1
|
Kim SS, Yun DY, Lee G, Park SK, Lim JH, Choi JH, Park KJ, Cho JS. Prediction and Visualization of Total Volatile Basic Nitrogen in Yellow Croaker ( Larimichthys polyactis) Using Shortwave Infrared Hyperspectral Imaging. Foods 2024; 13:3228. [PMID: 39456290 PMCID: PMC11507500 DOI: 10.3390/foods13203228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
In the present investigation, we have devised a hyperspectral imaging (HSI) apparatus to assess the chemical characteristics and freshness of the yellow croaker (Larimichthys polyactis) throughout its storage period. This system operates within the shortwave infrared spectrum, specifically ranging from 900 to 1700 nm. A variety of spectral pre-processing techniques, including standard normal variate (SNV), multiple scatter correction, and Savitzky-Golay (SG) derivatives, were employed to augment the predictive accuracy of total volatile basic nitrogen (TVB-N)-which serves as a critical freshness parameter. Among the assessed methodologies, SG-1 pre-processing demonstrated superior predictive accuracy (Rp2 = 0.8166). Furthermore, this investigation visualized freshness indicators as concentration images to elucidate the spatial distribution of TVB-N across the samples. These results indicate that HSI, in conjunction with chemometric analysis, constitutes an efficacious instrument for the surveillance of quality and safety in yellow croakers during its storage phase. Moreover, this methodology guarantees the freshness and safety of seafood products within the aquatic food sector.
Collapse
Affiliation(s)
- Sang Seop Kim
- Food Safety and Distribution Research Group, Korea Food Research Institute, Wanju 55365, Republic of Korea; (S.S.K.)
| | - Dae-Yong Yun
- Food Safety and Distribution Research Group, Korea Food Research Institute, Wanju 55365, Republic of Korea; (S.S.K.)
| | - Gyuseok Lee
- Smart Food Manufacturing Project Group, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Seul-Ki Park
- Smart Food Manufacturing Project Group, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Jeong-Ho Lim
- Food Safety and Distribution Research Group, Korea Food Research Institute, Wanju 55365, Republic of Korea; (S.S.K.)
- Smart Food Manufacturing Project Group, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Jeong-Hee Choi
- Food Safety and Distribution Research Group, Korea Food Research Institute, Wanju 55365, Republic of Korea; (S.S.K.)
- Smart Food Manufacturing Project Group, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Kee-Jai Park
- Food Safety and Distribution Research Group, Korea Food Research Institute, Wanju 55365, Republic of Korea; (S.S.K.)
- Smart Food Manufacturing Project Group, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Jeong-Seok Cho
- Food Safety and Distribution Research Group, Korea Food Research Institute, Wanju 55365, Republic of Korea; (S.S.K.)
- Smart Food Manufacturing Project Group, Korea Food Research Institute, Wanju 55365, Republic of Korea
| |
Collapse
|
2
|
Siam AA, Salehin MM, Alam MS, Ahamed S, Islam MH, Rahman A. Paddy seed viability prediction based on feature fusion of color and hyperspectral image with multivariate analysis. Heliyon 2024; 10:e36999. [PMID: 39281510 PMCID: PMC11401164 DOI: 10.1016/j.heliyon.2024.e36999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/18/2024] Open
Abstract
Seed viability is essential to have a homogeneous plant population. The seed industry cannot adopt traditional procedures for seed viability evaluation since they are destructive, time-consuming, and need chemicals. This study aimed to investigate the potential of combining hyperspectral and color image features to differentiate viable and non-viable paddy seeds. The hyperspectral and color image of the 355 paddy seeds was captured and later used to examine their viability. An image processing algorithm was developed to extract features from color images of paddy seeds and investigated significant differences in the retrieved feature data using variance analysis. The spectra were extracted from the selected region of interest (ROI) of the hyperspectral paddy seed image and averaged. In the next step, the partial least square discrimination analysis (PLS-DA) model was developed to distinguish viable and non-viable paddy seeds. Initially, the PLS-DA model was developed using spectral data with different preprocessing techniques, and the result obtained an accuracy of 88.9 % in the calibration set and 86.1 % in the prediction set using Savitzky-Golay 2nd derivative preprocessed spectra. With the fusion of spectral and significant color image features, the model's accuracy improved to 93.3 % and 90.9 % in the calibration and prediction sets, respectively. Results also showed that the fusion of selected color image features with Savitzky-Golay 2nd derivative preprocessed spectra could achieve higher F1-score, recall, and precision values. The visualization map for the viable and non-viable paddy seeds was also developed utilizing the most effective predictive model. The results demonstrate the possibility of using the fusion of the hyperspectral and color image features to sort seeds according to viability, which may be applied in developing an online seed sorting method.
Collapse
Affiliation(s)
- Abdullah Al Siam
- Department of Farm Power and Machinery, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - M Mirazus Salehin
- Department of Farm Power and Machinery, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Shahinur Alam
- Department of Farm Power and Machinery, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Sahabuddin Ahamed
- Department of Farm Power and Machinery, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Hamidul Islam
- Department of Farm Power and Machinery, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Anisur Rahman
- Department of Farm Power and Machinery, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| |
Collapse
|
3
|
Xiong Z, Liu S, Tan J, Huang Z, Li X, Zhuang G, Fang Z, Chen T, Zhang L. Combining Hyperspectral Techniques and Genome-Wide Association Studies to Predict Peanut Seed Vigor and Explore Associated Genetic Loci. Int J Mol Sci 2024; 25:8414. [PMID: 39125982 PMCID: PMC11313457 DOI: 10.3390/ijms25158414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Seed vigor significantly affects peanut breeding and agricultural yield by influencing seed germination and seedling growth and development. Traditional vigor testing methods are inadequate for modern high-throughput assays. Although hyperspectral technology shows potential for monitoring various crop traits, its application in predicting peanut seed vigor is still limited. This study developed and validated a method that combines hyperspectral technology with genome-wide association studies (GWAS) to achieve high-throughput detection of seed vigor and identify related functional genes. Hyperspectral phenotyping data and physiological indices from different peanut seed populations were used as input data to construct models using machine learning regression algorithms to accurately monitor changes in vigor. Model-predicted phenotypic data from 191 peanut varieties were used in GWAS, gene-based association studies, and haplotype analyses to screen for functional genes. Real-time fluorescence quantitative PCR (qPCR) was used to analyze the expression of functional genes in three high-vigor and three low-vigor germplasms. The results indicated that the random forest and support vector machine models provided effective phenotypic data. We identified Arahy.VMLN7L and Arahy.7XWF6F, with Arahy.VMLN7L negatively regulating seed vigor and Arahy.7XWF6F positively regulating it, suggesting distinct regulatory mechanisms. This study confirms that GWAS based on hyperspectral phenotyping reveals genetic relationships in seed vigor levels, offering novel insights and directions for future peanut breeding, accelerating genetic improvements, and boosting agricultural yields. This approach can be extended to monitor and explore germplasms and other key variables in various crops.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Tingting Chen
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (Z.X.); (S.L.); (J.T.); (Z.H.); (X.L.); (G.Z.); (Z.F.)
| | - Lei Zhang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (Z.X.); (S.L.); (J.T.); (Z.H.); (X.L.); (G.Z.); (Z.F.)
| |
Collapse
|
4
|
Busov ID, Genaev MA, Komyshev EG, Koval VS, Zykova TE, Glagoleva AY, Afonnikov DA. A pipeline for processing hyperspectral images, with a case of melanin-containing barley grains as an example. Vavilovskii Zhurnal Genet Selektsii 2024; 28:443-455. [PMID: 39040972 PMCID: PMC11260993 DOI: 10.18699/vjgb-24-50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 07/24/2024] Open
Abstract
Analysis of hyperspectral images is of great interest in plant studies. Nowadays, this analysis is used more and more widely, so the development of hyperspectral image processing methods is an urgent task. This paper presents a hyperspectral image processing pipeline that includes: preprocessing, basic statistical analysis, visualization of a multichannel hyperspectral image, and solving classification and clustering problems using machine learning methods. The current version of the package implements the following methods: construction of a confidence interval of an arbitrary level for the difference of sample averages; verification of the similarity of intensity distributions of spectral lines for two sets of hyperspectral images on the basis of the Mann-Whitney U-criterion and Pearson's criterion of agreement; visualization in two-dimensional space using dimensionality reduction methods PCA, ISOMAP and UMAP; classification using linear or ridge regression, random forest and catboost; clustering of samples using the EM-algorithm. The software pipeline is implemented in Python using the Pandas, NumPy, OpenCV, SciPy, Sklearn, Umap, CatBoost and Plotly libraries. The source code is available at: https://github.com/igor2704/Hyperspectral_images. The pipeline was applied to identify melanin pigment in the shell of barley grains based on hyperspectral data. Visualization based on PCA, UMAP and ISOMAP methods, as well as the use of clustering algorithms, showed that a linear separation of grain samples with and without pigmentation could be performed with high accuracy based on hyperspectral data. The analysis revealed statistically significant differences in the distribution of median intensities for samples of images of grains with and without pigmentation. Thus, it was demonstrated that hyperspectral images can be used to determine the presence or absence of melanin in barley grains with great accuracy. The flexible and convenient tool created in this work will significantly increase the efficiency of hyperspectral image analysis.
Collapse
Affiliation(s)
- I D Busov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| | - M A Genaev
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| | - E G Komyshev
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - V S Koval
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - T E Zykova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| | - A Y Glagoleva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - D A Afonnikov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
5
|
Zhu D, Han J, Liu C, Zhang J, Qi Y. Modeling of flaxseed protein, oil content, linoleic acid, and lignan content prediction based on hyperspectral imaging. FRONTIERS IN PLANT SCIENCE 2024; 15:1344143. [PMID: 38410736 PMCID: PMC10895056 DOI: 10.3389/fpls.2024.1344143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/24/2024] [Indexed: 02/28/2024]
Abstract
Protein, oil content, linoleic acid, and lignan are several key indicators for evaluating the quality of flaxseed. In order to optimize the testing methods for flaxseed's nutritional quality and enhance the efficiency of screening high-quality flax germplasm resources, we selected 30 flaxseed species widely cultivated in Northwest China as the subjects of our study. Firstly, we gathered hyperspectral information regarding the seeds, along with data on protein, oil content, linoleic acid, and lignan, and utilized the SPXY algorithm to classify the sample set. Subsequently, the spectral data underwent seven distinct preprocessing methods, revealing that the PLSR model exhibited superior performance after being processed with the SG smoothing method. Feature wavelength extraction was carried out using the Successive Projections Algorithm (SPA) and the Competitive Adaptive Reweighted Sampling (CARS). Finally, four quantitative analysis models, namely Partial Least Squares Regression (PLSR), Support Vector Regression (SVR), Multiple Linear Regression (MLR), and Principal Component Regression (PCR), were individually established. Experimental results demonstrated that among all the models for predicting protein content, the SG-CARS-MLR model predicted the best, with and of 0.9563 and 0.9336, with the corresponding Root Mean Square Error Correction (RMSEC) and Root Mean Square Error Prediction (RMSEP) of 0.4892 and 0.5616, respectively. In the optimal prediction models for oil content, linoleic acid and lignan, the R p 2 was 0.8565, 0.8028, 0.9343, and the RMSEP was 0.8682, 0.5404, 0.5384, respectively. The study results show that hyperspectral imaging technology has excellent potential for application in the detection of quality characteristics of flaxseed and provides a new option for the future non-destructive testing of the nutritional quality of flaxseed.
Collapse
Affiliation(s)
- Dongyu Zhu
- College of Information Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Junying Han
- College of Information Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Chengzhong Liu
- College of Information Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jianping Zhang
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Yanni Qi
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
6
|
Bai R, Zhou J, Wang S, Zhang Y, Nan T, Yang B, Zhang C, Yang J. Identification and Classification of Coix seed Storage Years Based on Hyperspectral Imaging Technology Combined with Deep Learning. Foods 2024; 13:498. [PMID: 38338633 PMCID: PMC10855119 DOI: 10.3390/foods13030498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Developing a fast and non-destructive methodology to identify the storage years of Coix seed is important in safeguarding consumer well-being. This study employed the utilization of hyperspectral imaging (HSI) in conjunction with conventional machine learning techniques such as support vector machines (SVM), k-nearest neighbors (KNN), random forest (RF), extreme gradient boosting (XGBoost), as well as the deep learning method of residual neural network (ResNet), to establish identification models for Coix seed samples from different storage years. Under the fusion-based modeling approach, the model's classification accuracy surpasses that of visible to near infrared (VNIR) and short-wave infrared (SWIR) spectral modeling individually. The classification accuracy of the ResNet model and SVM exceeds that of other conventional machine learning models (KNN, RF, and XGBoost). Redundant variables were further diminished through competitive adaptive reweighted sampling feature wavelength screening, which had less impact on the model's accuracy. Upon validating the model's performance using an external validation set, the ResNet model yielded more satisfactory outcomes, exhibiting recognition accuracy exceeding 85%. In conclusion, the comprehensive results demonstrate that the integration of deep learning with HSI techniques effectively distinguishes Coix seed samples from different storage years.
Collapse
Affiliation(s)
- Ruibin Bai
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (R.B.); (J.Z.); (S.W.); (Y.Z.); (T.N.); (B.Y.)
| | - Junhui Zhou
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (R.B.); (J.Z.); (S.W.); (Y.Z.); (T.N.); (B.Y.)
| | - Siman Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (R.B.); (J.Z.); (S.W.); (Y.Z.); (T.N.); (B.Y.)
| | - Yue Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (R.B.); (J.Z.); (S.W.); (Y.Z.); (T.N.); (B.Y.)
| | - Tiegui Nan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (R.B.); (J.Z.); (S.W.); (Y.Z.); (T.N.); (B.Y.)
| | - Bin Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (R.B.); (J.Z.); (S.W.); (Y.Z.); (T.N.); (B.Y.)
| | - Chu Zhang
- School of Information Engineering, Huzhou University, Huzhou 313000, China
| | - Jian Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (R.B.); (J.Z.); (S.W.); (Y.Z.); (T.N.); (B.Y.)
| |
Collapse
|
7
|
Shiv K, Singh A, Kumar S, Prasad LB, Gupta S, Bharty MK. Evaluation of different regression models for detection of adulteration of mustard and canola oil with argemone oil using fluorescence spectroscopy coupled with chemometrics. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:105-119. [PMID: 38180769 DOI: 10.1080/19440049.2023.2297869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/10/2023] [Indexed: 01/06/2024]
Abstract
Mustard and canola oils are commonly used cooking oils in Asian countries such as India, Nepal, and Bangladesh, making them prone to adulteration. Argemone is a well-known adulterant of mustard oil, and its alkaloid sanguinarine has been linked with health conditions such as glaucoma and dropsy. Utilising a non-destructive spectroscopic method coupled with a chemometric approach can serve better for the detection of adulterants. This work aimed to evaluate the performance of various regression algorithms for the detection of argemone in mustard and canola oils. The spectral dataset was acquired from fluorescence spectrometer analysis of pure as well as adulterated mustard and canola oils with some local and commercial samples also. The prediction performance of the eight regression algorithms for the detection of adulterants was evaluated. Extreme gradient boosting regressor (XGBR), Category gradient boosting regressor (CBR), and Random Forest (RF) demonstrate potential for predicting adulteration levels in both oils with high R2 values.
Collapse
Affiliation(s)
- Kunal Shiv
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Anupam Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Sachin Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Lal Bahadur Prasad
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Seema Gupta
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Manoj Kumar Bharty
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
8
|
Pang T, Chen C, Fu R, Wang X, Yu H. An end-to-end seed vigor prediction model for imbalanced samples using hyperspectral image. FRONTIERS IN PLANT SCIENCE 2023; 14:1322391. [PMID: 38192695 PMCID: PMC10773811 DOI: 10.3389/fpls.2023.1322391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/24/2023] [Indexed: 01/10/2024]
Abstract
Hyperspectral imaging is a key technology for non-destructive detection of seed vigor presently due to its capability to capture variations of optical properties in seeds. As the seed vigor data depends on the actual germination rate, it inevitably results in an imbalance between positive and negative samples. Additionally, hyperspectral image (HSI) suffers from feature redundancy and collinearity due to its inclusion of hundreds of wavelengths. It also creates a challenge to extract effective wavelength information in feature selection, however, which limits the ability of deep learning to extract features from HSI and accurately predict seed vigor. Accordingly, in this paper, we proposed a Focal-WAResNet network to predict seed vigor end-to-end, which improves the network performance and feature representation capability, and improves the accuracy of seed vigor prediction. Firstly, the focal loss function is utilized to adjust the loss weights of different sample categories to solve the problem of sample imbalance. Secondly, a WAResNet network is proposed to select characteristic wavelengths and predict seed vigor end-to-end, focusing on wavelengths with higher network weights, which enhance the ability of seed vigor prediction. To validate the effectiveness of this method, this study collected HSI of maize seeds for experimental verification, providing a reference for plant breeding. The experimental results demonstrate a significant improvement in classification performance compared to other state-of-the-art methods, with an accuracy up to 98.48% and an F1 score of 95.9%.
Collapse
Affiliation(s)
- Tiantian Pang
- College of Computer Science and Technology, Jilin University, Changchun, China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jlin University, Changchun, China
| | - Chengcheng Chen
- School of Computer Science, Shenyang Aerospace University, Shenyang, China
| | - Ronghao Fu
- College of Computer Science and Technology, Jilin University, Changchun, China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jlin University, Changchun, China
| | - Xianchang Wang
- College of Computer Science and Technology, Jilin University, Changchun, China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jlin University, Changchun, China
- Chengdu Kestrel Artificial Intelligence Institute, Chengdu, China
| | - Helong Yu
- College of Information Technology, Jilin Agricultural University, Changchun, China
| |
Collapse
|
9
|
Liu Y, Zhao M, Shi J, Yang S, Xue Y. Genome-Wide Identification of AhMDHs and Analysis of Gene Expression under Manganese Toxicity Stress in Arachis hypogaea. Genes (Basel) 2023; 14:2109. [PMID: 38136931 PMCID: PMC10743186 DOI: 10.3390/genes14122109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Malate dehydrogenase (MDH) is one kind of oxidation-reduction enzyme that catalyzes the reversible conversion of oxaloacetic acid to malic acid. It has vital functions in plant development, photosynthesis, abiotic stress responses, and so on. However, there are no reports on the genome-wide identification and gene expression of the MDH gene family in Arachis hypogaea. In this study, the MDH gene family of A. hypogaea was comprehensively analyzed for the first time, and 15 AhMDH sequences were identified. According to the phylogenetic tree analysis, AhMDHs are mainly separated into three subfamilies with similar gene structures. Based on previously reported transcriptome sequencing results, the AhMDH expression quantity of roots and leaves exposed to manganese (Mn) toxicity were explored in A. hypogaea. Results revealed that many AhMDHs were upregulated when exposed to Mn toxicity, suggesting that those AhMDHs might play an important regulatory role in A. hypogaea's response to Mn toxicity stress. This study lays foundations for the functional study of AhMDHs and further reveals the mechanism of the A. hypogaea signaling pathway responding to high Mn stress.
Collapse
Affiliation(s)
- Ying Liu
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (J.S.)
| | - Min Zhao
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (J.S.)
| | - Jianning Shi
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (J.S.)
| | - Shaoxia Yang
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (J.S.)
| | - Yingbin Xue
- Department of Agronomy, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
10
|
Hu H, Wang T, Wei Y, Xu Z, Cao S, Fu L, Xu H, Mao X, Huang L. Non-destructive prediction of isoflavone and starch by hyperspectral imaging and deep learning in Puerariae Thomsonii Radix. FRONTIERS IN PLANT SCIENCE 2023; 14:1271320. [PMID: 37954990 PMCID: PMC10634472 DOI: 10.3389/fpls.2023.1271320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/03/2023] [Indexed: 11/14/2023]
Abstract
Accurate assessment of isoflavone and starch content in Puerariae Thomsonii Radix (PTR) is crucial for ensuring its quality. However, conventional measurement methods often suffer from time-consuming and labor-intensive procedures. In this study, we propose an innovative and efficient approach that harnesses hyperspectral imaging (HSI) technology and deep learning (DL) to predict the content of isoflavones (puerarin, puerarin apioside, daidzin, daidzein) and starch in PTR. Specifically, we develop a one-dimensional convolutional neural network (1DCNN) model and compare its predictive performance with traditional methods, including partial least squares regression (PLSR), support vector regression (SVR), and CatBoost. To optimize the prediction process, we employ various spectral preprocessing techniques and wavelength selection algorithms. Experimental results unequivocally demonstrate the superior performance of the DL model, achieving exceptional performance with mean coefficient of determination (R2) values surpassing 0.9 for all components. This research underscores the potential of integrating HSI technology with DL methods, thereby establishing the feasibility of HSI as an efficient and non-destructive tool for predicting the content of isoflavones and starch in PTR. Moreover, this methodology holds great promise for enhancing efficiency in quality control within the food industry.
Collapse
Affiliation(s)
- Huiqiang Hu
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, China
- Research Center for Intelligent Science and Engineering Technology of Traditional Chinese Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Tingting Wang
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, China
| | - Yunpeng Wei
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, China
| | - Zhenyu Xu
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, China
| | - Shiyu Cao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ling Fu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Huaxing Xu
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, China
| | - Xiaobo Mao
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, China
- Research Center for Intelligent Science and Engineering Technology of Traditional Chinese Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Luqi Huang
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, China
- Research Center for Intelligent Science and Engineering Technology of Traditional Chinese Medicine, Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|