1
|
Wallis CM, Baumgartner K. Fatty acid methyl ester (FAME) profiling for species-specific characterization and detection of fungal pathogens that cause tree and grapevine trunk diseases. Mycologia 2025; 117:319-330. [PMID: 39841972 DOI: 10.1080/00275514.2024.2439753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/05/2024] [Indexed: 01/24/2025]
Abstract
Fungal trunk diseases are of major concern for tree fruit, nut, and grape growers throughout the world. These diseases include Eutypa dieback of grape, caused by Eutypa lata, band canker of almond, caused by Neofusicoccum mediterraneum and Neofusicoccum parvum, and twig and branch dieback of walnut, caused by N. mediterraneum, Botryosphaeria dieback of grape, caused by Diplodia mutila, Diplodia seriata, N. mediterraneum, and N. parvum, and esca of grape, caused by Phaeomoniella chlamydospora and Phaeoacremonium minimum. Given the common occurrence of mixed infections, and the similar wood symptoms at the macroscopic level, species-specific detection tools are needed. Fatty acid methyl ester (FAME) profiling can be an effective and inexpensive diagnostic tool. FAME analyses were conducted on pure cultures of multiple isolates per species to characterize profiles and assess whether this technique could result in consistent identification. FAME profiles were dominated by oleic acid (18:1 ω9c) and palmitic acid (16:0), with less abundant FAMEs in different ratios for each species and isolates within species. Canonical discriminant analyses revealed which minor FAMEs were most variable, with a total of 20 different FAMEs that can explain 69.01% of profile variance in the first two canonicals. Using these analyses, samples were self-tested and correctly sorted 97.18% of the time. Within species, canonical discriminant analyses were able to separate isolates further, often by original geographic location or by host plant species. These results further suggest that potential novel species, subspecies, or races may be present among the isolates analyzed, demonstrating the capacity of FAME profiling to have a role in discovering cryptic species and accurately identifying fungal pathogens in conjunction with other molecular techniques and genomic analyses.
Collapse
Affiliation(s)
- Christopher M Wallis
- Crop Diseases, Pests and Genetics Research Unit, USDA-ARS San Joaquin Valley Agricultural Sciences Center, Parlier, California 93648
| | - Kendra Baumgartner
- Crops Pathology and Genetics Research Unit, USDA-ARS Davis, Davis, California 95616
| |
Collapse
|
2
|
Yacoub A, Renault D, Haidar R, Boulisset F, Letousey P, Guyoneaud R, Attard E, Rey P. Impact of the Biocontrol Product, Esquive ® WP, on the Indigenous Grapevine Wood Microbiome after a 6-Year Application Period. J Fungi (Basel) 2024; 10:566. [PMID: 39194892 DOI: 10.3390/jof10080566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Grapevine trunk diseases (GTDs) are currently limiting grapevine productivity in many vineyards worldwide. As no chemical treatments are registered to control GTDs, biocontrol agents are being tested against these diseases. Esquive® WP, based on the fungus Trichoderma atroviride I-1237 strain, is the first biocontrol product registered in France to control GTDs. In this study, we determine whether, following grapevine pruning wound treatments with Esquive® WP, changes occurred or not in the indigenous microbial communities that are colonizing grapevine wood. Over a 6-year period, Esquive® WP was applied annually to pruning wounds on three grapevine cultivars located in three different regions. Wood samples were collected at 2 and 10 months after the Esquive® WP treatments. Based on MiSeq high-throughput sequencing analyses, the results showed that specific microbial communities were linked to each 'region/cultivar' pairing. In certain cases, a significant modification of alpha diversity indexes and the relative abundance of some microbial taxa were observed between treated and non-treated grapevines 2 months after Esquive® WP treatment. However, these modifications disappeared over time, i.e., 10 months post-treatment. This result clearly showed that Esquive® WP pruning wood treatment did not induce significant changes in the grapevine wood's microbiome, even after 6 years of recurrent applications on the plants.
Collapse
Affiliation(s)
- Amira Yacoub
- E2S UPPA, CNRS, IPREM UMR5254, Université de Pau et des Pays de l'Adour, 64000 Pau, France
- SAVE, INRAE, Bordeaux Sciences Agro, ISVV, 33882 Villenave d'Ornon, France
| | - David Renault
- SAVE, INRAE, Bordeaux Sciences Agro, ISVV, 33882 Villenave d'Ornon, France
| | - Rana Haidar
- E2S UPPA, CNRS, IPREM UMR5254, Université de Pau et des Pays de l'Adour, 64000 Pau, France
- SAVE, INRAE, Bordeaux Sciences Agro, ISVV, 33882 Villenave d'Ornon, France
| | | | | | - Rémy Guyoneaud
- E2S UPPA, CNRS, IPREM UMR5254, Université de Pau et des Pays de l'Adour, 64000 Pau, France
| | - Eleonore Attard
- E2S UPPA, CNRS, IPREM UMR5254, Université de Pau et des Pays de l'Adour, 64000 Pau, France
| | - Patrice Rey
- E2S UPPA, CNRS, IPREM UMR5254, Université de Pau et des Pays de l'Adour, 64000 Pau, France
- SAVE, INRAE, Bordeaux Sciences Agro, ISVV, 33882 Villenave d'Ornon, France
| |
Collapse
|
3
|
Haidar R, Compant S, Robert C, Antonielli L, Yacoub A, Grélard A, Loquet A, Brader G, Guyoneaud R, Attard E, Rey P. Two Paenibacillus spp. strains promote grapevine wood degradation by the fungus Fomitiporia mediterranea: from degradation experiments to genome analyses. Sci Rep 2024; 14:15779. [PMID: 38982270 PMCID: PMC11233627 DOI: 10.1038/s41598-024-66620-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024] Open
Abstract
Ascomycetes, basidiomycetes and deuteromycetes can degrade wood, but less attention has been paid to basidiomycetes involved in Esca, a major Grapevine Trunk Disease. Using a wood sawdust microcosm system, we compared the wood degradation of three grapevine cultivars inoculated with Fomitiporia mediterranea M. Fisch, a basidiomycete responsible for white-rot development and involved in Esca disease. The grapevine cultivar Ugni blanc was more susceptible to wood degradation caused by F. mediterranea than the cultivars Cabernet Sauvignon and Merlot. Solid-state Nuclear Magnetic Resonance (NMR) spectroscopy showed that F. mediterranea preferentially degrades lignin and hemicellulose over cellulose (preferential, successive or sequential white-rot). In addition, co-inoculation of sawdust with two cellulolytic and xylanolytic bacterial strains of Paenibacillus (Nakamura) Ash (Paenibacillus sp. (S231-2) and P. amylolyticus (S293)), enhanced F. mediterranea ability to degrade Ugni blanc. The NMR data further showed that the increase in Ugni blanc sawdust degradation products was greater when bacteria and fungi were inoculated together. We also demonstrated that these two bacterial strains could degrade the wood components of Ugni blanc sawdust. Genome analysis of these bacterial strains revealed numerous genes predicted to be involved in cellulose, hemicellulose, and lignin degradation, as well as several other genes related to bacteria-fungi interactions and endophytism inside the plant. The occurrence of this type of bacteria-fungus interaction could explain, at least in part, why necrosis develops extensively in certain grapevine varieties such as Ugni blanc.
Collapse
Affiliation(s)
- Rana Haidar
- E2S UPPA, CNRS, IPREM UMR5254, Université de Pau et des Pays de l'Adour, Pau, France.
- INRAE, UMR1065 Santé et Agroécologie du Vignoble (SAVE), ISVV, 33883, Villenave d'Ornon, France.
| | - Stéphane Compant
- Bioresources Unit, Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Konrad Lorenz Straße 24, 3430, Tulln, Austria
| | - Coralie Robert
- Institut de Chimie et Biologie des Membranes et des Nanoobjets, IECB, CNRS, Université de Bordeaux, 33607, Pessac, France
| | - Livio Antonielli
- Bioresources Unit, Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Konrad Lorenz Straße 24, 3430, Tulln, Austria
| | - Amira Yacoub
- E2S UPPA, CNRS, IPREM UMR5254, Université de Pau et des Pays de l'Adour, Pau, France
- INRAE, UMR1065 Santé et Agroécologie du Vignoble (SAVE), ISVV, 33883, Villenave d'Ornon, France
| | - Axelle Grélard
- Institut de Chimie et Biologie des Membranes et des Nanoobjets, IECB, CNRS, Université de Bordeaux, 33607, Pessac, France
| | - Antoine Loquet
- Institut de Chimie et Biologie des Membranes et des Nanoobjets, IECB, CNRS, Université de Bordeaux, 33607, Pessac, France
| | - Günter Brader
- Bioresources Unit, Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Konrad Lorenz Straße 24, 3430, Tulln, Austria
| | - Rémy Guyoneaud
- E2S UPPA, CNRS, IPREM UMR5254, Université de Pau et des Pays de l'Adour, Pau, France
| | - Eléonore Attard
- E2S UPPA, CNRS, IPREM UMR5254, Université de Pau et des Pays de l'Adour, Pau, France
| | - Patrice Rey
- E2S UPPA, CNRS, IPREM UMR5254, Université de Pau et des Pays de l'Adour, Pau, France
- INRAE, UMR1065 Santé et Agroécologie du Vignoble (SAVE), ISVV, 33883, Villenave d'Ornon, France
| |
Collapse
|
4
|
Belair M, Pensec F, Jany JL, Le Floch G, Picot A. Profiling Walnut Fungal Pathobiome Associated with Walnut Dieback Using Community-Targeted DNA Metabarcoding. PLANTS (BASEL, SWITZERLAND) 2023; 12:2383. [PMID: 37376008 DOI: 10.3390/plants12122383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/06/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
Walnut dieback can be caused by several fungal pathogenic species, which are associated with symptoms ranging from branch dieback to fruit necrosis and blight, challenging the one pathogen-one disease concept. Therefore, an accurate and extensive description of the walnut fungal pathobiome is crucial. To this end, DNA metabarcoding represents a powerful approach provided that bioinformatic pipelines are evaluated to avoid misinterpretation. In this context, this study aimed to determine (i) the performance of five primer pairs targeting the ITS region in amplifying genera of interest and estimating their relative abundance based on mock communities and (ii) the degree of taxonomic resolution using phylogenetic trees. Furthermore, our pipelines were also applied to DNA sequences from symptomatic walnut husks and twigs. Overall, our results showed that the ITS2 region was a better barcode than ITS1 and ITS, resulting in significantly higher sensitivity and/or similarity of composition values. The ITS3/ITS4_KYO1 primer set allowed to cover a wider range of fungal diversity, compared to the other primer sets also targeting the ITS2 region, namely, GTAA and GTAAm. Adding an extraction step to the ITS2 sequence influenced both positively and negatively the taxonomic resolution at the genus and species level, depending on the primer pair considered. Taken together, these results suggested that Kyo set without ITS2 extraction was the best pipeline to assess the broadest fungal diversity, with a more accurate taxonomic assignment, in walnut organs with dieback symptoms.
Collapse
Affiliation(s)
- Marie Belair
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, INRAE, University Brest, F-29280 Plouzané, France
| | - Flora Pensec
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, INRAE, University Brest, F-29280 Plouzané, France
| | - Jean-Luc Jany
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, INRAE, University Brest, F-29280 Plouzané, France
| | - Gaétan Le Floch
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, INRAE, University Brest, F-29280 Plouzané, France
| | - Adeline Picot
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, INRAE, University Brest, F-29280 Plouzané, France
| |
Collapse
|
5
|
Langa-Lomba N, Grimplet J, Sánchez-Hernández E, Martín-Ramos P, Casanova-Gascón J, Julián-Lagunas C, González-García V. Metagenomic Study of Fungal Microbial Communities in Two PDO Somontano Vineyards (Huesca, Spain): Effects of Age, Plant Genotype, and Initial Phytosanitary Status on the Priming and Selection of their Associated Microorganisms. PLANTS (BASEL, SWITZERLAND) 2023; 12:2251. [PMID: 37375877 DOI: 10.3390/plants12122251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023]
Abstract
The study of microbial communities associated with different plants of agronomic interest has allowed, in recent years, to answer a number of questions related to the role and influence of certain microbes in key aspects of their autoecology, such as improving the adaptability of the plant host to different abiotic or biotic stresses. In this study, we present the results of the characterization, through both high-throughput sequencing and classical microbiological methods, of the fungal microbial communities associated with grapevine plants in two vineyards of different ages and plant genotypes located in the same biogeographical unit. The study is configured as an approximation to the empirical demonstration of the concept of "microbial priming" by analyzing the alpha- and beta-diversity present in plants from two plots subjected to the same bioclimatic regime to detect differences in the structure and taxonomic composition of the populations. The results were compared with the inventories of fungal diversity obtained by culture-dependent methods to establish, where appropriate, correlations between both microbial communities. Metagenomic data showed a differential enrichment of the microbial communities in the two vineyards studied, including the populations of plant pathogens. This is tentatively explained due to factors such as the different time of exposure to microbial infection, different plant genotype, and different starting phytosanitary situation. Thus, results suggest that each plant genotype recruits differential fungal communities and presents different profiles of associated potential microbial antagonists or communities of pathogenic species.
Collapse
Affiliation(s)
- Natalia Langa-Lomba
- Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), EPS, University of Zaragoza, Carretera de Cuarte s/n, 22071 Huesca, Spain
- Departamento de Sistemas Agrícolas, Forestales y Medio Ambiente, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, 50059 Zaragoza, Spain
| | - Jerome Grimplet
- Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), 50059 Zaragoza, Spain
- Departamento de Ciencia Vegetal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, 50059 Zaragoza, Spain
| | - Eva Sánchez-Hernández
- Department of Agricultural and Forestry Engineering, ETSIIAA, Universidad de Valladolid, Avenida de Madrid 44, 34004 Palencia, Spain
| | - Pablo Martín-Ramos
- Department of Agricultural and Forestry Engineering, ETSIIAA, Universidad de Valladolid, Avenida de Madrid 44, 34004 Palencia, Spain
| | - José Casanova-Gascón
- Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), EPS, University of Zaragoza, Carretera de Cuarte s/n, 22071 Huesca, Spain
| | - Carmen Julián-Lagunas
- Departamento de Sistemas Agrícolas, Forestales y Medio Ambiente, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, 50059 Zaragoza, Spain
- Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), 50059 Zaragoza, Spain
| | - Vicente González-García
- Departamento de Sistemas Agrícolas, Forestales y Medio Ambiente, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, 50059 Zaragoza, Spain
- Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), 50059 Zaragoza, Spain
| |
Collapse
|
6
|
Díaz GA, Reveglia P, Tomoiagă LL, Chedea VS. Editorial: Fungal pathogens causing the grapevine trunk diseases- biology and identification. FRONTIERS IN FUNGAL BIOLOGY 2023; 4:1186166. [PMID: 37746124 PMCID: PMC10512359 DOI: 10.3389/ffunb.2023.1186166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/03/2023] [Indexed: 09/26/2023]
Affiliation(s)
- Gonzalo A. Díaz
- Laboratorio de Patología Frutal, Departamento de Producción Agrícola, Facultad de Ciencias Agrarias, Universidad de Talca, Talca, Chile
| | - Pierluigi Reveglia
- Research Institute for Sustainable Agriculture, Spanish National Research Council (CSIC), Córdoba, Spain
| | - Liliana Lucia Tomoiagă
- Research Department, Research Station for Viticulture and Enology Blaj (SCDVV Blaj), Blaj, Romania
| | - Veronica Sanda Chedea
- Research Department, Research Station for Viticulture and Enology Blaj (SCDVV Blaj), Blaj, Romania
| |
Collapse
|
7
|
Campos MD, Varanda C, Patanita M, Amaro Ribeiro J, Campos C, Materatski P, Albuquerque A, Félix MDR. A TaqMan ® Assay Allows an Accurate Detection and Quantification of Fusarium spp., the Causal Agents of Tomato Wilt and Rot Diseases. BIOLOGY 2023; 12:268. [PMID: 36829545 PMCID: PMC9953614 DOI: 10.3390/biology12020268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
In tomato plants, Fusarium spp. have been increasingly associated with several wilt and rot diseases that are responsible for severe yield losses. Here, we present a real-time PCR TaqMan® MGB (Minor Groove Binder) assay to detect and discriminate Fusarium spp. from other fungal species that affect tomato plants. The methodology used is based on the selective amplification of the internal transcribed spacer (ITS) region of Fusarium spp. This assay revealed to be highly specific and sensitive for Fusarium species, targeting only the 29 Fusarium isolates from the 45 tested isolates associated to tomato diseases. Sensitivity was assessed with serial dilutions of Fusarium genomic DNA, with the limit of detection of 3.05 pg. An absolute DNA quantification method was also established, based on the determination of the absolute number of target copies. Finally, the effectiveness of the assay was successfully validated with the detection and quantification of Fusarium spp. in potentially infected tomato plants from an experimental field and in control plants grown under controlled conditions. The established methodology allows a reliable, sensitive, and reproducible estimation of Fusarium accumulation in infected tomato plants, gaining new insights for disease control and providing an additional tool in the screening of resistant plants.
Collapse
Affiliation(s)
- Maria Doroteia Campos
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Carla Varanda
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Mariana Patanita
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Joana Amaro Ribeiro
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Catarina Campos
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Patrick Materatski
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - André Albuquerque
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Maria do Rosário Félix
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Departamento de Fitotecnia, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| |
Collapse
|