ETo/RC). During the present study, differential modifications in morpho-physiological, biochemical, and photosynthetic attributes that alleviate the damaging effects of drought stress in locally grown wheat cultivars were analyzed. Selected tolerant cultivars could be explored in various breeding programs to produce new wheat genotypes with adaptive traits to withstand water stress.
Collapse
Affiliation(s)
- Abdul Ghaffar
- Institute of Botany, Bahauddin Zakariya University, Multan, Pakistan
| | - Nadeem Hussain
- Institute of Botany, Bahauddin Zakariya University, Multan, Pakistan
| | - Rahaf Ajaj
- Department of Environmental and Public Health, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Suzan Marwan Shahin
- College of Arts and Science, Umm Al Quwain University, Umm Al Quwain, United Arab Emirates
| | - Hussan Bano
- Department of Botany, The Women University, Multan, Pakistan
| | - Muhammad Javed
- Institute of Botany, Bahauddin Zakariya University, Multan, Pakistan
- Department of Botany, University of Education, Lahore, Pakistan
| | - Ayesha Khalid
- Institute of Botany, Bahauddin Zakariya University, Multan, Pakistan
| | - Memoona Yasmin
- Institute of Botany, Bahauddin Zakariya University, Multan, Pakistan
| | | | - Muhammad Zaheer
- Institute of Botany, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Iqbal
- Institute of Botany, Bahauddin Zakariya University, Multan, Pakistan
- Department of Botany, University of Okara, Okara, Pakistan
| | - Zafar Ullah Zafar
- Institute of Botany, Bahauddin Zakariya University, Multan, Pakistan
| | | |
Collapse
|
17
|
Chen YY, Lu HQ, Jiang KX, Wang YR, Wang YP, Jiang JJ. The Flavonoid Biosynthesis and Regulation in Brassica napus: A Review. Int J Mol Sci 2022; 24:ijms24010357. [PMID: 36613800 PMCID: PMC9820570 DOI: 10.3390/ijms24010357] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022] Open
Abstract
Brassica napus is an important crop for edible oil, vegetables, biofuel, and animal food. It is also an ornamental crop for its various petal colors. Flavonoids are a group of secondary metabolites with antioxidant activities and medicinal values, and are important to plant pigmentation, disease resistance, and abiotic stress responses. The yellow seed coat, purple leaf and inflorescence, and colorful petals of B. napus have been bred for improved nutritional value, tourism and city ornamentation. The putative loci and genes regulating flavonoid biosynthesis in B. napus have been identified using germplasms with various seed, petal, leaf, and stem colors, or different flavonoid contents under stress conditions. This review introduces the advances of flavonoid profiling, biosynthesis, and regulation during development and stress responses of B. napus, and hopes to help with the breeding of B. napus with better quality, ornamental value, and stress resistances.
Collapse
Affiliation(s)
- Yuan-Yuan Chen
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Hai-Qin Lu
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Kai-Xuan Jiang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Yi-Ran Wang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - You-Ping Wang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jin-Jin Jiang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
18
|
Effects of Different Drought Degrees on Physiological Characteristics and Endogenous Hormones of Soybean. PLANTS 2022; 11:plants11172282. [PMID: 36079664 PMCID: PMC9459783 DOI: 10.3390/plants11172282] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/29/2022]
Abstract
Drought affects crop developmentnand growth. To explore the physiological effects of drought stress on soybean, HeiNong44 (HN44) and HeiNong65 (HN65) varieties were used as experimental materials and PEG-6000 was used as the osmotic medium. The antioxidant enzyme activity, osmotic adjustment substance content, antioxidant capacity, and endogenous hormone content of the two soybean varieties were studied under different drought degrees and different treatment durations. Drought stress caused significant physiological changes in soybean. The antioxidant enzyme activities, osmoregulation substance content, and total antioxidant capacity (T-AOC) of HN65 and HN44 showed an increasing trend under mild and moderate drought, however, they first increased and then decreased under severe drought conditions. Following the extension of treatment time, malondialdehyde (MDA) showed an increasing trend. As drought increased, gibberellin (GA) content showed a decreasing trend, while abscisic acid (ABA), salicylic acid (SA), and zeatin nucleoside (ZA) content showed an increasing trend. The auxin (IAA) content of the two varieties showed opposite change trends. In short, drought had a significant impact on the physiology of these two soybean varieties; however, overall, the drought resistance of HN65 was lower than that of HN44. This study provides a research theoretical basis for addressing the drought resistance mechanism and the breeding of drought resistant soybean varieties.
Collapse
|