1
|
Cagnarini C, De Angelis P, Liberati D, Valentini R, Falanga V, Valentini F, Dongiovanni C, Carrieri M, Chiriacò MV. Physiological Response of Olive Trees Under Xylella fastidiosa Infection and Thymol Therapy Monitored Through Advanced IoT Sensors. PLANTS (BASEL, SWITZERLAND) 2025; 14:1380. [PMID: 40364409 PMCID: PMC12073793 DOI: 10.3390/plants14091380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 04/27/2025] [Accepted: 04/30/2025] [Indexed: 05/15/2025]
Abstract
Since its first detection in 2013, Xylella fastidiosa subsp. pauca (Xfp) has caused a devastating Olive Quick Decline Syndrome (OQDS) outbreak in Southern Italy. Effective disease surveillance and treatment strategies are urgently needed to mitigate its impact. This study investigates the short-term (1.5 years) effects of thymol-based treatments on infected olive trees of the susceptible cultivar Cellina di Nardò in two orchards in Salento, Apulia region. Twenty trees per trial received a 3% thymol solution either alone or encapsulated in a cellulose nanoparticle carrier. Over two years, sap flux density and canopy-transmitted solar radiation were monitored using TreeTalker sensors, and spectral greenness indices were calculated. Xfp cell concentrations in plant tissues were quantified via qPCR. Neither thymol treatment halted disease progression nor significantly reduced bacterial load, though the Xfp cell concentration reduction increased over time in the preventive trial. Symptomatic trees exhibited increased sap flux density, though the treatment mitigated this effect in the curative trial. Greenness indices remained lower in infected trees, but the response to symptom severity was delayed. These findings underscore the need for longer-term studies, investigation of synergistic effects with other phytocompounds, and integration of real-time sensor data into adaptive disease management protocols.
Collapse
Affiliation(s)
- Claudia Cagnarini
- Istituto per la Protezione e la Ricerca Ambientale (ISPRA), 00144 Rome, RM, Italy
- CMCC Foundation—Euro-Mediterranean Center on Climate Change, 01100 Viterbo, VT, Italy; (R.V.); (M.V.C.)
| | - Paolo De Angelis
- Dipartimento per la Innovazione nei Sistemi Biologici, Agroalimentari e Forestali, Università degli Studi della Tuscia, 01100 Viterbo, VT, Italy; (P.D.A.); (D.L.)
| | - Dario Liberati
- Dipartimento per la Innovazione nei Sistemi Biologici, Agroalimentari e Forestali, Università degli Studi della Tuscia, 01100 Viterbo, VT, Italy; (P.D.A.); (D.L.)
| | - Riccardo Valentini
- CMCC Foundation—Euro-Mediterranean Center on Climate Change, 01100 Viterbo, VT, Italy; (R.V.); (M.V.C.)
- Dipartimento per la Innovazione nei Sistemi Biologici, Agroalimentari e Forestali, Università degli Studi della Tuscia, 01100 Viterbo, VT, Italy; (P.D.A.); (D.L.)
| | - Valentina Falanga
- Dipartimento di Bioscienze e Territorio, Università degli Studi del Molise, 86090 Pesche, IS, Italy;
| | - Franco Valentini
- CIHEAM Bari, International Center for Advanced Mediterranean Agronomic Studies, 70010 Valenzano, BA, Italy;
| | - Crescenza Dongiovanni
- Centro di Ricerca, Formazione e Sperimentazione in Agricoltura “Basile Caramia” (CRSFA), 70010 Locorotondo, BA, Italy; (C.D.); (M.C.)
| | - Mauro Carrieri
- Centro di Ricerca, Formazione e Sperimentazione in Agricoltura “Basile Caramia” (CRSFA), 70010 Locorotondo, BA, Italy; (C.D.); (M.C.)
| | - Maria Vincenza Chiriacò
- CMCC Foundation—Euro-Mediterranean Center on Climate Change, 01100 Viterbo, VT, Italy; (R.V.); (M.V.C.)
| |
Collapse
|
2
|
Carlucci M, Savoia MA, Lucchese PG, Fanelli V, Mascio I, Aurelio FL, Miazzi MM, Pacifico A, Montemurro C, Nigro F. Behavior of Olive Genotypes Against Quick Decline Syndrome (QDS) Caused by Xylella fastidiosa subsp. pauca in Apulia. PLANTS (BASEL, SWITZERLAND) 2025; 14:157. [PMID: 39861511 PMCID: PMC11769438 DOI: 10.3390/plants14020157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/03/2025] [Accepted: 01/04/2025] [Indexed: 01/27/2025]
Abstract
Xylella fastidiosa subsp. pauca (Xfp), a quarantine pathogen in the European Union, severely threatens Mediterranean olive production, especially in southern Italy, where Olive Quick Decline Syndrome (OQDS) has devastated Apulian olive groves. This study addresses the urgent need to identify resistant olive genotypes by monitoring 16 potentially tolerant genotypes over six years, assessing symptom severity and bacterial load. These genotypes, which survived in heavily infected areas, showed varied responses to Xfp; some maintained low symptom severity with minimal bacterial presence (high or undetectable Cq values), while others exhibited increased bacterial loads yet remained asymptomatic or showed limited canopy desiccation. SSR markers were used to investigate the genetic relationships among these genotypes and other widespread Mediterranean cultivars, showing genetic similarity with the resistant ones such as the Albanian Kalinjot and the Greek Leucocarpa, as well as with local Apulian cultivars, highlighting the potential of local and Mediterranean olive germplasm for Xfp resistance. This study integrates phenotypic responses with genetic knowledge to support the development of conservation strategies that will enhance the genetic diversity of Apulian olive cultivars. In addition, by focusing on the resilience of the different olive genotypes, this research aims to protect the traditional cultivars from the emerging threats, thus preserving the ecological and cultural heritage of the olive biodiversity of the Mediterranean region.
Collapse
Affiliation(s)
- Mariangela Carlucci
- Department of Soil, Plant and Food Sciences (DiSSPA), University of Bari—Aldo Moro, Via Giovanni Amendola 165/A, 70126 Bari, Italy; (M.C.); (M.A.S.); (P.G.L.); (V.F.); (I.M.); (F.L.A.); (M.M.M.); (A.P.); (C.M.)
| | - Michele Antonio Savoia
- Department of Soil, Plant and Food Sciences (DiSSPA), University of Bari—Aldo Moro, Via Giovanni Amendola 165/A, 70126 Bari, Italy; (M.C.); (M.A.S.); (P.G.L.); (V.F.); (I.M.); (F.L.A.); (M.M.M.); (A.P.); (C.M.)
| | - Pompea Gabriella Lucchese
- Department of Soil, Plant and Food Sciences (DiSSPA), University of Bari—Aldo Moro, Via Giovanni Amendola 165/A, 70126 Bari, Italy; (M.C.); (M.A.S.); (P.G.L.); (V.F.); (I.M.); (F.L.A.); (M.M.M.); (A.P.); (C.M.)
| | - Valentina Fanelli
- Department of Soil, Plant and Food Sciences (DiSSPA), University of Bari—Aldo Moro, Via Giovanni Amendola 165/A, 70126 Bari, Italy; (M.C.); (M.A.S.); (P.G.L.); (V.F.); (I.M.); (F.L.A.); (M.M.M.); (A.P.); (C.M.)
| | - Isabella Mascio
- Department of Soil, Plant and Food Sciences (DiSSPA), University of Bari—Aldo Moro, Via Giovanni Amendola 165/A, 70126 Bari, Italy; (M.C.); (M.A.S.); (P.G.L.); (V.F.); (I.M.); (F.L.A.); (M.M.M.); (A.P.); (C.M.)
| | - Francesco Luigi Aurelio
- Department of Soil, Plant and Food Sciences (DiSSPA), University of Bari—Aldo Moro, Via Giovanni Amendola 165/A, 70126 Bari, Italy; (M.C.); (M.A.S.); (P.G.L.); (V.F.); (I.M.); (F.L.A.); (M.M.M.); (A.P.); (C.M.)
| | - Monica Marilena Miazzi
- Department of Soil, Plant and Food Sciences (DiSSPA), University of Bari—Aldo Moro, Via Giovanni Amendola 165/A, 70126 Bari, Italy; (M.C.); (M.A.S.); (P.G.L.); (V.F.); (I.M.); (F.L.A.); (M.M.M.); (A.P.); (C.M.)
| | - Andrea Pacifico
- Department of Soil, Plant and Food Sciences (DiSSPA), University of Bari—Aldo Moro, Via Giovanni Amendola 165/A, 70126 Bari, Italy; (M.C.); (M.A.S.); (P.G.L.); (V.F.); (I.M.); (F.L.A.); (M.M.M.); (A.P.); (C.M.)
| | - Cinzia Montemurro
- Department of Soil, Plant and Food Sciences (DiSSPA), University of Bari—Aldo Moro, Via Giovanni Amendola 165/A, 70126 Bari, Italy; (M.C.); (M.A.S.); (P.G.L.); (V.F.); (I.M.); (F.L.A.); (M.M.M.); (A.P.); (C.M.)
- Spin Off Sinagri s.r.l., University of Bari Aldo Moro, Via Giovanni Amendola 165/A, 70126 Bari, Italy
| | - Franco Nigro
- Department of Soil, Plant and Food Sciences (DiSSPA), University of Bari—Aldo Moro, Via Giovanni Amendola 165/A, 70126 Bari, Italy; (M.C.); (M.A.S.); (P.G.L.); (V.F.); (I.M.); (F.L.A.); (M.M.M.); (A.P.); (C.M.)
| |
Collapse
|
3
|
Serio F, Imbriani G, Girelli CR, Miglietta PP, Scortichini M, Fanizzi FP. A Decade after the Outbreak of Xylella fastidiosa subsp. pauca in Apulia (Southern Italy): Methodical Literature Analysis of Research Strategies. PLANTS (BASEL, SWITZERLAND) 2024; 13:1433. [PMID: 38891241 PMCID: PMC11175074 DOI: 10.3390/plants13111433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024]
Abstract
In 2013, an outbreak of Xylella fastidiosa (Xf) was identified for the first time in Europe, in the extreme south of Italy (Apulia, Salento territory). The locally identified subspecies pauca turned out to be lethal for olive trees, starting an unprecedented phytosanitary emergency for one of the most iconic cultivations of the Mediterranean area. Xf pauca (Xfp) is responsible for a severe disease, the olive quick decline syndrome (OQDS), spreading epidemically and with dramatic impact on the agriculture, the landscape, the tourism and the cultural heritage of this region. The bacterium, transmitted by insects that feed on xylem sap, causes rapid wilting in olive trees due to biofilm formation, which obstructs the plant xylematic vessels. The aim of this review is to perform a thorough analysis that offers a general overview of the published work, from 2013 to December 2023, related to the Xfp outbreak in Apulia. This latter hereto has killed millions of olive trees and left a ghostly landscape with more than 8000 square kilometers of infected territory, that is 40% of the region. The majority of the research efforts made to date to combat Xfp in olive plants are listed in the present review, starting with the early attempts to identify the bacterium, the investigations to pinpoint and possibly control the vector, the assessment of specific diagnostic techniques and the pioneered therapeutic approaches. Interestingly, according to the general set criteria for the preliminary examination of the accessible scientific literature related to the Xfp outbreak on Apulian olive trees, fewer than 300 papers can be found over the last decade. Most of them essentially emphasize the importance of developing diagnostic tools that can identify the disease early, even when infected plants are still asymptomatic, in order to reduce the risk of infection for the surrounding plants. On the other hand, in the published work, the diagnostic focus (57%) overwhelmingly encompasses all other possible investigation goals such as vectors, impacts and possible treatments. Notably, between 2013 and 2023, only 6.3% of the literature reports addressing the topic of Xfp in Apulia were concerned with the application of specific treatments against the bacterium. Among them, those reporting field trials on infected plants, including simple pruning indications, were further limited (6%).
Collapse
Affiliation(s)
- Francesca Serio
- Department of Biological and Environmental Sciences and Technology, University of Salento, 73100 Lecce, Italy; (F.S.); (G.I.); (C.R.G.); (P.P.M.)
| | - Giovanni Imbriani
- Department of Biological and Environmental Sciences and Technology, University of Salento, 73100 Lecce, Italy; (F.S.); (G.I.); (C.R.G.); (P.P.M.)
| | - Chiara Roberta Girelli
- Department of Biological and Environmental Sciences and Technology, University of Salento, 73100 Lecce, Italy; (F.S.); (G.I.); (C.R.G.); (P.P.M.)
| | - Pier Paolo Miglietta
- Department of Biological and Environmental Sciences and Technology, University of Salento, 73100 Lecce, Italy; (F.S.); (G.I.); (C.R.G.); (P.P.M.)
| | - Marco Scortichini
- Council for Agricultural Research and Economics (CREA)-Research Centre for Olive, Fruit and Citrus Crops, Via di Fioranello, 52, 00134 Roma, Italy;
| | - Francesco Paolo Fanizzi
- Department of Biological and Environmental Sciences and Technology, University of Salento, 73100 Lecce, Italy; (F.S.); (G.I.); (C.R.G.); (P.P.M.)
| |
Collapse
|
4
|
Surano A, del Grosso C, Musio B, Todisco S, Giampetruzzi A, Altamura G, Saponari M, Gallo V, Mastrorilli P, Boscia D, Saldarelli P. Exploring the xylem-sap to unravel biological features of Xylella fastidiosa subspecies pauca ST53 in immune, resistant and susceptible crop species through metabolomics and in vitro studies. FRONTIERS IN PLANT SCIENCE 2024; 14:1343876. [PMID: 38312355 PMCID: PMC10834688 DOI: 10.3389/fpls.2023.1343876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/28/2023] [Indexed: 02/06/2024]
Abstract
Xylella fastidiosa subsp. pauca ST53 (Xfp) is a pathogenic bacterium causing one of the most severe plant diseases currently threatening the olive-growing areas of the Mediterranean, the Olive Quick Decline Syndrome (OQDS). The majority of the olive cultivars upon infections more or less rapidly develop severe desiccation phenomena, while few are resistant (e.g. Leccino and FS17), being less impacted by the infections. The present study contributes to elucidating the basis of the resistance phenomenon by investigating the influence of the composition of the xylem sap of plant species on the rate of bacterial multiplication. Xylem saps from Xfp host and non-host species were used for growing the bacterium in vitro, monitoring bacterial growth, biofilm formation, and the expression of specific genes. Moreover, species-specific metabolites, such as mannitol, quinic acid, tartaric acid, and choline were identified by non-targeted NMR-based metabolomic analysis in olive, grapevine, and citrus. In general, the xylem saps of immune species, including grapevine and citrus, were richer in amino acids, organic acids, and glucose. The results showed greater bacterial growth in the olive cultivar notoriously susceptible to Xfp (Cellina di Nardò), compared to that recorded in the resistant cultivar Leccino. Conversely, higher biofilm formation occurred in Leccino compared to Cellina di Nardò. Using the xylem saps of two Xfp-immune species (citrus and grapevine), a divergent bacterial behavior was recorded: low planktonic growth and biofilm production were detected in citrus compared to the grapevine. A parallel evaluation of the expression of 15 genes showed that Xfp directs its molecular functions mainly to virulence. Overall, the results gained through this multidisciplinary study contribute to extending the knowledge on the host-pathogen interaction, while confirming that the host response and resistance mechanism have a multifactorial basis, most likely with a cumulative effect on the phenotype.
Collapse
Affiliation(s)
- Antony Surano
- Institute for Sustainable Plant Protection, National Research Council (CNR), Bari, Italy
| | - Carmine del Grosso
- Institute for Sustainable Plant Protection, National Research Council (CNR), Bari, Italy
| | - Biagia Musio
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Bari, Italy
| | - Stefano Todisco
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Bari, Italy
| | - Annalisa Giampetruzzi
- Institute for Sustainable Plant Protection, National Research Council (CNR), Bari, Italy
| | - Giuseppe Altamura
- CRSFA-Centro Ricerca, Sperimentazione e Formazione in Agricoltura Basile Caramia, Locorotondo, Italy
| | - Maria Saponari
- Institute for Sustainable Plant Protection, National Research Council (CNR), Bari, Italy
| | - Vito Gallo
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Bari, Italy
- Innovative Solutions S.r.l.—Spin-Off Company of Polytechnic University of Bari, Noci, Italy
| | - Piero Mastrorilli
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Bari, Italy
- Innovative Solutions S.r.l.—Spin-Off Company of Polytechnic University of Bari, Noci, Italy
| | - Donato Boscia
- Institute for Sustainable Plant Protection, National Research Council (CNR), Bari, Italy
| | - Pasquale Saldarelli
- Institute for Sustainable Plant Protection, National Research Council (CNR), Bari, Italy
| |
Collapse
|
5
|
Vizzarri V, Ienco A, Benincasa C, Perri E, Pucci N, Cesari E, Novellis C, Rizzo P, Pellegrino M, Zaffina F, Lombardo L. Phenolic Extract from Olive Leaves as a Promising Endotherapeutic Treatment against Xylella fastidiosa in Naturally Infected Olea europaea (var. europaea) Trees. BIOLOGY 2023; 12:1141. [PMID: 37627025 PMCID: PMC10452569 DOI: 10.3390/biology12081141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023]
Abstract
(1) Background: Since 2013, the pathogenic bacterium Xylella fastidiosa has been severely affecting olive production in Apulia, Italy, with consequences for the economy, local culture, landscape and biodiversity. The production of a phenolic extract from fresh olive leaves was employed for endotherapeutic injection into naturally infected olive trees by Xylella fastidiosa in Apulia region, Italy. (2) Methods: The effectiveness of the extract was tested in vitro and in planta in comparison with analogous treatments based on garlic powder and potassium phosphite. (3) Results: The uptake of phenolic compounds from olive leaves through a trunk injection system device resulted in a statistically significant increase in leaf area index and leaf area density, as well as in the growth of newly formed healthy shoots. Plant growth-promoting effects were also observed for potassium phosphite. Moreover, the bacteriostatic activities of the phenolic extract and of the garlic-powder-based solution have been demonstrated in in vitro tests. (4) Conclusions: The results obtained and the contained costs of extraction make the endotherapeutic treatment with phenolic compounds a promising strategy for controlling X fastidiosa to be tested on a larger scale, although the experiments conducted in this study proved not to be suitable for centenary trees.
Collapse
Affiliation(s)
- Veronica Vizzarri
- CREA Research Centre for Olive, Fruit and Citrus Crops, 87036 Rende, Italy; (V.V.); (A.I.); (C.B.); (E.P.); (C.N.); (P.R.); (M.P.); (F.Z.)
| | - Annamaria Ienco
- CREA Research Centre for Olive, Fruit and Citrus Crops, 87036 Rende, Italy; (V.V.); (A.I.); (C.B.); (E.P.); (C.N.); (P.R.); (M.P.); (F.Z.)
| | - Cinzia Benincasa
- CREA Research Centre for Olive, Fruit and Citrus Crops, 87036 Rende, Italy; (V.V.); (A.I.); (C.B.); (E.P.); (C.N.); (P.R.); (M.P.); (F.Z.)
| | - Enzo Perri
- CREA Research Centre for Olive, Fruit and Citrus Crops, 87036 Rende, Italy; (V.V.); (A.I.); (C.B.); (E.P.); (C.N.); (P.R.); (M.P.); (F.Z.)
| | - Nicoletta Pucci
- CREA Research Centre for Plant Protection and Certification, 00156 Rome, Italy; (N.P.); (E.C.)
| | - Erica Cesari
- CREA Research Centre for Plant Protection and Certification, 00156 Rome, Italy; (N.P.); (E.C.)
| | - Carmine Novellis
- CREA Research Centre for Olive, Fruit and Citrus Crops, 87036 Rende, Italy; (V.V.); (A.I.); (C.B.); (E.P.); (C.N.); (P.R.); (M.P.); (F.Z.)
| | - Pierluigi Rizzo
- CREA Research Centre for Olive, Fruit and Citrus Crops, 87036 Rende, Italy; (V.V.); (A.I.); (C.B.); (E.P.); (C.N.); (P.R.); (M.P.); (F.Z.)
| | - Massimiliano Pellegrino
- CREA Research Centre for Olive, Fruit and Citrus Crops, 87036 Rende, Italy; (V.V.); (A.I.); (C.B.); (E.P.); (C.N.); (P.R.); (M.P.); (F.Z.)
| | - Francesco Zaffina
- CREA Research Centre for Olive, Fruit and Citrus Crops, 87036 Rende, Italy; (V.V.); (A.I.); (C.B.); (E.P.); (C.N.); (P.R.); (M.P.); (F.Z.)
| | - Luca Lombardo
- CREA Research Centre for Olive, Fruit and Citrus Crops, 87036 Rende, Italy; (V.V.); (A.I.); (C.B.); (E.P.); (C.N.); (P.R.); (M.P.); (F.Z.)
| |
Collapse
|
6
|
Blonda P, Tarantino C, Scortichini M, Maggi S, Tarantino M, Adamo M. Satellite monitoring of bio-fertilizer restoration in olive groves affected by Xylella fastidiosa subsp. pauca. Sci Rep 2023; 13:5695. [PMID: 37029149 PMCID: PMC10082035 DOI: 10.1038/s41598-023-32170-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/23/2023] [Indexed: 04/09/2023] Open
Abstract
Xylella fastidiosa subsp. pauca (Xfp), has attacked the olive trees in Southern Italy with severe impacts on the olive agro-ecosystem. To reduce both the Xfp cell concentration and the disease symptom, a bio-fertilizer restoration technique has been used. Our study applied multi-resolution satellite data to evaluate the effectiveness of such technique at both field and tree scale. For field scale, a time series of High Resolution (HR) Sentinel-2 images, acquired in the months of July and August from 2015 to 2020, was employed. First, four spectral indices from treated and untreated fields were compared. Then, their trends were correlated to meteo-events. For tree-scale, Very High Resolution (VHR) Pléiades images were selected at the closest dates of the Sentinel-2 data to investigate the response to treatments of each different cultivar. All indices from HR and VHR images were higher in treated fields than in those untreated. The analysis of VHR indices revealed that Oliarola Salentina can respond better to treatments than Leccino and Cellina cultivars. All findings were in agreement with in-field PCR results. Hence, HR data could be used to evaluate plant conditions at field level after treatments, while VHR imagery could be used to optimize treatment doses per cultivar.
Collapse
Affiliation(s)
- Palma Blonda
- Institute of Atmospheric Pollution Research, National Research Council of Italy, c/o Interateneo Physics Department, Via Amendola 173, 70126, Bari, Italy.
| | - Cristina Tarantino
- Institute of Atmospheric Pollution Research, National Research Council of Italy, c/o Interateneo Physics Department, Via Amendola 173, 70126, Bari, Italy
| | - Marco Scortichini
- Research Centre for Olive, Fruit and Citrus Crops, Council for Agricultural Research and Economics, Via di Fioranello 52, 00134, Rome, Italy
| | - Sabino Maggi
- Institute of Atmospheric Pollution Research, National Research Council of Italy, c/o Interateneo Physics Department, Via Amendola 173, 70126, Bari, Italy
| | - Maria Tarantino
- Interateneo Physics Department, University of Bari, Via Amendola 173, 70126, Bari, Italy
| | - Maria Adamo
- Institute of Atmospheric Pollution Research, National Research Council of Italy, c/o Interateneo Physics Department, Via Amendola 173, 70126, Bari, Italy
| |
Collapse
|