1
|
Zeng Y, Liu Z, Chen W, Qv K, Huang Y, Ade L, Hou F. Methane pulse spray and irrigation promote seed germination and seedling growth of common vetch. BMC PLANT BIOLOGY 2024; 24:971. [PMID: 39415102 PMCID: PMC11481452 DOI: 10.1186/s12870-024-05682-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
BACKGROUND Grazing livestock emits methane through rumen intestinal activity, however, its impact on plant growth in grassland while grazing still has not been explored in detail. Therefore, the study examined the effects of methane pulse spray (MPS), according to grazing intensity, at four grazing intensities (0, 3.6, 5.0, and 6.5 sheep·hm- 2 yr- 1) on seed germination and seedling growth of common vetch (Vicia sativa), while two irrigation rates (35 and 53 ml d- 1) were employed to simulate the precipitation. RESULTS The study revealed significant interactions between MPS and irrigation rate on seed germination and seedling growth parameters. Under moderate MPS intensities (0.74 and 1.04 mol m- 2), seed germination rate, potential, index, and vigor index improved, especially at higher irrigation rates (53 ml d- 1). Conversely, excessive MPS (1.33 mol m- 2) inhibited particularly at the germination rate and growth,. The seedling growth dynamics fitted a logistic model, with MPS advancing the rapid growth phase and increasing maximum growth rates. CONCLUSIONS This study demonstrates that low to moderate levels of MPS from ruminants can promote seed germination and seedling growth of common vetch, while excessive MPS inhibits these processes. Irrigation enhances plant sensitivity to MPS, with wetter conditions (620 mm yr- 1) facilitating a more pronounced response. The findings introduce a new model elucidating plant responses to external perturbations, which can inform grazing management strategies in diverse ecosystems. In wetter regions, moderate grazing intensities may leverage MPS benefits, while arid regions require careful grazing regulation to maintain grassland-livestock balance.
Collapse
Affiliation(s)
- Yifeng Zeng
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, National Forestry and Grassland Administration, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Zhiqiang Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, National Forestry and Grassland Administration, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Weijun Chen
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, National Forestry and Grassland Administration, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Ketan Qv
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, National Forestry and Grassland Administration, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Yanxiang Huang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, National Forestry and Grassland Administration, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Luji Ade
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, National Forestry and Grassland Administration, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Fujiang Hou
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, National Forestry and Grassland Administration, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.
| |
Collapse
|
2
|
Tan Z, Chen X, Wang Y, Wang S, Wang R, Yao B, Yang Y, Kong Y, Qu J. The impact of the Qinghai-Tibet highway on plant community and diversity. FRONTIERS IN PLANT SCIENCE 2024; 15:1392924. [PMID: 39006959 PMCID: PMC11240119 DOI: 10.3389/fpls.2024.1392924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024]
Abstract
Roads are an increasingly prevalent form of human activity that drives the decrease in plant community functions and threatens global biodiversity. However, few studies have focused on the changes in the function and diversity of alpine meadows caused by road infrastructure in the Tibetan Plateau. In this study, the changes in species diversity, functional diversity, and community stability were examined at different distances from the Qinghai-Tibet highway. The results showed that the road intensified the degradation of vegetation, which significantly altered species diversity and community structure. This effect gradually decreased from near to far from the highway. Plant community cover and species diversity were highest at intermediate distances (50-100 m) from the roadway; species diversity and stability were lowest in the grassland most disturbed by the road (0 m), and species diversity and functional diversity tended to stabilize farther away from the road (250 m). Our findings indicate that changes in species diversity are synchronized with changes in functional diversity, which largely determines the outcome of degraded grassland community diversity and stability. Our results provide a reference point for restoring degraded alpine areas and mitigating the ecological impacts of roads.
Collapse
Affiliation(s)
- ZhaoXian Tan
- School of Life Science, Qinghai Normal University, Xining, China
- Sanjiangyuan Grassland Ecosystem National Observation and Research Station, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Academy of Plateau Science and Sustainability, People's Government of Qinghai Province & Beijing Normal University, Beijing, China
| | - XuePing Chen
- Research Center for Environment Protection and Water and Soil Conservation, China Academy of Transportation Sciences, Beijing, China
| | - Yun Wang
- Research Center for Environment Protection and Water and Soil Conservation, China Academy of Transportation Sciences, Beijing, China
| | - Suqin Wang
- Sanjiangyuan Grassland Ecosystem National Observation and Research Station, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Province Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Rong Wang
- School of Life Science, Qinghai Normal University, Xining, China
- Sanjiangyuan Grassland Ecosystem National Observation and Research Station, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Academy of Plateau Science and Sustainability, People's Government of Qinghai Province & Beijing Normal University, Beijing, China
| | - BaoHui Yao
- Sanjiangyuan Grassland Ecosystem National Observation and Research Station, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Province Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - YanGang Yang
- Research Center for Environment Protection and Water and Soil Conservation, China Academy of Transportation Sciences, Beijing, China
| | - YaPing Kong
- Research Center for Environment Protection and Water and Soil Conservation, China Academy of Transportation Sciences, Beijing, China
| | - JiaPeng Qu
- School of Life Science, Qinghai Normal University, Xining, China
- Sanjiangyuan Grassland Ecosystem National Observation and Research Station, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Academy of Plateau Science and Sustainability, People's Government of Qinghai Province & Beijing Normal University, Beijing, China
- Qinghai Province Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| |
Collapse
|
3
|
Yao X, Wang H, Zhang S, Oosthuizen M, Huang Y, Wei W. Impact of plateau pika burrowing activity on the grass/sedge ratio in alpine sedge meadows in China. FRONTIERS IN PLANT SCIENCE 2022; 13:1036438. [PMID: 36643295 PMCID: PMC9838571 DOI: 10.3389/fpls.2022.1036438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION Burrowing activities of plateau pikas cause widespread bare patches in alpine meadows on the Qinghai-Tibet Plateau, affecting the plant community composition and forage production. However, it is not clear how these bare patches influence the main forage composition in alpine meadows. METHODS Therefore, we investigated the plant communities in bare patches (BP) and neighboring control plots (CK) in alpine meadows in Maqu county in the Gannan region of China. RESULTS Our results showed that plant communities in the CK plots differed from those in the BP plots. The sedge cover, number of sedge species and number of grass species were all significantly higher in the CK plots compared to the BP plots. However, grass cover and its dry weight were significantly higher in the BP plots. Grass cover and the grass dry weight in the BP plots were 1.859 times and 1.802 times higher than that in the CK plots across the five sites, respectively. Grasses also had a significantly higher cover and dry weight than sedge in the BP plots, grass cover was 66.5 times higher than the sedge cover, and the grass dry weight was 68.242 times that of the sedge dry weight. Therefore, bare patches resulting from plateau pika burrowing activity significantly increase the grass/sedge ratio in alpine meadows. DISCUSSION A potential explanation is that grasses have a stronger reproductive potential than sedges in bare soil. This has implications for pasture yields since grasses have a higher biomass per unit area compared to sedges in alpine meadows.
Collapse
Affiliation(s)
- Xiang Yao
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Haoran Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Saiqi Zhang
- Sichuan Jiuma Expressway Co. Ltd., Aba, China
| | - Maria Oosthuizen
- Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
| | - Yilin Huang
- Sichuan Jiuma Expressway Co. Ltd., Aba, China
| | - Wanrong Wei
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Sciences, China West Normal University, Nanchong, China
| |
Collapse
|
4
|
Bao G, Zhang P, Wei X, Zhang Y, Liu W. Comparison of the effect of temperature and water potential on the seed germination of five Pedicularis kansuensis populations from the Qinghai-Tibet plateau. FRONTIERS IN PLANT SCIENCE 2022; 13:1052954. [PMID: 36507375 PMCID: PMC9731731 DOI: 10.3389/fpls.2022.1052954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
Temperature and water potentials are considered the most critical environmental factors in seed germinability and subsequent seedling establishment. The thermal and water requirements for germination are species-specific and vary with the environment in which seeds mature from the maternal plants. Pedicularis kansuensis is a root hemiparasitic weed that grows extensively in the Qinghai-Tibet Plateau's degraded grasslands and has seriously harmed the grasslands ecosystem and its utilization. Information about temperatures and water thresholds in P. kansuensis seed germination among different populations is useful to predicting and managing the weed's distribution in degraded grasslands. The present study evaluated the effects of temperature and water potentials on P. kansuensis seed germination in cool and warm habitats, based on thermal time and hydrotime models. The results indicate that seeds from cool habitats have a higher base temperature than those from warm habitats, while there is no detectable difference in optimum and ceiling temperatures between habitats. Seed germination in response to water potential differed among the five studied populations. There was a negative correlation between the seed populations' base water potential for 50% (Ψ b(50)) germination and their hydrotime constant (θ H). The thermal time and hydrotime models were good predictors of five populations' germination time in response to temperature and water potentials. Consequently, future studies should consider the effects of maternal environmental conditions on seed germination when seeking effective strategies for controlling hemiparasitic weeds in alpine regions.
Collapse
Affiliation(s)
- Gensheng Bao
- Key Laboratory of Qinghai-Tibetan Plateau Forage Germplasm Research, Qinghai Academy of Animal and Veterinary Medicine, Xining, China
- State Key Laboratory of Sanjiangyuan Ecology and Plateau Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Peng Zhang
- Key Laboratory of Qinghai-Tibetan Plateau Forage Germplasm Research, Qinghai Academy of Animal and Veterinary Medicine, Xining, China
- Qinghai University, Xining, China
| | - XiaoXing Wei
- Key Laboratory of Qinghai-Tibetan Plateau Forage Germplasm Research, Qinghai Academy of Animal and Veterinary Medicine, Xining, China
- State Key Laboratory of Sanjiangyuan Ecology and Plateau Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Yongchao Zhang
- Key Laboratory of Qinghai-Tibetan Plateau Forage Germplasm Research, Qinghai Academy of Animal and Veterinary Medicine, Xining, China
- State Key Laboratory of Sanjiangyuan Ecology and Plateau Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Wenhui Liu
- Key Laboratory of Qinghai-Tibetan Plateau Forage Germplasm Research, Qinghai Academy of Animal and Veterinary Medicine, Xining, China
- State Key Laboratory of Sanjiangyuan Ecology and Plateau Agriculture and Animal Husbandry, Qinghai University, Xining, China
| |
Collapse
|
5
|
Qu J, Wang Y, Kong Y, Zhu H, Yu Y, Zhong L. Effect of chronic traffic noise on behavior and physiology of plateau pikas (Ochotona curzoniae). Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1065966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During the last two decades, numerous studies have shown the effects of traffic noise on animal vocal communication. However, studies on the influences of traffic noise on wildlife behavior and physiology are scarce. In the present study, we experimentally manipulated the traffic noise exposure of plateau pika, a native small mammal widely distributed in the alpine meadow of Qinghai-Tibet Plateau, to explore the effects of traffic noise exposure on its behavior and physiology. We showed that noise exposure increased the pika’s exploration and cortisol concentration (CORT) but decreased the resting metabolic rate (RMR). In addition, the relationships between RMR and exploration or CORT appeared under traffic noise treatment. This study suggests that traffic noise plays a large role in the behavior and physiology of plateau pikas and may have a long-term negative effect on the fitness of rodent populations. Generalizing these non-lethal effects to different taxa is crucial for the conservation and management of biodiversity in this increasingly noisy world.
Collapse
|
6
|
Wei W, Zhang Y, Tang Z, An S, Zhen Q, Qin M, He J, Oosthuizen MK. Suitable grazing during the regrowth period promotes plant diversity in winter pastures in the Qinghai-Tibetan plateau. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.991967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Vegetation is a crucial component of any ecosystem and to preserve the health and stability of grassland ecosystems, species diversity is important. The primary form of grassland use globally is livestock grazing, hence many studies focus on how plant diversity is affected by the grazing intensity, differential use of grazing time and livestock species. Nevertheless, the impact of the grazing time on plant diversity remains largely unexplored. We performed a field survey on the winter pastures in alpine meadows of the Qinghai-Tibetan Plateau (QTP) to examine the effects of grazing time on the vegetation traits. Livestock species, grazing stocking rates and the initiation time of the grazing were similar, but termination times of the grazing differed. The grazing termination time has a significant effect on most of the vegetation traits in the winter pastures. The vegetation height, above-ground biomass, and the Graminoids biomass was negatively related to the grazing termination time in the winter pastures. In contrast, vegetation cover and plant diversity initially increased and subsequently decreased again as the grazing termination time was extended. An extension of the grazing time did not have any effect on the biomass of forbs. Our study is the first to investigate the effects of grazing during the regrowth period on vegetation traits and imply that the plant diversity is mediated by the grazing termination time during the regrowth period in winter pastures. These findings could be used to improve the guidelines for livestock grazing management and policies of summer and winter pasture grazing of family pastures on the QTP from the perspective of plant diversity protection.
Collapse
|
7
|
Structural changes in vegetation coincident with reseeding Elymus nutans can increase perceived predation risk of plateau pikas (Ochotona curzoniae). Appl Anim Behav Sci 2022. [DOI: 10.1016/j.applanim.2022.105745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|