1
|
Garrido J, Corral C, García-Valverde MT, Hidalgo-García J, Ferreiro-Vera C, Martínez-Quesada JJ. Subcanopy and Inter-Canopy Supplemental Light Enhances and Standardizes Yields in Medicinal Cannabis ( Cannabis sativa L.). PLANTS (BASEL, SWITZERLAND) 2025; 14:1469. [PMID: 40431037 PMCID: PMC12115249 DOI: 10.3390/plants14101469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 05/04/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025]
Abstract
Light supplementation within the canopy is an effective method to improve light distribution throughout the whole plant, ensuring the inner canopies receive adequate light exposure to maximize overall growth. This approach is gaining interest among cannabis growers looking for more efficient lighting strategies to enhance their valuable production for medicinal purposes. We compared the traditional top lighting (TL) approach with two light supplementation methods: subcanopy lighting (SCL), which adds extra light to the inner canopies from below, and inter-canopy lighting (ICL), providing dedicated light at the basal and middle levels. Both SCL and ICL resulted in a more uniform light distribution throughout the plants and increased the yields of inflorescences, cannabinoids, and terpenes. The ICL treatment achieved the highest yield increases, showing a 29.95% increase in dry inflorescence yield, a 24.4% higher accumulation of THC, and a 12.5% increase in total terpene concentration. Notably, both SCL and ICL reduced the coefficients of variation, yielding more standardized products by decreasing the variability of the dry inflorescences yield, which also had more consistent chemical profiles, with reductions in variability for both THC and total terpene yields of over 50%. Although using more energy for lighting, SCL was more power-efficient for inflorescence and cannabinoid yields, while ICL was more efficient in achieving yield enhancements. In conclusion, adding supplemental light to the inner canopies enhances the profitability of medical cannabis cultivation, resulting in higher yields, improved energy efficiency, and more standardized products for research and medical purposes.
Collapse
Affiliation(s)
- José Garrido
- Phytoplant Research S.L.U. Parque Científico-Tecnológico de Córdoba, Rabanales 21, Calle Astrónoma Cecilia Payne, Edificio Centauro Modulo B-1, 14014 Córdoba, Spain; (C.C.); (M.T.G.-V.); (J.H.-G.); (C.F.-V.); (J.J.M.-Q.)
| | | | | | | | | | | |
Collapse
|
2
|
Wee Y B, Berkowitz O, Whelan J, Jost R. Same, yet different: towards understanding nutrient use in hemp- and drug-type Cannabis. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:94-108. [PMID: 39180219 PMCID: PMC11659179 DOI: 10.1093/jxb/erae362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/28/2024] [Indexed: 08/26/2024]
Abstract
Cannabis sativa L., one of the oldest cultivated crops, has a complex domestication history due to its diverse uses for fibre, seed, oil, and drugs, and its wide geographic distribution. This review explores how human selection has shaped the biology of hemp and drug-type Cannabis, focusing on acquisition and utilization of nitrogen and phosphorus, and how resulting changes in source-sink relations shape their contrasting phenology. Hemp has been optimized for rapid, slender growth and nutrient efficiency, whereas drug-type cultivars have been selected for compact growth with large phytocannabinoid-producing female inflorescences. Understanding these nutrient use and ontogenetic differences will enhance our general understanding of resource allocation in plants. Knowledge gained in comparison with other model species, such as tomato, rice, or Arabidopsis can help inform crop improvement and sustainability in the cannabis industry.
Collapse
Affiliation(s)
- Benjamin Wee Y
- ARC Research Hub for Medicinal Agriculture, Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora VIC 3086, Australia
- La Trobe Institute for Sustainable Agriculture & Food, La Trobe University, Bundoora VIC 3086, Australia
| | - Oliver Berkowitz
- ARC Research Hub for Medicinal Agriculture, Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora VIC 3086, Australia
- La Trobe Institute for Sustainable Agriculture & Food, La Trobe University, Bundoora VIC 3086, Australia
| | - James Whelan
- ARC Research Hub for Medicinal Agriculture, Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora VIC 3086, Australia
- La Trobe Institute for Sustainable Agriculture & Food, La Trobe University, Bundoora VIC 3086, Australia
- Present Address: College of Life Science, Zhejiang University, Hangzhou, Zhejiang, 310058, P.R. China
| | - Ricarda Jost
- ARC Research Hub for Medicinal Agriculture, Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora VIC 3086, Australia
- La Trobe Institute for Sustainable Agriculture & Food, La Trobe University, Bundoora VIC 3086, Australia
| |
Collapse
|
3
|
Huebner DS, Batarshin M, Beck S, König L, Mewis I, Ulrichs C. Influence of different UV spectra and intensities on yield and quality of cannabis inflorescences. FRONTIERS IN PLANT SCIENCE 2024; 15:1480876. [PMID: 39741668 PMCID: PMC11685020 DOI: 10.3389/fpls.2024.1480876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/26/2024] [Indexed: 01/03/2025]
Abstract
The raising economic importance of cannabis arouses interest in positively influencing the secondary plant constituents through external stimuli. One potential possibility to enhance the secondary metabolite profile is the use of UV light. In this study, the influence of spectral UV quality at different intensity levels on photomorphogenesis, growth, inflorescence yield, and secondary metabolite composition was investigated. Three UV spectra with five different intensities were considered: L1 (UVA:B = 67:33, 4.2 W/m2), L2 (UVA:B = 94:6, 4.99 W/m2), L3_1 (UVA:B = 99:1, 1.81 W/m2), L3_2 (UVA:B = 99:1, 4.12 W/m2) and L3_3 (UVA:B = 99:1, 8.36 W/m2). None of the investigated UV treatments altered the cannabinoid profile. Regarding the terpenes investigated, light variant L3_1 was able to positively influence the terpene profile. Especially linalool (+29%), limonene (+25%) and myrcene (+22%) showed an increase, compared to the control group without UV treatment. Growth and leaf morphology also showed significant changes compared to the control. While a high UVA share increased the leaf area, a higher UVB share led to a smaller leaf area. Of the UV sources examined, only L3_1 with 1.81 W/m2 and a radiation dose of 117.3 kJ m2 d-1 is suitable for practical use in commercial cannabis cultivation. The terpene concentration for this group was in part significantly increased with constant yield and cannabinoid concentration.
Collapse
Affiliation(s)
- Daniel Stefan Huebner
- Division Urban Plant Ecophysiology, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marat Batarshin
- Division Urban Plant Ecophysiology, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sebastian Beck
- Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Leon König
- Division Urban Plant Ecophysiology, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Inga Mewis
- Division Urban Plant Ecophysiology, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christian Ulrichs
- Division Urban Plant Ecophysiology, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
4
|
Ahsan S, Injamum-Ul-Hoque M, Shaffique S, Ayoobi A, Rahman MA, Rahman MM, Choi HW. Illuminating Cannabis sativa L.: The Power of Light in Enhancing C. sativa Growth and Secondary Metabolite Production. PLANTS (BASEL, SWITZERLAND) 2024; 13:2774. [PMID: 39409645 PMCID: PMC11479007 DOI: 10.3390/plants13192774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/22/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024]
Abstract
Light is crucial for higher plants, driving photosynthesis and serving as a powerful sensory signal that profoundly modulates growth, development, physiological functions, hormone activation, and biochemical pathways. Various light parameters-quality, intensity, composition, and photoperiod-exert a tremendous influence on plant growth and development, particularly in industrial hemp (Cannabis sativa L.). C. sativa, a crop of historical significance and unparalleled versatility, holds immense value in the food, fiber, and medicinal industries. The cultivation of medicinal cannabis is burgeoning in controlled environments due to evolving healthcare regulations. Optimal light conditions significantly enhance both yield and harvest quality, notably increasing the density of apical inflorescences and the ratio of inflorescence to total aboveground biomass. C. sativa metabolites, especially phenolic and terpene compounds and Phytocannabinoids like CBD (cannabidiol), THC (tetrahydrocannabinol), and CBG (cannabigerol), possess immense medicinal value. Secondary metabolites in C. sativa predominantly accumulate in the trichomes of female flowers and surrounding sugar leaves, underscoring the critical need to boost inflorescence weight and metabolite concentrations while ensuring product consistency. Different light parameters distinctly impact C. sativa's metabolic profile, providing a robust foundation for understanding the optimal conditions for synthesizing specific secondary metabolites. While the effects of light measurement on various crops are well-established, scientific evidence specifically relating to light quality effects on C. sativa morphology and secondary metabolite accumulation remains scarce. In this review, we critically summarized how different light properties can alter cannabis growth (vegetative and reproductive), physiology and metabolism. Furthermore, the mechanisms by which specific wavelengths influence growth, development, and secondary metabolite biosynthesis in C. sativa are not fully elucidated, which could be a prospective task for future researchers. Our review paves the way for a profound understanding of light's influence on C. sativa growth and advancements in greenhouse settings to maximize metabolite production for commercial use.
Collapse
Affiliation(s)
- S.M. Ahsan
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea; (S.A.); (A.A.)
| | - Md. Injamum-Ul-Hoque
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (M.I.-U.-H.); (S.S.)
| | - Shifa Shaffique
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (M.I.-U.-H.); (S.S.)
| | - Akhtar Ayoobi
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea; (S.A.); (A.A.)
| | | | - Md. Mezanur Rahman
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| | - Hyong Woo Choi
- Institute of Cannabis Biotechnology, Andong National University, Andong 36729, Republic of Korea
| |
Collapse
|
5
|
Contreras-Avilés W, Heuvelink E, Marcelis LFM, Kappers IF. Ménage à trois: light, terpenoids, and quality of plants. TRENDS IN PLANT SCIENCE 2024; 29:572-588. [PMID: 38494370 DOI: 10.1016/j.tplants.2024.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/19/2024]
Abstract
In controlled environment agriculture (CEA), light is used to impact terpenoid production and improve plant quality. In this review we discuss various aspects of light as important regulators of terpenoid production in different plant organs. Spectral quality primarily modifies terpenoid profiles, while intensity and photoperiod influence abundances. The central regulator of light signal transduction elongated hypocotyl 5 (HY5) controls transcriptional regulation of terpenoids under UV, red (R), and blue (B) light. The larger the fraction of R and green (G) light, the more beneficial the effect on monoterpenoid and sesquiterpenoid biosynthesis, and such an effect may depend on the presence of B light. A large fraction of R light is mostly detrimental to tetraterpenoid production. We conclude that light is a promising tool to steer terpenoid production and potentially tailor the quality of plants.
Collapse
Affiliation(s)
- Willy Contreras-Avilés
- Horticulture and Product Physiology, Plant Sciences Group, Wageningen University, P.O. Box 16, 6700, AA, Wageningen, The Netherlands; Plant Physiology, Plant Sciences Group, Wageningen University, P.O. Box 16, 6700, AA, Wageningen, The Netherlands
| | - Ep Heuvelink
- Horticulture and Product Physiology, Plant Sciences Group, Wageningen University, P.O. Box 16, 6700, AA, Wageningen, The Netherlands
| | - Leo F M Marcelis
- Horticulture and Product Physiology, Plant Sciences Group, Wageningen University, P.O. Box 16, 6700, AA, Wageningen, The Netherlands
| | - Iris F Kappers
- Plant Physiology, Plant Sciences Group, Wageningen University, P.O. Box 16, 6700, AA, Wageningen, The Netherlands.
| |
Collapse
|
6
|
Ahrens A, Llewellyn D, Zheng Y. Longer Photoperiod Substantially Increases Indoor-Grown Cannabis' Yield and Quality: A Study of Two High-THC Cultivars Grown under 12 h vs. 13 h Days. PLANTS (BASEL, SWITZERLAND) 2024; 13:433. [PMID: 38337966 PMCID: PMC10857075 DOI: 10.3390/plants13030433] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Indoor-grown Cannabis sativa is commonly transitioned to a 12 h daily photoperiod to promote flowering. However, our previous research has shown that some indoor-grown cannabis cultivars can initiate strong flowering responses under daily photoperiods longer than 12 h. Since longer photoperiods inherently provide higher daily light integrals (DLIs), they may also increase growth and yield. To test this hypothesis, two THC-dominant cannabis cultivars, 'Incredible Milk' (IM) and 'Gorilla Glue' (GG), were grown to commercial maturity at a canopy level PPFD of 540 µmol·m-2·s-1 from white LEDS under 12 h or 13 h daily photoperiods, resulting in DLIs of 23.8 and 25.7 mol·m-2·d-1, respectively. Both treatments were harvested when the plants in the 12 h treatment reached maturity according to established commercial protocols. There was no delay in flowering initiation time in GG, but flowering initiation in IM was delayed by about 1.5 d under 13 h. Stigma browning and trichome ambering also occurred earlier and progressed faster in the 12 h treatment in both cultivars. The vegetative growth of IM plants in the 13 h treatment was greater and more robust. The inflorescence yields were strikingly higher in the 13 h vs. 12 h treatment, i.e., 1.35 times and 1.50 times higher in IM and GG, respectively, which is 4 to 6 times higher than the relative increase in DLIs. The inflorescence concentrations of major cannabinoids in the 13 h treatment were either higher or not different from the 12 h treatment in both cultivars. These results suggest that there may be substantial commercial benefits for using photoperiods longer than 12 h for increasing inflorescence yields without decreasing cannabinoid concentrations in some cannabis cultivars grown in indoor environments.
Collapse
Affiliation(s)
| | | | - Youbin Zheng
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.A.); (D.L.)
| |
Collapse
|
7
|
Stack GM, Snyder SI, Toth JA, Quade MA, Crawford JL, McKay JK, Jackowetz JN, Wang P, Philippe G, Hansen JL, Moore VM, Rose JKC, Smart LB. Cannabinoids function in defense against chewing herbivores in Cannabis sativa L. HORTICULTURE RESEARCH 2023; 10:uhad207. [PMID: 38023471 PMCID: PMC10681003 DOI: 10.1093/hr/uhad207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 10/07/2023] [Indexed: 12/01/2023]
Abstract
In the decades since the first cannabinoids were identified by scientists, research has focused almost exclusively on the function and capacity of cannabinoids as medicines and intoxicants for humans and other vertebrates. Very little is known about the adaptive value of cannabinoid production, though several hypotheses have been proposed including protection from ultraviolet radiation, pathogens, and herbivores. To test the prediction that genotypes with greater concentrations of cannabinoids will have reduced herbivory, a segregating F2 population of Cannabis sativa was leveraged to conduct lab- and field-based bioassays investigating the function of cannabinoids in mediating interactions with chewing herbivores. In the field, foliar cannabinoid concentration was inversely correlated with chewing herbivore damage. On detached leaves, Trichoplusia ni larvae consumed less leaf area and grew less when feeding on leaves with greater concentrations of cannabinoids. Scanning electron and light microscopy were used to characterize variation in glandular trichome morphology. Cannabinoid-free genotypes had trichomes that appeared collapsed. To isolate cannabinoids from confounding factors, artificial insect diet was amended with cannabinoids in a range of physiologically relevant concentrations. Larvae grew less and had lower rates of survival as cannabinoid concentration increased. These results support the hypothesis that cannabinoids function in defense against chewing herbivores.
Collapse
Affiliation(s)
- George M Stack
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY 14456, United States
| | - Stephen I Snyder
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, United States
| | - Jacob A Toth
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY 14456, United States
| | - Michael A Quade
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY 14456, United States
| | - Jamie L Crawford
- Plant Breeding Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, United States
| | - John K McKay
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, United States
| | | | - Ping Wang
- Department of Entomology, Cornell University, Cornell AgriTech, Geneva, NY 14456, United States
| | - Glenn Philippe
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, United States
| | - Julie L Hansen
- Plant Breeding Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, United States
| | - Virginia M Moore
- Plant Breeding Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, United States
| | - Jocelyn K C Rose
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, United States
| | - Lawrence B Smart
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY 14456, United States
| |
Collapse
|
8
|
Westmoreland FM, Kusuma P, Bugbee B. Elevated UV photon fluxes minimally affected cannabinoid concentration in a high-CBD cultivar. FRONTIERS IN PLANT SCIENCE 2023; 14:1220585. [PMID: 37636099 PMCID: PMC10452874 DOI: 10.3389/fpls.2023.1220585] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023]
Abstract
Ultraviolet photons (UV) can damage critical biochemical processes. Plants synthesize photo-protective pigments that absorb UV to minimize damage. Cannabinoids absorb UV, so increased UV has the potential to increase cannabinoid synthesis. Studies in the 1980's provided some evidence for this hypothesis in low-cannabinoid cultivars, but recent studies did not find an increase in cannabinoid synthesis with increasing UV in high-cannabinoid cultivars. These studies used low UV photon fluxes, so we examined the effect of higher UV photon fluxes. We used fluorescent UV lights with 55% UV-B (280 to 314 nm) and 45% UV-A (315 to 399 nm). Treatments began three weeks after the start of short days and continued for five weeks until harvest. Established weighting factors were used to calculate the daily biologically effective UV photon flux (UV-PFDBE; 280 to 399 nm). Daily UV-PFDBE levels were 0, 0.02, 0.05, and 0.11 mol m-2 d-1 with a background daily light integral (DLI) of 30 mol m-2 d-1. This provided a ratio of daily UV-PFDBE to DLI of 41 to 218% of summer sunlight in the field. Cannabinoid concentration was 3 to 13% higher than the control in UV treated plants, but the effect was not statistically significant. Fv/Fm and flower yield were reduced only in the highest UV treatment. These data support recent literature and lead us to conclude that an elevated flux of UV photons is not an effective approach to increase cannabinoid concentration in high-cannabinoid cultivars.
Collapse
Affiliation(s)
- F. Mitchell Westmoreland
- Department of Plants, Soils and Climate, Crop Physiology Laboratory, Utah State University, Logan, UT, United States
| | - Paul Kusuma
- Department of Plants, Soils and Climate, Crop Physiology Laboratory, Utah State University, Logan, UT, United States
- Department of Plant Sciences, Horticulture and Product Physiology, Wageningen University & Research, Wageningen, Netherlands
| | - Bruce Bugbee
- Department of Plants, Soils and Climate, Crop Physiology Laboratory, Utah State University, Logan, UT, United States
| |
Collapse
|
9
|
Ahrens A, Llewellyn D, Zheng Y. Is Twelve Hours Really the Optimum Photoperiod for Promoting Flowering in Indoor-Grown Cultivars of Cannabis sativa? PLANTS (BASEL, SWITZERLAND) 2023; 12:2605. [PMID: 37514220 PMCID: PMC10386198 DOI: 10.3390/plants12142605] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023]
Abstract
Cannabis sativa ("cannabis" hereafter) is a valuable recent addition to Canada's economy with the legalization for recreational use in 2018. The vast majority of indoor cannabis cultivators use a 12-h light/12-h dark photoperiod to promote flowering. To test the hypothesis that robust flowering initiation responses can be promoted in indoor-grown cannabis cultivars under longer photoperiods, clones of ten drug-type cannabis cultivars were grown under six photoperiod treatments. All treatments were based on a standard 24-h day and included 12 h, 12.5 h, 13 h, 13.5 h, 14 h, and 15 h of light. The plants were grown in a growth chamber for 3 to 4 weeks, receiving an approximate light intensity of 360 µmol·m-2·s-1 from white LEDs. Flowering initiation, defined as the appearance of ≥3 pairs of stigmas at the apex of the primary shoot, occurred in all cultivars under all photoperiod treatments up to 14 h. Delays in flowering initiation time under 14 h vs. 12 h ranged from no delay to approximately 4 days, depending on the cultivar. Some cultivars also initiated flowering under 15 h, but floral tissues did not further develop beyond the initiation phase. Harvest metrics of some cultivars responded quadratically with increasing photoperiod, with ideal levels of key flowering parameters varying between 12 h and 13 h. These results suggest there is potential to increase yield in some indoor-grown cannabis cultivars by using longer than 12-h photoperiods during the flowering stage of production. This is attributed to the inherently higher daily light integrals. Indoor cannabis growers should investigate the photoperiod responses of their individual cultivars to determine the optimal photoperiod for producing floral biomass.
Collapse
Affiliation(s)
- Ashleigh Ahrens
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - David Llewellyn
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Youbin Zheng
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|