1
|
Zhang Z, Zhang G, Zhang X, Zhang H, Xie J, Zeng R, Guo B, Huang L. The complete chloroplast genome sequence and phylogenetic relationship analysis of Eomecon chionantha, one species unique to China. JOURNAL OF PLANT RESEARCH 2024; 137:575-587. [PMID: 38652407 DOI: 10.1007/s10265-024-01539-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 02/29/2024] [Indexed: 04/25/2024]
Abstract
Eomecon chionantha Hance, an endemic species in China, has a long medical history in Chinese ethnic minority medicine and is known for its anti-inflammatory and analgesic effects. However, studies of E. chionantha are lacking. In this study, we investigated the characteristics of the E. chionantha chloroplast genome and determined the taxonomic position of E. chionantha in Papaveraceae via phylogenetic analysis. In addition, we determined molecular markers to identify E. chionantha at the molecular level by comparing the chloroplast genomes of E. chionantha and its closely related species. The complete chloroplast genomic information indicated that E. chionantha chloroplast DNA (178,808 bp) contains 99 protein-coding genes, 8 rRNAs, and 37 tRNAs. Meanwhile, we were able to identify a total of 54 simple sequence repeats through our analysis. Our findings from the phylogenetic analysis suggest that E. chionantha shares a close relationship with four distinct species, namely Macleaya microcarpa, Coreanomecon hylomeconoides, Hylomecon japonica, and Chelidonium majus. Additionally, using the Kimura two-parameter model, we successfully identified five hypervariable regions (ycf4-cemA, ycf3-trnS-GGA, trnC-GCA-petN, rpl32-trnL-UAG, and psbI-trnS-UGA). To the best of our knowledge, this is the first report of the complete chloroplast genome of E. chionantha, providing a scientific reference for further understanding of E. chionantha from the perspective of the chloroplast genome and establishing a solid foundation for the future identification, taxonomic determination and evolutionary analysis of this species.
Collapse
Affiliation(s)
- Zhi Zhang
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Guoshuai Zhang
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Xinke Zhang
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Huihui Zhang
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Junbo Xie
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Rui Zeng
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, China
| | - Baolin Guo
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China.
| | - Linfang Huang
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
2
|
Choi TY, Lee SR. Complete plastid genome of Iris orchioides and comparative analysis with 19 Iris plastomes. PLoS One 2024; 19:e0301346. [PMID: 38578735 PMCID: PMC10997070 DOI: 10.1371/journal.pone.0301346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/14/2024] [Indexed: 04/07/2024] Open
Abstract
Iris is a cosmopolitan genus comprising approximately 280 species distributed throughout the Northern Hemisphere. Although Iris is the most diverse group in the Iridaceae, the number of taxa is debatable owing to various taxonomic issues. Plastid genomes have been widely used for phylogenetic research in plants; however, only limited number of plastid DNA markers are available for phylogenetic study of the Iris. To understand the genomic features of plastids within the genus, including its structural and genetic variation, we newly sequenced and analyzed the complete plastid genome of I. orchioides and compared it with those of 19 other Iris taxa. Potential plastid markers for phylogenetic research were identified by computing the sequence divergence and phylogenetic informativeness. We then tested the utility of the markers with the phylogenies inferred from the markers and whole-plastome data. The average size of the plastid genome was 152,926 bp, and the overall genomic content and organization were nearly identical among the 20 Iris taxa, except for minor variations in the inverted repeats. We identified 10 highly informative regions (matK, ndhF, rpoC2, ycf1, ycf2, rps15-ycf, rpoB-trnC, petA-psbJ, ndhG-ndhI and psbK-trnQ) and inferred a phylogeny from each region individually, as well as from their concatenated data. Remarkably, the phylogeny reconstructed from the concatenated data comprising three selected regions (rpoC2, ycf1 and ycf2) exhibited the highest congruence with the phylogeny derived from the entire plastome dataset. The result suggests that this subset of data could serve as a viable alternative to the complete plastome data, especially for molecular diagnoses among closely related Iris taxa, and at a lower cost.
Collapse
Affiliation(s)
- Tae-Young Choi
- Department of Biology Education, Chosun University, Gwangju, South Korea
| | - Soo-Rang Lee
- Department of Biology Education, Chosun University, Gwangju, South Korea
| |
Collapse
|
3
|
Jang JE, Jeong HJ, Kim AL, Choi YR, Lazkov GA, Jang CG, Choi HJ, Gil HY. The complete chloroplast genome of Eremurus zoae Vved. (Asphodelaceae), an endemic species of Kyrgyz Republic. Mitochondrial DNA B Resour 2024; 9:437-441. [PMID: 38586509 PMCID: PMC10993749 DOI: 10.1080/23802359.2024.2336003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/23/2024] [Indexed: 04/09/2024] Open
Abstract
Eremurus zoae Vved. 1971 is a perennial herbaceous plant in the family Asphodelaceae and an endemic species of the Kyrgyz Republic; however, its complete chloroplast genome sequence has not been reported. Here, we investigated the complete chloroplast (cp) genome of E. zoae using next-generation sequencing. The cp genome was 153,744 bp long, with a large single copy (84,020 bp), a small single copy (16,766 bp), and a pair of inverted repeats (26,479 bp). The genome encodes 132 genes, including 86 protein-coding genes, 38 tRNA genes, and 8 rRNA genes. Phylogenetic analysis revealed that the genus Eremurus forms a monophyletic group and E. zoae is closely related to E. chinensis. This study provides a molecular foundation for future phylogenetic studies of Eremurus.
Collapse
Affiliation(s)
- Ju Eun Jang
- Division of Forest Biodiversity, Korea National Arboretum, Pocheon, South Korea
| | - Hyeon Jin Jeong
- Division of Forest Biodiversity, Korea National Arboretum, Pocheon, South Korea
| | - Aleksey L. Kim
- Division of Forest Biodiversity, Korea National Arboretum, Pocheon, South Korea
| | - Ye-Rim Choi
- Division of Forest Biodiversity, Korea National Arboretum, Pocheon, South Korea
| | - Georgii A. Lazkov
- Institute for Biology, National Academy of Sciences, Bishkek, Kyrgyzstan
| | - Chang-Gee Jang
- Department of Biology Education, Kongju University, Gongju, South Korea
| | - Hyeok Jae Choi
- Department of Biology & Chemistry, Changwon National University, Changwon, South Korea
| | - Hee-Young Gil
- Division of Forest Biodiversity, Korea National Arboretum, Pocheon, South Korea
| |
Collapse
|