1
|
Ahmad S, Sehrish AK, Umair M, Mirino MW, Ali S, Guo H. Effect of biochar amendment on bacterial community and their role in nutrient acquisition in spinach (Spinacia oleracea L.) grown under elevated CO 2. CHEMOSPHERE 2024; 364:143098. [PMID: 39151577 DOI: 10.1016/j.chemosphere.2024.143098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Global climate change is anticipated to shift the soil bacterial community structure and plant nutrient utilization. The use of biochar amendment can positively influence soil bacterial community structure, soil properties, and nutrient use efficiency of crops. However, little is known about the underlying mechanism and response of bacterial community structure to biochar amendment, and its role in nutrient enhancement in soil and plants under elevated CO2. Herein, the effect of biochar amendment (0, 0.5, 1.5%) on soil bacterial community structure, spinach growth, physiology, and soil and plant nutrient status were investigated under two CO2 concentrations (400 and 600 μmol mol-1). Findings showed that biochar application 1.5% (B.2.E) significantly increased the abundance of the bacterial community responsible for growth and nutrient uptake i.e. Firmicutes (42.25%) Bacteroidetes (10.46%), and Gemmatimonadetes (125.75%) as compared to respective control (CK.E) but interestingly abundance of proteobacteria decreased (9.18%) under elevated CO2. Furthermore, the soil available N, P, and K showed a significant increase in higher biochar-amended treatments under elevated CO2. Spinach plants exhibited a notable enhancement in growth and photosynthetic pigments when exposed to elevated CO2 levels and biochar, as compared to ambient CO2 conditions. However, there was variability observed in the leaf gas exchange attributes. Elevated CO2 reduced spinach roots and leaves nutrient concentration. In contrast, the biochar amendment (B2.E) enhanced root and shoot Zinc (494.99%-155.33%), magnesium (261.15%-183.37%), manganese (80.04%-152.86%), potassium (576.24%-355.17%), calcium (261.88%-165.65%), copper (325.42%-282.53%) and iron (717.63%-177.90%) concentration by influencing plant physiology and bacterial community. These findings provide insights into the interaction between plant and bacterial community under future agroecosystems in response to the addition of biochar contributing to a deeper understanding of ecological dynamics.
Collapse
Affiliation(s)
- Shoaib Ahmad
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Adiba Khan Sehrish
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Muhammad Umair
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland and Labrador, Corner Brook A2H 5G4, Newfoundland, Canada
| | - Markus W Mirino
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan.
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing 210023, China; Quanzhou Institute for Environment Protection Industry, Nanjing University, Beifeng Road, 362000 Quanzhou, China.
| |
Collapse
|
2
|
Akram MZ, Rivelli AR, Libutti A, Liu F, Andreasen C. Mitigation of Drought Stress for Quinoa ( Chenopodium quinoa Willd.) Varieties Using Woodchip Biochar-Amended Soil. PLANTS (BASEL, SWITZERLAND) 2024; 13:2279. [PMID: 39204715 PMCID: PMC11359309 DOI: 10.3390/plants13162279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Drought stress deteriorates agro-ecosystems and poses a significant threat to crop productivity and food security. Soil amended with biochar has been suggested to mitigate water stress, but there is limited knowledge about how biochar affects the physiology and vegetative growth of quinoa plants under soil water deficits. We grew three quinoa (Chenopodium quinoa Willd.) varieties, Titicaca (V1), Quipu (V2), and UAFQ7 (V3) in sandy loam soil without (B0) and with 2% woodchip biochar (B2) under drought conditions. The drought resulted in significant growth differences between the varieties. V3 performed vegetatively better, producing 46% more leaves, 28% more branches, and 25% more leaf area than the other two varieties. Conversely, V2 displayed significantly higher yield-contributing traits, with 16% increment in panicle length and 50% more subpanicles compared to the other varieties. Woodchip biochar application significantly enhanced the root development (i.e., root biomass, length, surface, and projected area) and plant growth (i.e., plant height, leaf area, and absolute growth rate). Biochar significantly enhanced root growth, especially fresh and dry weights, by 122% and 127%, respectively. However, biochar application may lead to a trade-off between vegetative growth and panicle development under drought stress as shown for V3 grown in soil with woodchip biochar. However, V3B2 produced longer roots and more biomass. Collectively, we suggest exploring the effects of woodchip biochar addition to the soil on the varietal physiological responses such as stomatal regulations and mechanisms behind the increased quinoa yield under water stress conditions.
Collapse
Affiliation(s)
- Muhammad Zubair Akram
- Ph.D. Program in Agricultural, Forest and Food Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy;
- School of Agricultural, Forest, Food and Environmental Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy;
- Department of Plant and Environmental Sciences, University of Copenhagen, Højbakkegaard Allé 13, 2630 Taastrup, Denmark;
| | - Anna Rita Rivelli
- School of Agricultural, Forest, Food and Environmental Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy;
| | - Angela Libutti
- Department of Agricultural Sciences, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli 25, 71122 Foggia, Italy;
| | - Fulai Liu
- Department of Plant and Environmental Sciences, University of Copenhagen, Højbakkegaard Allé 13, 2630 Taastrup, Denmark;
| | - Christian Andreasen
- Department of Plant and Environmental Sciences, University of Copenhagen, Højbakkegaard Allé 13, 2630 Taastrup, Denmark;
| |
Collapse
|
3
|
Deka D, Patwa D, Nair AM, Ravi K. Influence of biochar amendment on removal of heavy metal from soils using phytoremediation by Catharanthus roseus L. and Chrysopogon zizanioides L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:53552-53569. [PMID: 39196321 DOI: 10.1007/s11356-024-34734-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024]
Abstract
Advances in sustainable toxic heavy metal treatment technologies are crucial to meet our needs for safer land to develop an urban resilient future. The heavy metals bioaccumulate in the food chain due to their persistence in the soil, which poses a serious challenge to its removal and control. Utilisation of hyperaccumulators to reduce the mobility, accumulation and toxic impact of heavy metals is a promising and ecologically safe technique. Amendments such as biochar and chelates have been shown to enhance the phytoremediation efficiency. However, the potential soil improvement is influenced by the properties of the amendment, plant and metal heterogeneities. In this study, an organic sugarcane bagasse biochar amendment for the 60-day pot experiment using Catharanthus roseus L. (NT) and Chrysopogon zizanioides L. (VT) in a heavy metal-contaminated soil was applied. The influence of biochar on the phytoremediation of lead (Pb), zinc (Zn) and cadmium (Cd) from the soil was explored. The plant survival rate enhanced to 100% with biochar amendment, and the biomass increased from 5.83 to 15 g in Zn-contaminated samples. Nutrients such as potassium concentration are directly correlated to the amendment rates, whereas phosphate decreases beyond the 2% biochar amendment rate in both plants. High heavy metal accumulation capacities with improved growth with biochar indicate the sustainability of the process. The translocation factor (TF) > 1 for Zn in NT represents the phytoextraction efficiencies whereas VT indicates high BCF values in the range of 0.5-3.53 for the amended Zn-contaminated soils. The findings indicate that the amendment rate of 2% improves nutrient cycling, plant biomass and heavy metal removal efficiencies. The insights from this study establish that the synergy between biochar amendment and the selected medicinal plants improved the phytoremediation efficiency.
Collapse
Affiliation(s)
- Dhritilekha Deka
- Department of Civil Engineering, Indian Institute of Technology, Guwahati, 781039, India
| | - Deepak Patwa
- Department of Civil Engineering, Indian Institute of Technology, Guwahati, 781039, India
| | - Archana M Nair
- Department of Civil Engineering, Indian Institute of Technology, Guwahati, 781039, India
| | - Karangat Ravi
- Department of Civil Engineering, Indian Institute of Technology, Guwahati, 781039, India.
| |
Collapse
|
4
|
Shah SSH, Nakagawa K, Yokoyama R, Berndtsson R. Heavy metal immobilization and radish growth improvement using Ca(OH) 2-treated cypress biochar in contaminated soil. CHEMOSPHERE 2024; 360:142385. [PMID: 38777201 DOI: 10.1016/j.chemosphere.2024.142385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/06/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
Heavy metal contamination poses a significant threat to soil quality, plant growth, and food safety, and directly affects multiple UN SDGs. Addressing this issue and offering a remediation solution are vital for human health. One effective approach for immobilizing heavy metals involves impregnating cypress chips with calcium hydroxide (Ca(OH)2) to enhance the chemical adsorption capacity of the resulting woody charcoal. In the present study, un-treated cypress biochar (UCBC) and calcium-treated cypress biochar (TCBC), were introduced into pristine and contaminated soil, at rates of 3, 6, and 9% (w/w). Both BCs were alkaline (UCBC pH: 8.9, TCBC pH: 9.7) with high specific surface area, which improved the soil properties (pH, EC, and OM). Radish (Raphanus sativus) cultivated in pots revealed that both UCBC and TCBC demonstrated significant improvements in growth attributes and heavy metal immobilization compared to the control, with TCBC exhibiting superior effects. The TCBC surface showed highly active nanosized precipitated calcium carbonate particles that were active in immobilizing heavy metals. The application of TCBC at a rate of 9% resulted in a substantial reduction in Zn and Cu uptake by radish roots and shoots. In contaminated soil, Zn uptake by radish roots decreased by 55% (68.3-31.0 mg kg-1), and shoots by 37% (49.3-31.0 mg kg-1); Cu uptake decreased by 40% (38.6-23.2 mg kg-1) in roots and 39% (58.2-35.2 mg kg-1) in shoots. Uptake of Pb was undetectable after TCBC application. Principal component analysis (PCA) highlighted the potential of TCBC over UCBC in reducing heavy metal concentrations and promoting radish growth. Future research should consider the long-term effects and microbial interactions of TCBC application.
Collapse
Affiliation(s)
- Syed Shabbar Hussain Shah
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Kei Nakagawa
- Institute of Integrated Science and Technology, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan.
| | - Riei Yokoyama
- Okayama Research Institute, NISSHOKU Group Inc., 573-1 Takao, Tsuyama-shi, Okayama, 708-8652, Japan
| | - Ronny Berndtsson
- Division of Water Resources Engineering & Centre for Advanced Middle Eastern Studies, Lund University, Box 118, SE-221 00, Lund, Sweden
| |
Collapse
|
5
|
Ahmad S, Khan Sehrish A, Hussain A, Zhang L, Owdah Alomrani S, Ahmad A, Al-Ghanim KA, Ali Alshehri M, Ali S, Sarker PK. Salt stress amelioration and nutrient strengthening in spinach (Spinacia oleracea L.) via biochar amendment and zinc fortification: seed priming versus foliar application. Sci Rep 2024; 14:15062. [PMID: 38956110 PMCID: PMC11220015 DOI: 10.1038/s41598-024-65834-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024] Open
Abstract
Soil salinity is a major nutritional challenge with poor agriculture production characterized by high sodium (Na+) ions in the soil. Zinc oxide nanoparticles (ZnO NPs) and biochar have received attention as a sustainable strategy to reduce biotic and abiotic stress. However, there is a lack of information regarding the incorporation of ZnO NPs with biochar to ameliorate the salinity stress (0, 50,100 mM). Therefore, the current study aimed to investigate the potentials of ZnO NPs application (priming and foliar) alone and with a combination of biochar on the growth and nutrient availability of spinach plants under salinity stress. Results demonstrated that salinity stress at a higher rate (100 mM) showed maximum growth retardation by inducing oxidative stress, resulted in reduced photosynthetic rate and nutrient availability. ZnO NPs (priming and foliar) alone enhanced growth, chlorophyll contents and gas exchange parameters by improving the antioxidant enzymes activity of spinach under salinity stress. While, a significant and more pronounced effect was observed at combined treatments of ZnO NPs with biochar amendment. More importantly, ZnO NPs foliar application with biochar significantly reduced the Na+ contents in root 57.69%, and leaves 61.27% of spinach as compared to the respective control. Furthermore, higher nutrient contents were also found at the combined treatment of ZnO NPs foliar application with biochar. Overall, ZnO NPs combined application with biochar proved to be an efficient and sustainable strategy to alleviate salinity stress and improve crop nutritional quality under salinity stress. We inferred that ZnO NPs foliar application with a combination of biochar is more effectual in improving crop nutritional status and salinity mitigation than priming treatments with a combination of biochar.
Collapse
Affiliation(s)
- Shoaib Ahmad
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Adiba Khan Sehrish
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Afzal Hussain
- Department of Environmental Sciences, The University of Lahore, Lahore, 54590, Pakistan
| | - Lidan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Sarah Owdah Alomrani
- Department of Biology, College of Science and Arts, Najran University, 66252, Najran, Saudi Arabia
| | - Azeem Ahmad
- Soil and Water Chemistry Laboratory, Institute of Soil and Environment Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Khalid A Al-Ghanim
- Department of Zoology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Mohammad Ali Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
- Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan.
| | - Pallab K Sarker
- Environmental Studies Department, University of California Santa Cruz, Santa Cruz, CA, 95060, USA.
| |
Collapse
|
6
|
Niu M, Chen X, Pan Y, Wang S, Xue L, Duan Y, Ahmad S, Zhou Y, Zhao K, Peng D. Biochar Effectively Promoted Growth of Ardisia crenata by Affecting the Soil Physicochemical Properties. PLANTS (BASEL, SWITZERLAND) 2024; 13:1736. [PMID: 38999576 PMCID: PMC11243174 DOI: 10.3390/plants13131736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024]
Abstract
Biochar is regarded as a soil improvement material possessing superior physical and chemical properties that can effectively enhance plant growth. However, there exists a paucity of research examining the efficacy of biochar in supplanting traditional materials and its subsequent impact on the growth of Ardisia crenata, which is currently domesticated as fruit ornamentals. In this study, the mechanism of biochar's effect on Ardisia crenata was analyzed by controlled experiments. For 180 days, their growth and development were meticulously assessed under different treatments through the measurement of various indices. Compared with the references, the addition of biochar led to an average increase in soil nutrient content, including a 14.1% rise in total nitrogen, a 564.1% increase in total phosphorus, and a 63.2% boost in total potassium. Furthermore, it improved the physical and chemical properties of the soil by reducing soil bulk density by 6.2%, increasing total porosity by 6.33%, and enhancing pore water by 7.35%, while decreasing aeration porosity by 1.11%. The growth and development of Ardisia crenata were better when the appending ratio of biochar was in the range of 30% to 50%, with the root parameters, such as root length, root surface area, and root volume, 48.90%, 62.00%, and 24.04% higher to reference. At the same time, the biomass accumulation of roots in the best group with adding biochar also increased significantly (55.80%). The addition of biochar resulted in a significant improvement in the content of chlorophyll a and chlorophyll b (1.947 mg g-1) and the net photosynthetic rate (5.6003 µmol m-2 s-1). This study's findings underpinned the addition of biochar in soil improvement and plant response. Therefore, biochar can favor the cultivation and industrial application of Ardisia crenata in the future, leading to an efficient and environmentally friendly industrial development.
Collapse
Affiliation(s)
- Muqi Niu
- Cross-Strait Floriculture Industry Science and Technology Innovation Hub, Fujian Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiuming Chen
- Cross-Strait Floriculture Industry Science and Technology Innovation Hub, Fujian Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yun Pan
- Cross-Strait Floriculture Industry Science and Technology Innovation Hub, Fujian Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shunshun Wang
- Cross-Strait Floriculture Industry Science and Technology Innovation Hub, Fujian Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Luyu Xue
- Cross-Strait Floriculture Industry Science and Technology Innovation Hub, Fujian Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanru Duan
- Cross-Strait Floriculture Industry Science and Technology Innovation Hub, Fujian Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Sagheer Ahmad
- Cross-Strait Floriculture Industry Science and Technology Innovation Hub, Fujian Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuzhen Zhou
- Cross-Strait Floriculture Industry Science and Technology Innovation Hub, Fujian Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kai Zhao
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Donghui Peng
- Cross-Strait Floriculture Industry Science and Technology Innovation Hub, Fujian Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
7
|
Wang Y, Li A, Zou B, Qian Y, Li X, Sun Z. The Combination of Buchloe dactyloides Engelm and Biochar Promotes the Remediation of Soil Contaminated with Polycyclic Aromatic Hydrocarbons. Microorganisms 2024; 12:968. [PMID: 38792797 PMCID: PMC11124401 DOI: 10.3390/microorganisms12050968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/17/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) cause serious stress to biological health and the soil environment as persistent pollutants. Despite the wide use of biochar in promoting soil improvement, the mechanism of biochar removing soil PAHs through rhizosphere effect in the process of phytoremediation remain uncertain. In this study, the regulation of soil niche and microbial degradation strategies under plants and biochar were explored by analyzing the effects of plants and biochar on microbial community composition, soil metabolism and enzyme activity in the process of PAH degradation. The combination of plants and biochar significantly increased the removal of phenanthrene (6.10%), pyrene (11.50%), benzo[a]pyrene (106.02%) and PAHs (27.10%) when compared with natural attenuation, and significantly increased the removal of benzo[a]pyrene (34.51%) and PAHs (5.96%) when compared with phytoremediation. Compared with phytoremediation, the combination of plants and biochar significantly increased soil nutrient availability, enhanced soil enzyme activity (urease and catalase), improved soil microbial carbon metabolism and amino acid metabolism, thereby benefiting microbial resistance to PAH stress. In addition, the activity of soil enzymes (dehydrogenase, polyphenol oxidase and laccase) and the expression of genes involved in the degradation and microorganisms (streptomyces, curvularia, mortierella and acremonium) were up-regulated through the combined action of plants and biochar. In view of the aforementioned results, the combined application of plants and biochar can enhance the degradation of PAHs and alleviate the stress of PAH on soil microorganisms.
Collapse
Affiliation(s)
- Yuancheng Wang
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (Y.W.); (A.L.)
| | - Ao Li
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (Y.W.); (A.L.)
| | - Bokun Zou
- Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China; (B.Z.); (Y.Q.)
| | - Yongqiang Qian
- Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China; (B.Z.); (Y.Q.)
| | - Xiaoxia Li
- Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China; (B.Z.); (Y.Q.)
| | - Zhenyuan Sun
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (Y.W.); (A.L.)
| |
Collapse
|
8
|
Wang C, Ma Y, Zhao R, Sun Z, Wang X, Gao F. The Effect of Nutrient Deficiencies on the Annual Yield and Root Growth of Summer Corn in a Double-Cropping System. PLANTS (BASEL, SWITZERLAND) 2024; 13:682. [PMID: 38475527 DOI: 10.3390/plants13050682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024]
Abstract
The North China Plain has a typical winter wheat-summer corn double-cropping pattern. The effects of nutrient deficiency conditions on the root characteristics and yield of summer corn in the double-cropping system were studied for four years. Long-term monotonous fertilization patterns undermine crop rotation systems and are detrimental to the sustainability of agricultural production. To complement the development of rational fertilization strategies by exploring the response of crop rotation systems to nutrient deficiencies, an experiment was conducted in a randomized complete block design consisting of five treatments with three replicates for each treatment: (1) an adequate supply of nitrogen and phosphate fertilizers and potash-deficient treatment (T1); (2) an adequate supply of nitrogen and potash fertilizers and phosphorus-deficient treatment (T2); (3) an adequate supply of phosphorus and potash fertilizers and nitrogen-deficient treatment (T3); (4) nutrient-sufficient treatment for crop growth (T4); and (5) no-fertilizer treatment (CK). The results showed that different nutrient treatments had significant effects on the root length density (RLD), root surface area density (RSAD), and root dry weight density (RDWD) in summer corn. At the physiological maturity stage (R6), the root indexes of RLD, RSAD, and RDWD were significantly higher in the 0-20 cm soil layer in T4 compared to CK, with an increase of 86.2%, 131.4%, and 100.0%, respectively. Similarly, in the 20-40 cm soil layer, the root indexes of T4 were 85.7%, 61.3%, and 50.0% higher than CK, with varied differences observed in the other nutrient-deficient treatments. However, there was no significant difference among the treatments in the 40-60 cm layer except for T4, whose root index showed a difference. The root fresh weight and root dry matter in T4, T3, T2, and T1 were increased to different degrees compared with CK. In addition, these differences in root indexes affected the annual yield of crops, which increased by 20.96%, 21.95%, and 8.14% in T4, T2, and T1, respectively, compared to CK. The spike number and the number of grains per spike of T4 were 10.8% and 8.3% higher than those of CK, which led to the differences in summer corn yields. The 1000-kernel weight of T4, T2, and T1 were 9.5%, 8.8%, and 7.4% higher than that of CK, whereas the determining nutrient was nitrogen fertilizer, and phosphorus fertilizer had a higher effect on yield than potassium fertilizer. This provides a theoretical basis for the effect of nutrient deficiency conditions on yield stability in a double-cropping system.
Collapse
Affiliation(s)
- Chuangyun Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- College of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China
| | - Yankun Ma
- College of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China
| | - Rong Zhao
- College of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China
| | - Zheng Sun
- College of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China
| | - Xiaofen Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Fei Gao
- College of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China
| |
Collapse
|
9
|
Liu H, Li C, Lin Y, Chen YJ, Zhang ZJ, Wei KH, Lei M. Biochar and organic fertilizer drive the bacterial community to improve the productivity and quality of Sophora tonkinensis in cadmium-contaminated soil. Front Microbiol 2024; 14:1334338. [PMID: 38260912 PMCID: PMC10800516 DOI: 10.3389/fmicb.2023.1334338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
Excessive Cd accumulation in soil reduces the production of numerous plants, such as Sophora tonkinensis Gagnep., which is an important and widely cultivated medicinal plant whose roots and rhizomes are used in traditional Chinese medicine. Applying a mixture of biochar and organic fertilizers improved the overall health of the Cd-contaminated soil and increased the yield and quality of Sophora. However, the underlying mechanism between this mixed fertilization and the improvement of the yield and quality of Sophora remains uncovered. This study investigated the effect of biochar and organic fertilizer application (BO, biochar to organic fertilizer ratio of 1:2) on the growth of Sophora cultivated in Cd-contaminated soil. BO significantly reduced the total Cd content (TCd) in the Sophora rhizosphere soil and increased the soil water content, overall soil nutrient levels, and enzyme activities in the soil. Additionally, the α diversity of the soil bacterial community had been significantly improved after BO treatment. Soil pH, total Cd content, total carbon content, and dissolved organic carbon were the main reasons for the fluctuation of the bacterial dominant species. Further investigation demonstrated that the abundance of variable microorganisms, including Acidobacteria, Proteobacteria, Bacteroidetes, Firmicutes, Chloroflexi, Gemmatimonadetes, Patescibacteria, Armatimonadetes, Subgroups_ 6, Bacillus and Bacillus_ Acidiceler, was also significantly changed in Cd-contaminated soil. All these alterations could contribute to the reduction of the Cd content and, thus, the increase of the biomass and the content of the main secondary metabolites (matrine and oxymatrine) in Sophora. Our research demonstrated that the co-application of biochar and organic fertilizer has the potential to enhance soil health and increase the productivity and quality of plants by regulating the microorganisms in Cd-contaminated soil.
Collapse
Affiliation(s)
- Han Liu
- National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Cui Li
- National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Yang Lin
- National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Yi-jian Chen
- The Third Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Zhan-jiang Zhang
- National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory for High-Quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Kun-hua Wei
- National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Ming Lei
- National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| |
Collapse
|
10
|
Zhang M, Liu Y, Wei Q, Liu L, Gu X, Gou J, Wang M. Effects of biochar and vermicompost on growth and economic benefits of continuous cropping pepper at karst yellow soil region in Southwest China. FRONTIERS IN PLANT SCIENCE 2023; 14:1238663. [PMID: 37799545 PMCID: PMC10548120 DOI: 10.3389/fpls.2023.1238663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/04/2023] [Indexed: 10/07/2023]
Abstract
Recently, biochar (B) and vermicompost (V) have been widely used as amendments to improve crop productivity and soil quality. However, the ameliorative effects of biochar and vermicompost on the continuous cropping of pepper under open-air conditions, particularly in the karst areas of southwestern China, remain unclear. A field experiment was conducted to study the effects of biochar and vermicompost application, alone or in combination, on the yield, quality, nutrient accumulation, fertilizer utilization, and economic benefits of continuous pepper cropping from 2021 to 2022. The experiment included six treatments: CK (no fertilizer), TF (traditional fertilization of local farmers), TFB (TF combined with biochar of 3000 kg·ha-1), TFV (TF combined with vermicompost of 3000 kg·ha-1), TFBV1 (TF combined with biochar of 1500 kg·ha-1 and vermicompost of 1500 kg·ha-1), and TFBV2 (TF combined with biochar of 3000 kg·ha-1 and vermicompost of 3000 kg·ha-1). Compared with the TF treatment, biochar and vermicompost application alone or in combination increased the yield of fresh pod pepper by 24.38-50.03% and 31.61-88.92% in 2021 and 2022, respectively, whereas the yield of dry pod pepper increased by 14.69-40.63% and 21.44-73.29% in 2021 and 2022, respectively. The application of biochar and vermicompost reduced the nitrate content and increased the vitamin C (VC) and soluble sugar content of the fruits, which is beneficial for improving their quality. Biochar and vermicompost application alone or in combination not only increased nutrient uptake but also significantly improved agronomic efficiency (AE) and recovery efficiency (RE). In addition, although the application of biochar or vermicompost increased production costs, the increase in yield improved net income (ranging from 0.77 to 22.34% in 2021 and 8.82 to 59.96% in 2022), particularly in the TFBV2 treatment. In conclusion, the use of biochar and vermicompost amendments had a positive effect on the productivity and economic benefits of continuous pepper cropping, and the co-application of biochar and vermicompost could be an effective nutrient management strategy for the continuous cropping of pepper in the karst mountain areas of southwest China.
Collapse
Affiliation(s)
- Meng Zhang
- Institute of Soil and Fertilizer, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Yanling Liu
- Institute of Soil and Fertilizer, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Quanquan Wei
- Institute of Soil and Fertilizer, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Lingling Liu
- Institute of Soil and Fertilizer, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Xiaofeng Gu
- Institute of Soil and Fertilizer, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Jiulan Gou
- Institute of Soil and Fertilizer, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Ming Wang
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang, China
| |
Collapse
|
11
|
Yu Y, Chen Y, Wang Y, Xue S, Liu M, Tang DWS, Yang X, Geissen V. Response of soybean and maize roots and soil enzyme activities to biodegradable microplastics contaminated soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115129. [PMID: 37315365 DOI: 10.1016/j.ecoenv.2023.115129] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/16/2023]
Abstract
Although biodegradable plastic film is a promising alternative product for reducing polyethylene plastic pollution in agricultural soils, the effects of its residues on plant growth and soil properties remain unclear. In this study, we conducted an experiment to investigate root properties and soil enzyme activities in Poly (butylene adipate-co-terephthalate) microplastics (PBAT-MPs) contaminated soil (0 % (CK), 0.1 %, 0.2 %, 0.5 % and 1 % of dry soil weight) with soybean (Glycine max (Linn.) Merr.) and maize (Zea mays L.). The results show that PBAT-MP accumulation in soil negatively affects root growth, and alter soil enzyme activities, which may then constrain C/N cycling and potential yields. For soybean, the total root length, total root surface area and root biomass decreased by 34 %- 58 %, 34 %- 54 % and 25 %- 40 % at the harvesting stage compared to CK, respectively. The negative effects of PBAT-MPs on maize roots were greater than on soybean roots. The total root length, root surface area and root biomass of maize decreased by 37 %- 71 %, 33 %- 71 % and 24 %- 64 % at the tasseling and harvesting stage, respectively (p < 0.05). Furthermore, a statistical analysis of the data indicates that the inhibition of soybean and maize root growth by PBAT-MP accumulation was mediated by the significantly different impacts of PBAT-MP addition on C-enzyme (β-xylosidase, cellobiohydrolase, β-glucosidase) and N-enzyme activities (leucine-aminopeptidase, N-acetyl-β-glucosaminidase, alanine aminotransferase) in rhizosphere and non-rhizosphere soil, possibly due to interactions with plant-specific root exudates and microbial communities. These findings show the potential risks posed by biodegradable microplastics on the plant-soil system, and suggest that biodegradable plastic film should be applied with caution.
Collapse
Affiliation(s)
- Yao Yu
- College of Natural Resources and Environment, Northwest A&F University, 712100 Yangling, China; Soil Physics and Land Management Group, Wageningen University & Research, 6700AA, Wageningen, the Netherlands
| | - Yanhua Chen
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yan Wang
- Soil Physics and Land Management Group, Wageningen University & Research, 6700AA, Wageningen, the Netherlands
| | - Sha Xue
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, China
| | - Mengjuan Liu
- College of Agronomy, Northwest A&F University, 712100 Yangling, China
| | - Darrell W S Tang
- Soil Physics and Land Management Group, Wageningen University & Research, 6700AA, Wageningen, the Netherlands
| | - Xiaomei Yang
- College of Natural Resources and Environment, Northwest A&F University, 712100 Yangling, China; Soil Physics and Land Management Group, Wageningen University & Research, 6700AA, Wageningen, the Netherlands.
| | - Violette Geissen
- Soil Physics and Land Management Group, Wageningen University & Research, 6700AA, Wageningen, the Netherlands
| |
Collapse
|