1
|
Le TYL, Lee J, Shim SY, Jung J, Kim SR, Hong SH, Lee MG, Hwang SG. Effects of Liquid Bio-Fertilizer on Plant Growth, Antioxidant Activity, and Soil Bacterial Community During Cultivation of Chinese Cabbage ( Brassica rapa L. ssp. pekinensis). Microorganisms 2025; 13:1036. [PMID: 40431209 PMCID: PMC12114552 DOI: 10.3390/microorganisms13051036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/26/2025] [Accepted: 04/27/2025] [Indexed: 05/29/2025] Open
Abstract
This study investigated the effects of liquid bio-fertilizer (LBF) on the growth, antioxidant activity, soil properties, and soil microbial composition of Chinese cabbage (Brassica rapa L. ssp. pekinensis). The LBF application significantly enhanced vegetative growth by increasing the leaf length, leaf width, fresh weight, and dry weight. Additionally, antioxidant activity increased with rises in total phenolic and flavonoid contents. However, the per-unit antioxidant concentrations decreased, likely due to rapid biomass accumulation. Soil analysis showed improvements in pH, organic matter, and available phosphorus. Microbial analysis revealed that Acidobacteria enrichment was associated with enhanced nutrient cycling despite reduced overall microbial diversity. Transcriptomic analysis identified 445 differentially expressed genes with upregulation in the metabolism and photosynthesis-related pathways, suggesting improved nutrient assimilation and energy production. These findings demonstrate that LBF enhances plant growth and soil fertility while influencing microbial dynamics and gene expression.
Collapse
Affiliation(s)
- Tran Yen Linh Le
- Department of Agricultural Convergence, Sangji University, 83 Sangjidae-gil, Wonju-si 26339, Republic of Korea;
| | - Junkyung Lee
- Department of Applied Plant Science, Sangji University, 83 Sangjidae-gil, Wonju-si 26339, Republic of Korea; (J.L.); (S.-Y.S.)
| | - Su-Yeon Shim
- Department of Applied Plant Science, Sangji University, 83 Sangjidae-gil, Wonju-si 26339, Republic of Korea; (J.L.); (S.-Y.S.)
| | - Jiwon Jung
- Department of Environmental Resources, Agricultural and Rural Development, Sangji University, 83 Sangjidae-gil, Wonju-si 26339, Republic of Korea;
| | - Soo-Ryang Kim
- Industry-Academic Cooperation Foundation, Sangji University, 83 Sangjidae-gil, Wonju-si 26339, Republic of Korea; (S.-R.K.); (S.-H.H.)
| | - Sung-Ha Hong
- Industry-Academic Cooperation Foundation, Sangji University, 83 Sangjidae-gil, Wonju-si 26339, Republic of Korea; (S.-R.K.); (S.-H.H.)
| | - Myung-Gyu Lee
- Department of Smart Life Science, Sangji University, 83 Sangjidae-gil, Wonju-si 26339, Republic of Korea;
| | - Sun-Goo Hwang
- Department of Smart Life Science, Sangji University, 83 Sangjidae-gil, Wonju-si 26339, Republic of Korea;
| |
Collapse
|
2
|
Lee J, Jo NY, Shim SY, Le TYL, Jeong WY, Kwak KW, Choi HS, Lee BO, Kim SR, Lee MG, Hwang SG. Impact of organic liquid fertilizer on plant growth of Chinese cabbage and soil bacterial communities. Sci Rep 2025; 15:10439. [PMID: 40140494 PMCID: PMC11947161 DOI: 10.1038/s41598-025-95327-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 03/20/2025] [Indexed: 03/28/2025] Open
Abstract
Organic liquid fertilizers from livestock manure are increasingly recognized as sustainable amendments influencing soil bacterial communities. Yet, their direct impacts on bacterial composition and crop functionality remain unclear. Addressing this gap, we developed a bio-liquid fertilizer (LBF) by culturing Chlorella fusca in a purified pig manure-based medium. We compared its effects with chemical (CLF) and fermented (FLM) liquid fertilizers on Chinese cabbage (Brassica rapa subsp. pekinensis). We aimed to determine how organic bio-liquid fertilizers enhance crop health and soil bacterial balance, contributing to sustainable agricultural practices. Although LBF did not surpass CLF in promoting growth, it significantly increased antioxidant compounds (polyphenols, flavonoids), sugars, and antioxidant activities, including nitrite-scavenging capacity and reducing power. Soil bacterial communities were strongly correlated with key chemical properties (Na, K, NO3--N, Ca, pH). Notably, Litorilinea decreased under CLF, and Sphingomonas and Nocardioides declined under FLM, whereas LBF treatment increased all three genera, suggesting improved bacterial conditions. These findings demonstrate that a well-designed organic bio-liquid fertilizer can bridge knowledge gaps by enhancing plant functionality and promoting beneficial soil bacteria. This approach supports more efficient nutrient recycling and may foster greater resilience and sustainability in modern farming systems.
Collapse
Affiliation(s)
- Junkyung Lee
- Department of Applied Plant Science, Sangji University, Wonju-si, 26339, Republic of Korea
| | - Na-Yeon Jo
- Department of Applied Plant Science, Sangji University, Wonju-si, 26339, Republic of Korea
| | - Su-Yeon Shim
- Department of Applied Plant Science, Sangji University, Wonju-si, 26339, Republic of Korea
| | - Tran Yen Linh Le
- Department of Smart-Farm Life, Science Sangji University, Wonju-si, 26339, Republic of Korea
| | - Woo Yong Jeong
- Hoengseong Agricultural Technology Extension Center, Hoengseong, 25208, Republic of Korea
| | - Ki Wung Kwak
- Hoengseong Agricultural Technology Extension Center, Hoengseong, 25208, Republic of Korea
| | - Hyun Sik Choi
- Hoengseong Agricultural Technology Extension Center, Hoengseong, 25208, Republic of Korea
| | - Byong-O Lee
- Hanbio Incorporated, Hoengseong, 25249, Republic of Korea
| | - Soo-Ryang Kim
- Industry-Academic Cooperation Foundation, Sangji University, Wonju-si, 26339, Republic of Korea
| | - Myung-Gyu Lee
- Department of Smart-Farm Life, Science Sangji University, Wonju-si, 26339, Republic of Korea
| | - Sun-Goo Hwang
- Department of Smart-Farm Life, Science Sangji University, Wonju-si, 26339, Republic of Korea.
| |
Collapse
|
3
|
Romero-Yahuitl V, Zarco-González KE, Toriz-Nava AL, Hernández M, Velázquez-Fernández JB, Navarro-Noya YE, Luna-Guido M, Dendooven L. The archaeal and bacterial community structure in composted cow manures is defined by the original populations: a shotgun metagenomic approach. Front Microbiol 2024; 15:1425548. [PMID: 39583548 PMCID: PMC11583985 DOI: 10.3389/fmicb.2024.1425548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/16/2024] [Indexed: 11/26/2024] Open
Abstract
Introduction Organic wastes are composted to increase their plant nutritional value, but little is known about how this might alter the bacterial and archaeal community structure and their genes. Methods Cow manure was collected from three local small-scale farmers and composted under controlled conditions, while the bacterial and archaeal communities were determined using shotgun metagenomics at the onset and after 74 days of composting. Results The bacterial, archaeal, methanogen, methanotrophs, methylotroph, and nitrifying community structures and their genes were affected by composting for 74 days, but the original composition of these communities determined the changes. Most of these archaeal and bacterial groups showed considerable variation after composting and between the cow manures. However, the differences in the relative abundance of their genes were much smaller compared to those of the archaeal or bacterial groups. Discussion It was found that composting of different cow manures did not result in similar bacterial or archaeal communities, and the changes that were found after 74 days were defined by the original populations. However, more research is necessary to determine if other composting conditions will give the same results.
Collapse
Affiliation(s)
- Vanessa Romero-Yahuitl
- Laboratory of Soil Ecology, Department of Biotechnology and Bioengineering, Cinvestav, Mexico City, Mexico
| | | | - Ana Lilia Toriz-Nava
- Laboratorio de Interacciones Bióticas, Centro de Investigación en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Mauricio Hernández
- Laboratorio de Interacciones Bióticas, Centro de Investigación en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
- Departamento de Biología Celular y Genética, Escuela de Biología, and Instituto de Investigaciones en Microbiología, Facultad de Ciencias, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | | | - Yendi E. Navarro-Noya
- Laboratorio de Interacciones Bióticas, Centro de Investigación en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Marco Luna-Guido
- Laboratory of Soil Ecology, Department of Biotechnology and Bioengineering, Cinvestav, Mexico City, Mexico
| | - Luc Dendooven
- Laboratory of Soil Ecology, Department of Biotechnology and Bioengineering, Cinvestav, Mexico City, Mexico
| |
Collapse
|
4
|
Guo Z, Li C, Li X, Shao S, Rogers KM, Li Q, Li D, Guo H, Huang T, Yuan Y. Fertilizer Effects on the Nitrogen Isotope Composition of Soil and Different Leaf Locations of Potted Camellia sinensis over a Growing Season. PLANTS (BASEL, SWITZERLAND) 2024; 13:1628. [PMID: 38931060 PMCID: PMC11207308 DOI: 10.3390/plants13121628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
The nitrogen-stable isotopes of plants can be used to verify the source of fertilizers, but the fertilizer uptake patterns in tea (Camellia sinensis) plants are unclear. In this study, potted tea plants were treated with three types of organic fertilizers (OFs), urea, and a control. The tea leaves were sampled over seven months from the top, middle, and base of the plants and analyzed for the δ15N and nitrogen content, along with the corresponding soil samples. The top tea leaves treated with the rapeseed cake OF had the highest δ15N values (up to 6.6‱), followed by the chicken manure, the cow manure, the control, and the urea fertilizer (6.5‱, 4.1‱, 2.2‱, and 0.6‱, respectively). The soil treated with cow manure had the highest δ15N values (6.0‱), followed by the chicken manure, rapeseed cake, control, and urea fertilizer (4.8‱, 4.0‱, 2.5‱, and 1.9‱, respectively). The tea leaves fertilized with rapeseed cake showed only slight δ15N value changes in autumn but increased significantly in early spring and then decreased in late spring, consistent with the delivery of a slow-release fertilizer. Meanwhile, the δ15N values of the top, middle, and basal leaves from the tea plants treated with the rapeseed cake treatment were consistently higher in early spring and lower in autumn and late spring, respectively. The urea and control samples had lower tea leaf δ15N values than the rapeseed cake-treated tea and showed a generalized decrease in the tea leaf δ15N values over time. The results clarify the temporal nitrogen patterns and isotope compositions of tea leaves treated with different fertilizer types and ensure that the δ15N tea leaf values can be used to authenticate the organic fertilizer methods across different harvest periods and leaf locations. The present results based on a pot experiment require further exploration in open agricultural soils in terms of the various potential fertilizer effects on the different variations of nitrogen isotope ratios in tea plants.
Collapse
Affiliation(s)
- Zuchuang Guo
- College of Food Sciences and Engineering, Ningbo University, Ningbo 315211, China;
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (C.L.); (K.M.R.)
| | - Chunlin Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (C.L.); (K.M.R.)
| | - Xin Li
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China;
| | - Shengzhi Shao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (C.L.); (K.M.R.)
| | - Karyne M. Rogers
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (C.L.); (K.M.R.)
- National Isotope Centre, GNS Science, 30 Gracefield Road, Lower Hutt 5040, New Zealand
| | - Qingsheng Li
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Q.L.)
| | - Da Li
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Q.L.)
| | - Haowei Guo
- Tea Research Institute, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Tao Huang
- College of Food Sciences and Engineering, Ningbo University, Ningbo 315211, China;
| | - Yuwei Yuan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (C.L.); (K.M.R.)
| |
Collapse
|
5
|
Yang X, Wang Y, Wang X, Niu T, Abid AA, Aioub AAA, Zhang Q. Contrasting fertilization response of soil phosphorus forms and functional bacteria in two newly reclaimed vegetable soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169479. [PMID: 38123102 DOI: 10.1016/j.scitotenv.2023.169479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/13/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023]
Abstract
Fertilization is a pervasive approach to agricultural production enhancing vegetable nutrients such as phosphorus (P) absorption. However, unreasonable fertilization strategies result in high levels of residual P in vegetable planting systems. To better understand the mechanisms of soil phosphorus dynamics responding to inorganic/organic fertilization, we conducted a 3-year field experiment in two newly reclaimed vegetable fields in southern China. The results revealed that soil Olsen-P in CF (mineral fertilization) and OF (Combined application of organic and inorganic fertilizers) increased by approximately 210.6 % and 183.6 %, respectively, while stable P proportion decreased by approximately 9.2 % and 18.1 %, respectively, compared with CK. Combined application of organic and inorganic fertilizer increased the proportion of moderately labile P (NaOH-P) by 1-6 % in comparison with chemical fertilizer and facilitated the conversion from diester-P to monoester-P, indicating that applying pig manure enhanced the potential soil P bioavailability. Besides, organic-inorganic fertilization shaped a bacterial community with more connectivity and stability and changed keystone taxa related to the P transformation of the network. Phenylobacterium, Solirubrobacter, and Modestobacter were regarded as core genera for mobilizing soil phosphorus. However, residual P content in newly reclaimed soils under fertilization, especially for chemical fertilizer, remained non-negligible and may cause potential environmental risks. The partial least squares path modeling results demonstrated that fertilization management had both direct and indirect positive effects on P fraction through the improvement of soil nutrients e.g. total N and soil organic carbon, and bacterial community, while soil properties mainly determined the variation of soil P species. Our results provide comprehensive insights into the current status of legacy P forms and the vital role of fertilizer, key soil properties and bacteria in P dynamics in newly reclaimed vegetable field.
Collapse
Affiliation(s)
- Xiaoyu Yang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Zhejiang University, Hangzhou, 310058, PR China
| | - Yushu Wang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Zhejiang University, Hangzhou, 310058, PR China
| | - Xiaotong Wang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Zhejiang University, Hangzhou, 310058, PR China
| | - Tianxin Niu
- Hangzhou Academy of Agricultural Science, Hangzhou 315040, PR China
| | - Abbas Ali Abid
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Zhejiang University, Hangzhou, 310058, PR China
| | - Ahmed A A Aioub
- Plant Protection Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Qichun Zhang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Zhejiang University, Hangzhou, 310058, PR China.
| |
Collapse
|
6
|
Kim SR, Lee J, Lee MG, Sung HG, Hwang SG. Analysis of microbial communities in solid and liquid pig manure during the fertilization process. Sci Rep 2024; 14:72. [PMID: 38168767 PMCID: PMC10761828 DOI: 10.1038/s41598-023-50649-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024] Open
Abstract
Utilizing livestock manure as organic fertilizer in sustainable agriculture is crucial and should be developed through an appropriate manufacturing process. Solid-liquid separation contributes to reducing odor, managing nutrients in livestock excretions, and lowering the cost of transporting manure to arable soil. To investigate the impact of fermentation after solid-liquid separation, we examined the specific correlation between chemical properties and bacterial communities in solid-liquid manures before and after the fermentation process. In terms of chemical properties before fermentation, the levels of electrical conductivity, nitrogen, ammonium nitrogen (NH4+-N), potassium, sodium, and chloride were higher in the liquid sample than in the solid sample. However, the chemical components of the liquid sample decreased during fermentation, which could be attributed to the low organic matter content. Many chemical components increased in the solid samples during fermentation. Fifty-six bacterial species were significantly correlated with NH4+-N and phosphorus. Following fermentation, their abundance increased in the solid samples and decreased in the liquid samples, indicating the potential for NH4+-N release or phosphorus mineralization from organic matter. These results provide information regarding changes in nutrient and bacterial formation when applying the fermentation process after solid-liquid separation.
Collapse
Affiliation(s)
- Soo-Ryang Kim
- Industry-Academic Cooperation Foundation, Sangji University, Wonju, 26339, Republic of Korea
| | - Junkyung Lee
- Department of Applied Plant Science, Sangji University, Wonju-si, 26339, Republic of Korea
| | - Myung Gyu Lee
- Department of Smart Life Science, Sangji University, Wonju-si, 26339, Republic of Korea
| | - Ha Guyn Sung
- Animal Feeding and Environment Laboratory, Department of Animal Science, Sangji University, Wonju-si, 26339, Republic of Korea
| | - Sun-Goo Hwang
- Department of Smart Life Science, Sangji University, Wonju-si, 26339, Republic of Korea.
| |
Collapse
|
7
|
Ahmed T, Noman M, Qi Y, Shahid M, Hussain S, Masood HA, Xu L, Ali HM, Negm S, El-Kott AF, Yao Y, Qi X, Li B. Fertilization of Microbial Composts: A Technology for Improving Stress Resilience in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:3550. [PMID: 37896014 PMCID: PMC10609736 DOI: 10.3390/plants12203550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023]
Abstract
Microbial compost plays a crucial role in improving soil health, soil fertility, and plant biomass. These biofertilizers, based on microorganisms, offer numerous benefits such as enhanced nutrient acquisition (N, P, and K), production of hydrogen cyanide (HCN), and control of pathogens through induced systematic resistance. Additionally, they promote the production of phytohormones, siderophore, vitamins, protective enzymes, and antibiotics, further contributing to soil sustainability and optimal agricultural productivity. The escalating generation of organic waste from farm operations poses significant threats to the environment and soil fertility. Simultaneously, the excessive utilization of chemical fertilizers to achieve high crop yields results in detrimental impacts on soil structure and fertility. To address these challenges, a sustainable agriculture system that ensures enhanced soil fertility and minimal ecological impact is imperative. Microbial composts, developed by incorporating characterized plant-growth-promoting bacteria or fungal strains into compost derived from agricultural waste, offer a promising solution. These biofertilizers, with selected microbial strains capable of thriving in compost, offer an eco-friendly, cost-effective, and sustainable alternative for agricultural practices. In this review article, we explore the potential of microbial composts as a viable strategy for improving plant growth and environmental safety. By harnessing the benefits of microorganisms in compost, we can pave the way for sustainable agriculture and foster a healthier relationship between soil, plants, and the environment.
Collapse
Affiliation(s)
- Temoor Ahmed
- Xianghu Laboratory, Hangzhou 311231, China; (T.A.)
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Muhammad Noman
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Yetong Qi
- Xianghu Laboratory, Hangzhou 311231, China; (T.A.)
| | - Muhammad Shahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan;
| | - Sabir Hussain
- Department of Environmental Sciences, Government College University, Faisalabad 38040, Pakistan;
| | - Hafiza Ayesha Masood
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38000, Pakistan
- MEU Research Unit, Middle East University, Amman 11831, Jordan
| | - Lihui Xu
- Institute of Eco-Environmental Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China;
| | - Hayssam M. Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Sally Negm
- Department of Life Sciences, College of Science and Art Mahyel Aseer, King Khalid University, Abha 62529, Saudi Arabia;
| | - Attalla F. El-Kott
- Department of Biology, College of Science, King Khalid University, Abha 61421, Saudi Arabia
| | - Yanlai Yao
- Xianghu Laboratory, Hangzhou 311231, China; (T.A.)
| | - Xingjiang Qi
- Xianghu Laboratory, Hangzhou 311231, China; (T.A.)
| | - Bin Li
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
| |
Collapse
|