1
|
Hu X, Pan L, Fu C, Zhu Q, Hao J, Wang X, Nawaz M, Qu J, Zhang J, Chen Y, Zong J, Liao L, Tang M, Wang Z. A multi-omics analysis reveals candidate genes for Cd tolerance in Paspalum vaginatum. BMC PLANT BIOLOGY 2025; 25:441. [PMID: 40200134 PMCID: PMC11978127 DOI: 10.1186/s12870-025-06478-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 03/27/2025] [Indexed: 04/10/2025]
Abstract
Cadmium (Cd) pollution in the farmland has become a serious global issue threatening both human health and plant biomass production. Seashore paspalum (Paspalum vaginatum Sw.), a halophytic turfgrass, has been recognized as a Cd-tolerant species. However, the underlying genetic basis of natural variations in Cd tolerance still remains unknown. This study is possibly the first to apply genome-wide association studies (GWAS) and selective sweep analysis to identify potential Cd stress-responsive genes in P. vaginatum. We identified a total of 89 candidate genes and 656 putative selective sweeps regions. Based on the correlation analysis of differentially expressed metabolites (DEMs) and differentially expressed genes (DEGs), we identified the 55 key genes associated with metabolic changes induced by Cd treatment as the Cd tolerance-related genes. These genes showed significantly higher expression in Cd-tolerant accessions as compared to Cd-susceptive accessions. Therefore, our multi-omics study revealed the molecular and genetic basis of Cd tolerance, which may help develop Cd tolerant crop varieties.
Collapse
Affiliation(s)
- Xu Hu
- College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572000, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Ling Pan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Chunchan Fu
- College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572000, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Qing Zhu
- College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572000, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Jiangshan Hao
- School of Agriculture, Jinhua Polytechnic, Jinhua, 321016, China
| | - Xiaochun Wang
- College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572000, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Mohsin Nawaz
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Jia Qu
- College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572000, China
| | - Jinlin Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystem, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Yu Chen
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Junqin Zong
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Li Liao
- College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572000, China.
| | - Minqiang Tang
- College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572000, China.
| | - Zhiyong Wang
- College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572000, China.
| |
Collapse
|
2
|
Mall MS, Shah S, Singh S, Singh N, Singh N, Vaish S, Gupta D. Genome-wide identification and characterization of ABC transporter superfamily in the legume Cajanus cajan. J Appl Genet 2023; 64:615-644. [PMID: 37624461 DOI: 10.1007/s13353-023-00774-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/17/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023]
Abstract
Plant ATP-binding cassette (ABC) protein family is the largest multifunctional highly conserved protein superfamily that transports diverse substrates across biological membranes by the hydrolysis of ATP and is also the part of the several other biological processes like cellular detoxification, growth and development, stress biology, and signaling processes. In the agriculturally important legume crop Cajanus cajan, a genome-wide identification and characterization of the ABC gene family was carried out. A total of 159 ABC genes were identified that belong to eight canonical classes CcABCA to CcABCG and CcABCI based on the phylogenetic analysis. The number of genes was highest in CcABCG followed by CcABCC and CcABCB class. A total of 85 CcABC genes were found on 11 chromosomes and 74 were found on scaffold. Tandem duplication was the major driver of CcABC gene family expansion. The dN/dS ratio revealed the purifying selection. The phylogenetic analysis revealed class-specific eight superclades which reflect their functional importance. The largest clade was found to be CcABCG which reflects their functional significance. CcABC proteins were mainly basic in nature and found to be localized in the plasma membrane. The secondary structure prediction revealed the dominance of α-helix. The canonical transmembrane and nucleotide binding domain, signature motif LSSGQ, Walker A, Walker B region, and Q loop were also identified. A class-specific exon-intron pattern was also observed. In addition to core elements, different cis-acting regulatory elements like stress, hormone, and cellular responsive were also identified. Expression profiling of CcABC genes at various developmental stages of different anatomical tissues was performed and it was noticed that CcABCF3, CcABCF4, CcABCF5, CcABCG66, and CcABCI3 had the highest expression. The results of the current study endow us with the further functional analysis of Cajanus ABC in the future.
Collapse
Affiliation(s)
- Mridula Sanjana Mall
- Faculty of Biosciences, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, -Deva Road, Barabanki, Lucknow, Uttar Pradesh, 225003, India
| | - Shreya Shah
- Faculty of Biosciences, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, -Deva Road, Barabanki, Lucknow, Uttar Pradesh, 225003, India
| | - Shivani Singh
- Experiome Biotech Private Limited, B1-517, Vijaypur Colony, DLF MyPAD, Vibhutikhand, Gomtinagar, Lucknow, Uttar Pradesh, 226010, India
| | - Namita Singh
- Experiome Biotech Private Limited, B1-517, Vijaypur Colony, DLF MyPAD, Vibhutikhand, Gomtinagar, Lucknow, Uttar Pradesh, 226010, India
| | - Nootan Singh
- Faculty of Biosciences, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, -Deva Road, Barabanki, Lucknow, Uttar Pradesh, 225003, India
| | - Swati Vaish
- Faculty of Biosciences, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, -Deva Road, Barabanki, Lucknow, Uttar Pradesh, 225003, India
| | - Divya Gupta
- Faculty of Biosciences, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, -Deva Road, Barabanki, Lucknow, Uttar Pradesh, 225003, India.
| |
Collapse
|
3
|
Liu H, Todd JL, Luo H. Turfgrass Salinity Stress and Tolerance-A Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:925. [PMID: 36840273 PMCID: PMC9961807 DOI: 10.3390/plants12040925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/04/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Turfgrasses are ground cover plants with intensive fibrous roots to encounter different edaphic stresses. The major edaphic stressors of turfgrasses often include soil salinity, drought, flooding, acidity, soil compaction by heavy traffic, unbalanced soil nutrients, heavy metals, and soil pollutants, as well as many other unfavorable soil conditions. The stressors are the results of either naturally occurring soil limitations or anthropogenic activities. Under any of these stressful conditions, turfgrass quality will be reduced along with the loss of economic values and ability to perform its recreational and functional purposes. Amongst edaphic stresses, soil salinity is one of the major stressors as it is highly connected with drought and heat stresses of turfgrasses. Four major salinity sources are naturally occurring in soils: recycled water as the irrigation, regular fertilization, and air-borne saline particle depositions. Although there are only a few dozen grass species from the Poaceae family used as turfgrasses, these turfgrasses vary from salinity-intolerant to halophytes interspecifically and intraspecifically. Enhancement of turfgrass salinity tolerance has been a very active research and practical area as well in the past several decades. This review attempts to target new developments of turfgrasses in those soil salinity stresses mentioned above and provides insight for more promising turfgrasses in the future with improved salinity tolerances to meet future turfgrass requirements.
Collapse
Affiliation(s)
- Haibo Liu
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA
| | - Jason L. Todd
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA
| | - Hong Luo
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
4
|
Yang M, Chen J, Liu T, Xiang L, Zhou BF. Genome-Wide Identification and Expression Analysis of Calmodulin-Like Gene Family in Paspalums vaginatium Revealed Their Role in Response to Salt and Cold Stress. Curr Issues Mol Biol 2023; 45:1693-1711. [PMID: 36826054 PMCID: PMC9954852 DOI: 10.3390/cimb45020109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/05/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
The calmodulin-like (CML) family is an important calcium (Ca2+) sensor in plants and plays a pivotal role in the response to abiotic and biotic stresses. As one of the most salt-tolerant grass species, Paspalums vaginatum is resistant to multiple abiotic stresses, such as salt, cold, and drought. However, investigations of PvCML proteins in P. vaginatum have been limited. Based on the recently published P. vaginatum genome, we identified forty-nine PvCMLs and performed a comprehensive bioinformatics analysis of PvCMLs. The main results showed that the PvCMLs were unevenly distributed on all chromosomes and that the expansion of PvCMLs was shaped by tandem and segmental duplications. In addition, cis-acting element analysis, expression profiles, and qRT-PCR analysis revealed that PvCMLs were involved in the response to salt and cold stress. Most interestingly, we found evidence of a tandem gene cluster that independently evolved in P. vaginatum and may participate in cold resistance. In summary, our work provides important insight into how grass species are resistant to abiotic stresses such as salt and cold and could be the basis of further gene function research on CMLs in P. vaginatum.
Collapse
Affiliation(s)
- Meizhen Yang
- Guangdong Engineering Research Center for Grassland Science, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jingjin Chen
- Guangdong Engineering Research Center for Grassland Science, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Tingting Liu
- Guangdong Engineering Research Center for Grassland Science, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Leilei Xiang
- Guangdong Engineering Research Center for Grassland Science, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Biao-Feng Zhou
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Correspondence: ; Tel.: +86-17665141041
| |
Collapse
|
5
|
Liu JN, Fang H, Liang Q, Dong Y, Wang C, Yan L, Ma X, Zhou R, Lang X, Gai S, Wang L, Xu S, Yang KQ, Wu D. Genomic analyses provide insights into the evolution and salinity adaptation of halophyte Tamarix chinensis. Gigascience 2022; 12:giad053. [PMID: 37494283 PMCID: PMC10370455 DOI: 10.1093/gigascience/giad053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/09/2023] [Accepted: 06/29/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND The woody halophyte Tamarix chinensis is a pioneer tree species in the coastal wetland ecosystem of northern China, exhibiting high resistance to salt stress. However, the genetic information underlying salt tolerance in T. chinensis remains to be seen. Here we present a genomic investigation of T. chinensis to elucidate the underlying mechanism of its high resistance to salinity. RESULTS Using a combination of PacBio and high-throughput chromosome conformation capture data, a chromosome-level T. chinensis genome was assembled with a size of 1.32 Gb and scaffold N50 of 110.03 Mb. Genome evolution analyses revealed that T. chinensis significantly expanded families of HAT and LIMYB genes. Whole-genome and tandem duplications contributed to the expansion of genes associated with the salinity adaptation of T. chinensis. Transcriptome analyses were performed on root and shoot tissues during salt stress and recovery, and several hub genes responding to salt stress were identified. WRKY33/40, MPK3/4, and XBAT31 were critical in responding to salt stress during early exposure, while WRKY40, ZAT10, AHK4, IRX9, and CESA4/8 were involved in responding to salt stress during late stress and recovery. In addition, PER7/27/57/73 encoding class III peroxidase and MCM3/4/5/7 encoding DNA replication licensing factor maintained up/downregulation during salt stress and recovery stages. CONCLUSIONS The results presented here reveal the genetic mechanisms underlying salt adaptation in T. chinensis, thus providing important genomic resources for evolutionary studies on tamarisk and plant salt tolerance genetic improvement.
Collapse
Affiliation(s)
- Jian Ning Liu
- College of Forestry, Shandong Agricultural University, Taian 271018, China
| | - Hongcheng Fang
- College of Forestry, Shandong Agricultural University, Taian 271018, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Agricultural University, Taian 271018, China
- Shandong Taishan Forest Ecosystem Research Station, Shandong Agricultural University, Taian 271018, China
| | - Qiang Liang
- College of Forestry, Shandong Agricultural University, Taian 271018, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Agricultural University, Taian 271018, China
- Shandong Taishan Forest Ecosystem Research Station, Shandong Agricultural University, Taian 271018, China
| | - Yuhui Dong
- College of Forestry, Shandong Agricultural University, Taian 271018, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Agricultural University, Taian 271018, China
- Shandong Taishan Forest Ecosystem Research Station, Shandong Agricultural University, Taian 271018, China
| | - Changxi Wang
- College of Forestry, Shandong Agricultural University, Taian 271018, China
| | - Liping Yan
- Shandong Provincial Academy of Forestry, Jinan 250014, China
| | - Xinmei Ma
- College of Forestry, Shandong Agricultural University, Taian 271018, China
| | - Rui Zhou
- College of Forestry, Shandong Agricultural University, Taian 271018, China
| | - Xinya Lang
- College of Forestry, Shandong Agricultural University, Taian 271018, China
| | - Shasha Gai
- College of Forestry, Shandong Agricultural University, Taian 271018, China
| | - Lichang Wang
- College of Forestry, Shandong Agricultural University, Taian 271018, China
| | - Shengyi Xu
- College of Forestry, Shandong Agricultural University, Taian 271018, China
| | - Ke Qiang Yang
- College of Forestry, Shandong Agricultural University, Taian 271018, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Agricultural University, Taian 271018, China
- Shandong Taishan Forest Ecosystem Research Station, Shandong Agricultural University, Taian 271018, China
| | - Dejun Wu
- Shandong Provincial Academy of Forestry, Jinan 250014, China
| |
Collapse
|