1
|
Cheng W, Wang Y, Wang Y, Hong L, Qiu M, Luo Y, Zhang Q, Wang T, Jia X, Wang H, Ye J. Aerospace Mutagenized Tea Tree Increases Rhizospheric Microorganisms, Enhances Nutrient Conversion Capacity and Promotes Growth. PLANTS (BASEL, SWITZERLAND) 2025; 14:981. [PMID: 40219049 PMCID: PMC11990241 DOI: 10.3390/plants14070981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025]
Abstract
The utilization of aerospace mutagenesis in plant breeding is a novel, efficient technology. This study investigates the effects of aerospace mutagenesis on tea tree growth, soil nutrient conversion, and soil microbial community structure and function. The results showed that aerospace mutagenized tea trees showed increased leaf area, 100-bud weight, and yield. The rhizosphere soil of mutagenized tea tree displayed an increase in microorganisms, enhanced carbon and nitrogen cycling capacity, and significant increases in nutrient conversion and antioxidant enzyme activities. In addition, the content of available nutrients was also increased. Aerospace mutagenesis showed an increase in the abundance of soil-characteristic microorganisms (Solirubrobacterales bacterium, Capillimicrobium parvum, Mycobacterium colombiense, Mycobacterium rhizamassiliense, and Conexibacter woesei), and enhancement of the intensity of metabolic pathways, glyoxylate and dicarboxylate metabolism, biosynthesis of secondary metabolites, microbial metabolism in diverse environments, carbon metabolism, fatty acid metabolism, carbon metabolism, biosynthesis of amino acids, and biosynthesis of cofactors of soil microorganisms. Interaction network and partial least squares structural equation modeling (PLS-SEM) equation analysis showed that after aerospace mutagenesis, soil-characteristic microorganisms positively affected soil microbial functions, soil microbial biomass carbon and nitrogen, respiration intensity, and soil enzyme activities; furthermore, it improved available nutrient content and tea tree growth. This study provides an important reference for the cultivation and management of aerospace mutagenized tea trees and microbial regulation of tea tree growth.
Collapse
Affiliation(s)
- Weiting Cheng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Tea and Food, Wuyi University, Wuyishan 354300, China
| | - Yulin Wang
- College of Life Science, Longyan University, Longyan 364012, China
| | - Yuhua Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lei Hong
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Miaoen Qiu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yangxin Luo
- College of Life Science, Longyan University, Longyan 364012, China
| | - Qi Zhang
- College of Tea and Food, Wuyi University, Wuyishan 354300, China
| | - Tingting Wang
- College of Life Science, Longyan University, Longyan 364012, China
| | - Xiaoli Jia
- College of Tea and Food, Wuyi University, Wuyishan 354300, China
| | - Haibin Wang
- College of Life Science, Longyan University, Longyan 364012, China
| | - Jianghua Ye
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Tea and Food, Wuyi University, Wuyishan 354300, China
| |
Collapse
|
2
|
Dong Q, Su H, Sun Y, Zhao Y, Zhou D, Wang X, Jiang C, Liu X, Zhong C, Zhang H, Kang S, Zhao X, Yu H. Metagenomic insights into nitrogen cycling functional gene responses to nitrogen fixation and transfer in maize-peanut intercropping. PLANT, CELL & ENVIRONMENT 2024; 47:4557-4571. [PMID: 39031093 DOI: 10.1111/pce.15034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/09/2024] [Accepted: 06/28/2024] [Indexed: 07/22/2024]
Abstract
The fixation and transfer of biological nitrogen from peanuts to maize in maize-peanut intercropping systems play a pivotal role in maintaining the soil nutrient balance. However, the mechanisms through which root interactions regulate biological nitrogen fixation and transfer remain unclear. This study employed a 15N isotope labelling method to quantify nitrogen fixation and transfer from peanuts to maize, concurrently elucidating key microorganisms and genera in the nitrogen cycle through metagenomic sequencing. The results revealed that biological nitrogen fixation in peanut was 50 mg and transfer to maize was 230 mg when the roots interacted. Moreover, root interactions significantly increased nitrogen content and the activities of protease, dehydrogenase (DHO) and nitrate reductase in the rhizosphere soil. Metagenomic analyses and structural equation modelling indicated that nrfC and nirA genes played important roles in regulating nitrogen fixation and transfer. Bradyrhizobium was affected by soil nitrogen content and DHO, indirectly influencing the efficiency of nitrogen fixation and transfer. Overall, our study identified key bacterial genera and genes associated with nitrogen fixation and transfer, thus advancing our understanding of interspecific interactions and highlighting the pivotal role of soil microorganisms and functional genes in maintaining soil ecosystem stability from a molecular ecological perspective.
Collapse
Affiliation(s)
- Qiqi Dong
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Huijie Su
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yuexin Sun
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yubiao Zhao
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Dongying Zhou
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Xiaoguang Wang
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Chunji Jiang
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Xibo Liu
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Chao Zhong
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - He Zhang
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Shuli Kang
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Xinhua Zhao
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Haiqiu Yu
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
- School of Agriculture and Horticulture, Liaoning Agricultural Vocational and Technical College, Yingkou, Liaoning, China
| |
Collapse
|
3
|
Rousseau M, Siegenthaler A, Skidmore AK, de Groot GA, Laros I. Further reduction in soil bacterial diversity under severe acidification in European temperate forests. EUROPEAN JOURNAL OF SOIL SCIENCE 2024; 75:e70005. [PMID: 39583947 PMCID: PMC11579971 DOI: 10.1111/ejss.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 11/26/2024]
Abstract
Despite a decrease in industrial nitrogen and sulfur deposition over recent decades, soil acidification remains a persistent challenge to European forest health, especially in regions of intense agriculture and urbanisation. Using topsoil eDNA metabarcoding and functional annotations from a sample of 49 plots (each 30 × 30 m) located in The Netherlands and Germany, we investigated the effect of severe acidification on bacterial taxonomic diversity under different forest types and explored potential functional implications for nutrient cycling. Furthermore, we assessed which soil parameters known to influence soil bacterial communities affect these acidophilic communities. Here, we are the first to demonstrate under natural conditions that soil bacterial diversity in extremely acidic soils (pH <4.5) continues to decline similarly across forest types as pH further decreases under intensifying human activity. Our results confirmed pH as the key driver of soil bacterial communities, even in extremely acidic soils. Ongoing severe acidification continues to reduce bacterial communities, favouring taxa adapted to extreme acidity and primarily involved in recalcitrant carbon-degradation compounds (e.g. cellulolysis potential = 0.78%-9.99%) while simultaneously diminishing taxa associated with nitrogen cycling (e.g. fixation potential = 6.72%-0.00%). Altogether, our findings indicate a further decline in bacterial diversity in already extremely acidic soils, likely disrupting nutrient cycling through changes in immobilisation and mineralisation processes. Our study highlights the continuous acidification of European temperate forests to extremely low pH levels, further disrupting forest ecosystem functioning. The significant reduction in bacterial diversity under such a severe acidification gradient, as demonstrated here, underscores the necessity to include severely acidified forests in conservation programmes and monitoring to prevent further degradation of European soils beyond repair.
Collapse
Affiliation(s)
- Mélody Rousseau
- Natural Resources Department, Faculty of Geo‐Information Science and Earth ObservationUniversity of TwenteEnschedeThe Netherlands
| | - Andjin Siegenthaler
- Natural Resources Department, Faculty of Geo‐Information Science and Earth ObservationUniversity of TwenteEnschedeThe Netherlands
| | - Andrew K. Skidmore
- Natural Resources Department, Faculty of Geo‐Information Science and Earth ObservationUniversity of TwenteEnschedeThe Netherlands
| | - G. Arjen de Groot
- Wageningen Environmental ResearchWageningen University & ResearchWageningenThe Netherlands
| | - Ivo Laros
- Wageningen Environmental ResearchWageningen University & ResearchWageningenThe Netherlands
| |
Collapse
|
4
|
Zhao B, Gao R, Zhang X, Xia L, Zhang L, Xia D, Liu D, Xia Z, Xu W. Comparison of soil quality assessment methods for different vegetation eco-restoration techniques at engineering disturbed areas. PeerJ 2024; 12:e18033. [PMID: 39247548 PMCID: PMC11380839 DOI: 10.7717/peerj.18033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/12/2024] [Indexed: 09/10/2024] Open
Abstract
Scientific assessment of soil quality is the foundation of sustainable vegetation eco-restoration in engineering disturbed areas. This study aimed to find a qualitative and comprehensive method for assessing soil quality after vegetation eco-restoration in engineering disturbed areas. Sixteen soil indicators were used at six vegetation eco-restoration sites as the potential soil indicators. A minimum data set (MDS) and revised minimum data set (RMDS) were determined by principal component analysis. Six soil quality indices (SQIs) of varying scoring functions based on different data sets were employed in this study. Significant positive correlations were observed among all six SQIs, indicating that the effects of different vegetation eco-restoration measures on soil quality could be quantified by all six SQIs. The SQI values of the vegetation concrete eco-restoration slope (VC), frame beam filling soil slope (FB), thick layer base material spraying slope (TB), and external-soil spray seeding slope (SS) were all significantly higher than the SQI value of the abandoned slag slope (AS). It is noteworthy that the SQIs of the VC and TB sites were also significantly higher than the SQI of the natural forest (NF) site. These results indicate that the application of artificial remediation measures can significantly improve the soil quality of the disturbed area at the Xiangjiaba hydropower station. The results of this study also indicate that the SQI-NLRM method is a practical and accurate quantitative tool for soil quality assessment and is recommended for evaluating soil quality under various vegetation eco-restoration techniques in disturbance areas at the Xiangjiaba hydropower station and in other areas with similar habitat characteristics.
Collapse
Affiliation(s)
- Bingqin Zhao
- Key Laboratory of Geological Hazards on Three Gorges Reservoir Area, Ministry of Education, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Disaster Prevention and Mitigation, China Three Gorges University, Yichang, China
| | - Ruzhang Gao
- Key Laboratory of Geological Hazards on Three Gorges Reservoir Area, Ministry of Education, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Disaster Prevention and Mitigation, China Three Gorges University, Yichang, China
| | - Xingfeng Zhang
- Key Laboratory of Geological Hazards on Three Gorges Reservoir Area, Ministry of Education, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Disaster Prevention and Mitigation, China Three Gorges University, Yichang, China
| | - Lu Xia
- Key Laboratory of Geological Hazards on Three Gorges Reservoir Area, Ministry of Education, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Disaster Prevention and Mitigation, China Three Gorges University, Yichang, China
| | - Lun Zhang
- Key Laboratory of Geological Hazards on Three Gorges Reservoir Area, Ministry of Education, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Disaster Prevention and Mitigation, China Three Gorges University, Yichang, China
| | - Dong Xia
- Key Laboratory of Geological Hazards on Three Gorges Reservoir Area, Ministry of Education, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Disaster Prevention and Mitigation, China Three Gorges University, Yichang, China
- Hubei Provincial Engineering Research Center of Slope Habitat Construction Technique Using Cement-based Materials, China Three Gorges University, Yichang, China
| | - Daxiang Liu
- Key Laboratory of Geological Hazards on Three Gorges Reservoir Area, Ministry of Education, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Disaster Prevention and Mitigation, China Three Gorges University, Yichang, China
| | - Zhenyao Xia
- Key Laboratory of Geological Hazards on Three Gorges Reservoir Area, Ministry of Education, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Disaster Prevention and Mitigation, China Three Gorges University, Yichang, China
| | - Wennian Xu
- Key Laboratory of Geological Hazards on Three Gorges Reservoir Area, Ministry of Education, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Disaster Prevention and Mitigation, China Three Gorges University, Yichang, China
- Hubei Provincial Engineering Research Center of Slope Habitat Construction Technique Using Cement-based Materials, China Three Gorges University, Yichang, China
| |
Collapse
|
5
|
Zhang L, Zhao Z, Jiang B, Baoyin B, Cui Z, Wang H, Li Q, Cui J. Effects of Long-Term Application of Nitrogen Fertilizer on Soil Acidification and Biological Properties in China: A Meta-Analysis. Microorganisms 2024; 12:1683. [PMID: 39203525 PMCID: PMC11356719 DOI: 10.3390/microorganisms12081683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Soil acidification is a global environmental problem with significant impacts on agricultural production, environmental protection, and ecosystem health. Soil acidification is widespread in China, affecting crop yields, agricultural product quality, and biodiversity. Since the 1980s, much work has been done on acidic soils in China, but it is controversial whether excessive nitrogen fertilizer application can lead to soil acidification mechanisms. To address the above issues, we conducted a meta-analysis of 115 published papers to integrate and analyze the effects of N fertilizer application on soil acidification and biological properties from 1980 to 2024. We also quantified the effect of nitrogen fertilization on soil acidification and biological changes under different climatic conditions. The results showed that under long-term application of nitrogen fertilizers in China from 1980 to 2024, soil pH decreased by an average of 15.27%, and the activities of soil urease, nitrate reductase, nitrite reductase, catalase, glutamate dehydrogenase, and glutamate synthetase decreased by an average of 9.82-22.37%. The soil microbial community richness (Chao1 index) increased by 6.53%, but the community diversity (Shannon index) decreased by 15.42%. Among the dominant soil microorganisms, the relative abundance of bacteria decreased by an average of 9.67-29.38% and the abundance of gene expression of nifH, amoA-AOA, amoA-AOB, and qnorB decreased by 9.92-19.83%. In addition, we found that the mean annual temperature and rainfall impacted soil acidification via their effect on soil microbial diversity and community composition. This study provides a scientific basis for an in-depth understanding of the spatial and temporal variation of soil acidification and biological properties in China.
Collapse
Affiliation(s)
- Liqiang Zhang
- College of Plant Science, Jilin University, Changchun 130012, China; (L.Z.); (Z.Z.); (B.J.); (B.B.); (H.W.)
| | - Zehang Zhao
- College of Plant Science, Jilin University, Changchun 130012, China; (L.Z.); (Z.Z.); (B.J.); (B.B.); (H.W.)
| | - Bailing Jiang
- College of Plant Science, Jilin University, Changchun 130012, China; (L.Z.); (Z.Z.); (B.J.); (B.B.); (H.W.)
| | - Bate Baoyin
- College of Plant Science, Jilin University, Changchun 130012, China; (L.Z.); (Z.Z.); (B.J.); (B.B.); (H.W.)
| | - Zhengguo Cui
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun 130033, China;
| | - Hongyu Wang
- College of Plant Science, Jilin University, Changchun 130012, China; (L.Z.); (Z.Z.); (B.J.); (B.B.); (H.W.)
| | - Qiuzhu Li
- College of Plant Science, Jilin University, Changchun 130012, China; (L.Z.); (Z.Z.); (B.J.); (B.B.); (H.W.)
| | - Jinhu Cui
- College of Plant Science, Jilin University, Changchun 130012, China; (L.Z.); (Z.Z.); (B.J.); (B.B.); (H.W.)
| |
Collapse
|
6
|
Li K, Lin H, Han M, Yang L. Soil metagenomics reveals the effect of nitrogen on soil microbial communities and nitrogen-cycle functional genes in the rhizosphere of Panax ginseng. FRONTIERS IN PLANT SCIENCE 2024; 15:1411073. [PMID: 39170784 PMCID: PMC11335670 DOI: 10.3389/fpls.2024.1411073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024]
Abstract
Nitrogen (N) is the primary essential nutrient for ginseng growth, and a reasonable nitrogen application strategy is vital for maintaining the stability of soil microbial functional communities. However, how microbial-mediated functional genes involved in nitrogen cycling in the ginseng rhizosphere respond to nitrogen addition is largely unknown. In this study, metagenomic technology was used to study the effects of different nitrogen additions (N0: 0, N1: 20, N2: 40 N g/m2) on the microbial community and functional nitrogen cycling genes in the rhizosphere soil of ginseng, and soil properties related to the observed changes were evaluated. The results showed that N1 significantly increased the soil nutrient content compared to N0, and the N1 ginseng yield was the highest (29.90% and 38.05% higher than of N0 and N2, respectively). N2 significantly decreased the soil NO3 -N content (17.18 mg/kg lower than N0) and pH. This resulted in a decrease in the diversity of soil microorganisms, a decrease in beneficial bacteria, an increase in the number of pathogenic microorganisms, and an significant increase in the total abundance of denitrification, assimilatory nitrogen reduction, and dissimilatory nitrogen reduction genes, as well as the abundance of nxrA and napA genes (17.70% and 65.25% higher than N0, respectively), which are functional genes involved in nitrification that promote the soil nitrogen cycling process, and reduce the yield of ginseng. The results of the correlation analysis showed that pH was correlated with changes in the soil microbial community, and the contents of soil total nitrogen (TN), ammonium nitrogen (NH4 +-N), and alkaline-hydrolyzed nitrogen (AHN) were the main driving factors affecting the changes in nitrogen cycling functional genes in the rhizosphere soil of ginseng. In summary, nitrogen addition affects ginseng yield through changes in soil chemistry, nitrogen cycling processes, and functional microorganisms.
Collapse
Affiliation(s)
| | - Hongmei Lin
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, China
| | - Mei Han
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, China
| | | |
Collapse
|
7
|
Jia M, Cheng P, Wang Y, Pang X, Li M, Hong L, Zhang Q, Chen Y, Jia X, Ye J, Wang H. Effects of Aviation Mutagenesis on Soil Chemical Indexes, Enzyme Activities, and Metabolites of Dahongpao ( Camellia sinensis) Tea Trees. PLANTS (BASEL, SWITZERLAND) 2024; 13:1291. [PMID: 38794362 PMCID: PMC11125341 DOI: 10.3390/plants13101291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/01/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024]
Abstract
Aviation mutagenesis is a breeding method for the rapid selection of superior plant varieties. In this study, rhizosphere soil chemical indexes, soil enzyme activities, and soil metabolites were measured in Dahongpao tea trees with aviation mutagenesis (TM) and without aviation mutagenesis (CK). The main soil metabolites distinguishing TM and CK and their relationships with soil chemical indexes and soil enzyme activities were analyzed and obtained. The results showed that there was no significant change in the rhizosphere soils' pH of TM tea trees compared to CK (p = 0.91), while all other chemical indexes of TM were significantly higher than CK (p < 0.05). In addition, the activities of enzymes related to soil nutrient cycling such as urease, protease, sucrase, acid phosphatase and cellulase, and enzymes related to soil antioxidants such as superoxide dismutase, catalase, peroxidase, and polyphenol oxidase were significantly increased (p < 0.05) in the rhizosphere soils of TM tea trees compared to CK. Soil metabolite analysis showed that the main soil metabolites distinguishing CK from TM were carbohydrates, nitrogen compounds, and amines. Of these, carbohydrates and nitrogen compounds were significantly positively correlated with soil chemical indexes and soil enzymes, whereas amine was significantly negatively correlated with soil chemical indexes such as organic matter, total nitrogen, total potassium, available nitrogen, available phosphorus; amine showed significant negative correlation with soil enzymes such as catalase, peroxidase, polyphenol oxidase, and urease. It can be seen that aviation mutagenesis is conducive to improving the ability of tea tree rhizosphere aggregation and transformation of soil nutrients, increasing the total amount of soil nutrients and the content of available nutrients, which is more conducive to promoting the uptake of nutrients by the tea tree, and thus promoting the growth of the tea tree.
Collapse
Affiliation(s)
- Miao Jia
- College of Tea and Food, Wuyi University, Wuyishan 354300, China
| | - Pengyuan Cheng
- College of Life Science, Longyan University, Longyan 364012, China
| | - Yuhua Wang
- College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaomin Pang
- College of Tea and Food, Wuyi University, Wuyishan 354300, China
| | - Mingzhe Li
- College of Life Science, Longyan University, Longyan 364012, China
| | - Lei Hong
- College of Life Science, Longyan University, Longyan 364012, China
- College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qi Zhang
- College of Tea and Food, Wuyi University, Wuyishan 354300, China
| | - Yiling Chen
- College of Life Science, Longyan University, Longyan 364012, China
| | - Xiaoli Jia
- College of Tea and Food, Wuyi University, Wuyishan 354300, China
| | - Jianghua Ye
- College of Tea and Food, Wuyi University, Wuyishan 354300, China
| | - Haibin Wang
- College of Tea and Food, Wuyi University, Wuyishan 354300, China
- College of Life Science, Longyan University, Longyan 364012, China
| |
Collapse
|
8
|
Costa L, Martinez M, Suleiman M, Keiser R, Lehmann M, Lenz M. Manganese reductive dissolution coupled to Sb mobilization in contaminated shooting range soil. Appl Microbiol Biotechnol 2024; 108:295. [PMID: 38598118 PMCID: PMC11006745 DOI: 10.1007/s00253-024-13133-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 04/11/2024]
Abstract
A "redox-stat" RMnR bioreactor was employed to simulate moderately reducing conditions (+ 420 mV) in Sb-contaminated shooting range soils for approximately 3 months, thermodynamically favoring Mn(IV) reduction. The impact of moderately reducing conditions on elemental mobilization (Mn, Sb, Fe) and speciation [Sb(III) versus Sb(V); Fe2+/Fe3+] was compared to a control bioreactor RCTRL without a fixed redox potential. In both bioreactors, reducing conditions were accompanied by an increase in effluent Sb(V) and Mn(II) concentrations, suggesting that Sb(V) was released through microbial reduction of Mn oxyhydroxide minerals. This was underlined by multiple linear regression analysis showing a significant (p < 0.05) relationship between Mn and Sb effluent concentrations. Mn concentration was the sole variable exhibiting a statistically significant effect on Sb in RMnR, while under the more reducing conditions in RCTRL, pH and redox potential were also significant. Analysis of the bacterial community composition revealed an increase in the genera Azoarcus, Flavisolibacter, Luteimonas, and Mesorhizobium concerning the initial soil, some of which are possible key players in the process of Sb mobilization. The overall amount of Sb released in the RMnR (10.40%) was virtually the same as in the RCTRL (10.37%), which underlines a subordinate role of anoxic processes, such as Fe-reductive dissolution, in Sb mobilization. This research underscores the central role of relatively low concentrations of Mn oxyhydroxides in influencing the fate of trace elements. Our study also demonstrates that bioreactors operated as redox-stats represent versatile tools that allow quantifying the contribution of specific mechanisms determining the fate of trace elements in contaminated soils. KEY POINTS: • "Redox-stat" reactors elucidate Sb mobilization mechanisms • Mn oxyhydroxides microbial reductive dissolution has a major role in Sb mobilization in soils under moderately reducing conditions • Despite aging the soil exhibited significant Sb mobilization potential, emphasizing persistent environmental effects.
Collapse
Affiliation(s)
- Lara Costa
- Institute for Ecopreneurship, School of Life Science, University of Applied Sciences and Arts Northwestern Switzerland (FHNW), Hofackerstrasse 30, 4132, Muttenz, Switzerland.
- Department of Environmental Science, University of Basel, Bernoullistrasse 30, 4056, Basel, Switzerland.
| | - Mathieu Martinez
- Institute for Ecopreneurship, School of Life Science, University of Applied Sciences and Arts Northwestern Switzerland (FHNW), Hofackerstrasse 30, 4132, Muttenz, Switzerland
| | - Marcel Suleiman
- Institute for Ecopreneurship, School of Life Science, University of Applied Sciences and Arts Northwestern Switzerland (FHNW), Hofackerstrasse 30, 4132, Muttenz, Switzerland
| | - Rolf Keiser
- ARMASUISSE Competence Center Soil, Guisanplatz 1, 3003, Bern, Switzerland
| | - Moritz Lehmann
- Department of Environmental Science, University of Basel, Bernoullistrasse 30, 4056, Basel, Switzerland
| | - Markus Lenz
- Institute for Ecopreneurship, School of Life Science, University of Applied Sciences and Arts Northwestern Switzerland (FHNW), Hofackerstrasse 30, 4132, Muttenz, Switzerland
- Sub-Department of Environmental Technology, Wageningen University, 6700 EV, Wageningen, The Netherlands
| |
Collapse
|
9
|
Wang Y, Lin S, Li J, Jia X, Hu M, Cai Y, Cheng P, Li M, Chen Y, Lin W, Wang H, Wu Z. Metagenomics-based exploration of key soil microorganisms contributing to continuously planted Casuarina equisetifolia growth inhibition and their interactions with soil nutrient transformation. FRONTIERS IN PLANT SCIENCE 2023; 14:1324184. [PMID: 38126014 PMCID: PMC10731376 DOI: 10.3389/fpls.2023.1324184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Casuarina equisetifolia (C. equisetifolia) is an economically important forest tree species, often cultivated in continuous monoculture as a coastal protection forest. Continuous planting has gradually affected growth and severely restricted the sustainable development of the C. equisetifolia industry. In this study, we analyzed the effects of continuous planting on C. equisetifolia growth and explored the rhizosphere soil microecological mechanism from a metagenomic perspective. The results showed that continuous planting resulted in dwarfing, shorter root length, and reduced C. equisetifolia seedling root system. Metagenomics analysis showed that 10 key characteristic microorganisms, mainly Actinoallomurus, Actinomadura, and Mycobacterium, were responsible for continuously planted C. equisetifolia trees. Quantitative analysis showed that the number of microorganisms in these three genera decreased significantly with the increase of continuous planting. Gene function analysis showed that continuous planting led to the weakening of the environmental information processing-signal transduction ability of soil characteristic microorganisms, and the decrease of C. equisetifolia trees against stress. Reduced capacity for metabolism, genetic information processing-replication and repair resulted in reduced microbial propagation and reduced microbial quantity in the rhizosphere soil of C. equisetifolia trees. Secondly, amino acid metabolism, carbohydrate metabolism, glycan biosynthesis and metabolism, lipid metabolism, metabolism of cofactors and vitamins were all significantly reduced, resulting in a decrease in the ability of the soil to synthesize and metabolize carbon and nitrogen. These reduced capacities further led to reduced soil microbial quantity, microbial carbon and nitrogen, microbial respiration intensity, reduced soil enzyme nutrient cycling and resistance-related enzyme activities, a significant reduction in available nutrient content of rhizosphere soils, a reduction in the ion exchange capacity, and an impediment to C. equisetifolia growth. This study provides an important basis for the management of continuously planted C. equisetifolia plantations.
Collapse
Affiliation(s)
- Yuhua Wang
- College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shaoxiong Lin
- College of Life Science, Longyan University, Longyan, China
| | - Jianjuan Li
- Editorial Department, Fujian Academy of Forestry Survey and Planning, Fuzhou, China
| | - Xiaoli Jia
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Mingyue Hu
- College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuhong Cai
- College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Pengyuan Cheng
- College of Life Science, Longyan University, Longyan, China
| | - Mingzhe Li
- College of Life Science, Longyan University, Longyan, China
| | - Yiling Chen
- College of Life Science, Longyan University, Longyan, China
| | - Wenxiong Lin
- College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Haibin Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Zeyan Wu
- College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
10
|
Jia X, Zhang Q, Wang Y, Zhang Y, Li M, Cheng P, Chen M, Lin S, Zou J, Ye J, Wang H. Changes of physiological characteristics, element accumulation and hormone metabolism of tea leaves in response to soil pH. FRONTIERS IN PLANT SCIENCE 2023; 14:1266026. [PMID: 38034585 PMCID: PMC10687463 DOI: 10.3389/fpls.2023.1266026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023]
Abstract
Soil acidification is very likely to affect the growth of tea trees and reduce tea yield. In this study, we analyzed the effects of soils with different pH on the physiological characteristics of tea leaves and determined the multi-element content and hormone metabolomes of tea leaves by ICP-MS and LC-MS/MS, based on which we further analyzed their interaction. The results showed that increasing soil pH (3.29~5.32) was beneficial to increase the available nutrient content of the rhizosphere soil of tea tree, improve the antioxidant enzyme activity and photosynthesis capacity of tea tree leaves, and promote the growth of tea tree. Orthogonal partial least squares discriminant analysis (OPLS-DA) and bubble characteristics analysis were used to screen key elements and hormones for the effect of pH on tea leaves, which were further analyzed by redundancy analysis (RDA) and interaction network. The results showed that an increase in soil pH (3.29~5.32) favored the accumulation of seven key elements (C, K, Ca, Mg, Mn, P, S) in tea tree leaves, which in turn promoted the synthesis of six key hormones (salicylic acid, salicylic acid 2-O-β-glucoside, tryptamine, 2-oxindole-3-acetic acid, indole-3-acetic acid, trans-zeatin-O-glucoside). It can be seen that the increase in soil pH (3.29~5.32) enhanced the resistance of the tea tree itself, improved the photosynthesis ability of the tea tree, and effectively promoted the growth of the tea tree.
Collapse
Affiliation(s)
- Xiaoli Jia
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Qi Zhang
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Yuhua Wang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ying Zhang
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Mingzhe Li
- College of Life Science, Longyan University, Longyan, China
| | - Pengyuan Cheng
- College of Life Science, Longyan University, Longyan, China
| | - Meihui Chen
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Shaoxiong Lin
- College of Life Science, Longyan University, Longyan, China
| | - Jishuang Zou
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Jianghua Ye
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Haibin Wang
- College of Tea and Food, Wuyi University, Wuyishan, China
| |
Collapse
|
11
|
Zhang Y, Zhang Q, Wang Y, Lin S, Chen M, Cheng P, Du M, Jia X, Ye J, Wang H. Study on the effect of magnesium on leaf metabolites, growth and quality of tea tree. FRONTIERS IN PLANT SCIENCE 2023; 14:1192151. [PMID: 37746019 PMCID: PMC10514580 DOI: 10.3389/fpls.2023.1192151] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023]
Abstract
Magnesium (Mg) is one of the essential elements for the growth of tea trees. In this study, we investigated changes in metabolites, photosynthetic fluorescence parameters and quality indexes of tea leaves under different concentrations of magnesium treatment, and the results showed that there were no significant differences in the quantity and total content of metabolites in tea leaves under different Mg concentrations. The results of volcano map analysis showed that the content of 235 metabolites in tea leaves showed an increasing trend and the content of 243 metabolites showed a decreasing trend with the increase of Mg concentration. The results of the combined analysis of the OPLS-DA model and bubble map showed that 45 characteristic metabolites were screened at different concentrations of Mg. Among these, the content of 24 characteristic metabolites showed an increasing trend and 21 characteristic metabolites showed a decreasing trend with the increase of Mg concentrations. The results of KEEG pathway enrichment showed that 24 characteristic metabolites with a upward trend were significantly enriched in saccharides metabolism, nucleic acid metabolism and vitamin metabolism, while the 21 characteristic metabolites with a downward trend were enriched in the synthesis of plant secondary metabolites, phenylpropanoid biosynthesis, biosynthesis of terpenoids, synthesis and metabolism of alkaloids, and synthesis and metabolism of amino acids. It can be inferred that Mg regulation was beneficial to enhance the photosynthetic capacity of tea trees, improve the accumulation and metabolism of carbohydrate substances in tea trees, and thus promoted the growth of tea trees, but was not conducive to the synthesis of secondary metabolites and amino acids related to tea quality. The results of photosynthetic fluorescence parameters and quality indexes of the tea tree confirmed the conclusion predicted by metabolomics. This study provided a reference for regulating of the growth and quality of tea trees with Mg fertilizer in tea plantations.
Collapse
Affiliation(s)
- Ying Zhang
- College of Tea and Food, Wuyi University, Wuyishan, China
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qi Zhang
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Yuhua Wang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shaoxiong Lin
- College of Life Science, Longyan University, Longyan, China
| | - Meihui Chen
- College of Tea and Food, Wuyi University, Wuyishan, China
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Pengyuan Cheng
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mengru Du
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Xiaoli Jia
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Jianghua Ye
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Haibin Wang
- College of Tea and Food, Wuyi University, Wuyishan, China
| |
Collapse
|
12
|
Jia X, Wang Y, Zhang Q, Lin S, Zhang Y, Du M, Chen M, Ye J, Wu Z, Wang H. Reasonable deep application of sheep manure fertilizer to alleviate soil acidification to improve tea yield and quality. FRONTIERS IN PLANT SCIENCE 2023; 14:1179960. [PMID: 37426968 PMCID: PMC10327554 DOI: 10.3389/fpls.2023.1179960] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023]
Abstract
Soil acidification in Chinese tea plantations is widespread, and it has significantly affected the growth of tea trees; it was important to explore soil remediation of acidified tea plantations in depth for the sustainable development of tea industry. In this study, the effects of sheep manure fertilizer with different application depths on soil acidification, tea yield and quality, and soil nitrogen transformation in tea plantations were analyzed for five consecutive years from 2018 to 2022. The results showed that long-term use of sheep manure fertilizer significantly reduced soil acidification (P< 0.05) in tea plantations, improved soil pH and soil ammonium nitrogen content, enhanced root activity and root nitrogen uptake capacity of tea trees, and thus improved tea yield and quality. The effect of different application depths of sheep manure fertilizer on tea yield and quality was mainly reflected in the transformation ability of soil ammonium nitrogen and nitrate nitrogen, which showed that high transformation ability of soil ammonium nitrogen and high ammonium nitrogen content were beneficial to high tea yield and vice versa, and the best effect was achieved when sheep manure was applied at a depth of 50 cm and 70 cm. The topsis analysis confirmed that sheep manure fertilization had a greater effect on root activity, ammonium nitrogen, ammonia intensity, and nifH gene. This study provided an important practical basis for the restoration of acidified tea plantation soil through sheep manure fertilizer management.
Collapse
Affiliation(s)
- Xiaoli Jia
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Yuhua Wang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qi Zhang
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Shaoxiong Lin
- College of Life Science, Longyan University, Longyan, China
| | - Ying Zhang
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Mengru Du
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Meihui Chen
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Jianghua Ye
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Zeyan Wu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Haibin Wang
- College of Tea and Food, Wuyi University, Wuyishan, China
| |
Collapse
|
13
|
Ye J, Wang Y, Lin S, Wang Y, Chen P, Hong L, Jia X, Kang J, Wu Z, Wang H. Metabolomics analysis of the effect of acidification on rhizosphere soil microecosystem of tea tree. FRONTIERS IN PLANT SCIENCE 2023; 14:1137465. [PMID: 36909384 PMCID: PMC9998672 DOI: 10.3389/fpls.2023.1137465] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Acidification can seriously affect the growth of tea trees and the yield and quality of tea leaves. In this study, we analyzed the effects of acidification on the physicochemical properties, microorganisms and metabolites of tea rhizosphere soils with different pH values, and the results showed that with the increase of soil pH, the organic matter content, cation exchange capacity, microbial biomass carbon, microbial biomass nitrogen, microbial respiration intensity, bacterial number and actinomyces number in tea rhizosphere soil all showed an increasing trend, while the fungi number decreased. The results of soil metabolite analysis showed that 2376, 2377 and 2359 metabolites were detected in tea rhizosphere soil with pH values of 3.29, 4.74 and 5.32, respectively, and the number of similar compounds reached 2331, accounting for more than 98%. The results of soil metabolite content analysis showed that with the increase of soil pH, the total contents of metabolite of tea rhizosphere soil increased significantly. The results of correlation analysis between physicochemical indexes of soil and microorganisms and soil metabolites showed that physicochemical indexes of soil and microorganisms were significantly correlated with 221 soil metabolites, among which 55 were significantly positively correlated and 166 were significantly negatively correlated. Based on correlation interaction network analysis, 59 characteristic compounds were obtained and divided into 22 categories, among which 7 categories compounds showed a significant increasing trend with the increase of soil pH, while the other 15 categories compounds showed the opposite trend. Based on the functional analysis of characteristic metabolites, this study found that with the increase of soil pH in tea rhizosphere, the diversity and number of soil microorganisms increased, and the cyclic ability of C and N of tea rhizosphere soil was enhanced, which in turn might lead to the enhancement of resistance of tea tree and promote the growth of tea tree.
Collapse
Affiliation(s)
- Jianghua Ye
- College of Tea and Food, Wuyi University, Wuyishan, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuhua Wang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shaoxiong Lin
- College of Life Science, Longyan University, Longyan, China
| | - Yuchao Wang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Pengyuan Chen
- College of Life Science, Longyan University, Longyan, China
| | - Lei Hong
- College of Life Science, Longyan University, Longyan, China
| | - Xiaoli Jia
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Jiaqian Kang
- College of Life Science, Longyan University, Longyan, China
| | - Zeyan Wu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Haibin Wang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Science, Longyan University, Longyan, China
| |
Collapse
|
14
|
Ye J, Wang Y, Kang J, Chen Y, Hong L, Li M, Jia Y, Wang Y, Jia X, Wu Z, Wang H. Effects of Long-Term Use of Organic Fertilizer with Different Dosages on Soil Improvement, Nitrogen Transformation, Tea Yield and Quality in Acidified Tea Plantations. PLANTS (BASEL, SWITZERLAND) 2022; 12:plants12010122. [PMID: 36616251 PMCID: PMC9824488 DOI: 10.3390/plants12010122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 05/27/2023]
Abstract
In this study, sheep manure fertilizers with different dosages were used for five consecutive years to treat acidified tea plantation soils, and the effects of sheep manure fertilizer on soil pH value, nitrogen transformation, and tea yield and quality were analyzed. The results showed that soil pH value showed an increasing trend after a continuous use of sheep manure fertilizer from 2018 to 2022. After the use of low dosage of sheep manure fertilizer (6 t/hm2-15 t/hm2), tea yield, the content of tea quality indicators (tea polyphenols, theanine, amino acid, and caffeine) and soil ammonium nitrogen content, ammoniating bacteria number, ammoniating intensity, urease activity and protease activity showed increasing trends and were significantly and positively correlated to soil pH value, while the related indexes showed increasing and then decreasing trends after the use of high dosage of sheep manure fertilizer (18 t/hm2). Secondly, the nitrate nitrogen content, nitrifying bacteria number, nitrifying intensity, nitrate reductase activity, and nitrite reductase activity showed decreasing trends after the use of low dosage of sheep manure fertilizer and showed significant negative correlations with soil pH value, while the related indexes showed decreasing trends after the use of high dosage of sheep manure and then increased. The results of principal component and interaction analysis showed that the effects of sheep manure fertilizers with different dosages on tea yield and quality were mainly based on the transformation ability of ammonium nitrogen and nitrate nitrogen in the soil, and the strong transformation ability of ammonium nitrogen and the high ammonium nitrogen content in the soil were conducive to the improvement of tea yield and quality, and vice versa. The results of topsis comprehensive evaluation and analysis showed that the most influential effect on the fertilization effect was the ammonium nitrogen content in the soil and long-term treatment with 15 t/hm2 of sheep manure fertilizer had the highest proximity to the best fertilization effect. This study provided an important practical basis for the remediation and fertilizer management in acidified tea plantation soils.
Collapse
Affiliation(s)
- Jianghua Ye
- College of Tea and Food, Wuyi University, Wuyishan 354300, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuhua Wang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiaqian Kang
- College of Life Science, Longyan University, Longyan 364012, China
| | - Yiling Chen
- College of Life Science, Longyan University, Longyan 364012, China
| | - Lei Hong
- College of Life Science, Longyan University, Longyan 364012, China
| | - Mingzhe Li
- College of Life Science, Longyan University, Longyan 364012, China
| | - Yun Jia
- College of Life Science, Longyan University, Longyan 364012, China
| | - Yuchao Wang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoli Jia
- College of Tea and Food, Wuyi University, Wuyishan 354300, China
| | - Zeyan Wu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haibin Wang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Science, Longyan University, Longyan 364012, China
| |
Collapse
|