1
|
Ma Y, Chen Q, Javeed A, Wang Z, Liu S, Lin F, Zhang C, Liu C. Functional and transcriptomic characterization of the receptor-like protein kinase gene GmHSL1b involved in salt stress tolerance in soybean roots. PHYSIOLOGIA PLANTARUM 2025; 177:e70197. [PMID: 40207830 DOI: 10.1111/ppl.70197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/06/2025] [Accepted: 03/12/2025] [Indexed: 04/11/2025]
Abstract
The survival and adaptation of plants to adverse environmental conditions is crucial and is facilitated by receptor-like kinases, which act as cell surface receptors for a variety of signals. In this study, we identified a gene, GmHSL1b, encoding a receptor-like protein kinase that is responsive to abscisic acid (ABA) hormonal signals and is involved in the plant's response to drought and salt stresses. Subcellular localization assays have demonstrated that the GmHSL1b protein is located in the plasma membrane. Overexpression of the GmHSL1b gene in soybean enhanced root growth and development, as well as the plant's tolerance to salt stress, while the gmhsl1b mutant revealed increased sensitivity to salt stress. Comparative transcriptome analysis showed that some genes associated with various biological processes, such as mitogen-activated protein kinase (MAPK) cascade signaling, plant hormone signaling, cell wall remodeling, calcium signaling, and defense response mechanisms are differentially expressed in GmHSL1b overexpressing roots. Our research indicated that GmHSL1b can regulate the expression level of the candidate aquaporin GmPIP2-1, thereby affecting cell water content and the accumulation of reactive oxygen species (ROS) under salt stress. These findings indicate that the GmHSL1b participates in regulating root development and enhancing the tolerance to salt stress, thus offering insights for boosting crop adaptability to environmental stresses.
Collapse
Affiliation(s)
- Yuan Ma
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Qiumin Chen
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Ansar Javeed
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
- College of life sciences and medicine, Zhejiang Sci-Tech University, Zhejiang, Hangzhou, China
| | - Zhenghao Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Sijia Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Feng Lin
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Chunyu Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Chen Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| |
Collapse
|
2
|
Guo B, Fan S, Liu M, Yang H, Dai L, Wang L. ATP Synthase Members of Chloroplasts and Mitochondria in Rubber Trees ( Hevea brasiliensis) Response to Plant Hormones. PLANTS (BASEL, SWITZERLAND) 2025; 14:604. [PMID: 40006862 PMCID: PMC11859043 DOI: 10.3390/plants14040604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/13/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025]
Abstract
ATP synthase is a key enzyme in photophosphorylation in photosynthesis and oxidative phosphorylation in respiration, which can catalyze the synthesis of ATP and supply energy to organisms. ATP synthase has been well studied in many animal species but has been poorly characterized in plants. This research identified forty ATP synthase family members in the rubber tree, and the phylogenetic relationship, gene structure, cis-elements, and expression pattern were analyzed. These results indicated that the ATP synthase of mitochondria was divided into three subgroups and the ATP synthase of chloroplast was divided into two subgroups, respectively. ATP synthase in the same subgroup shared a similar gene structure. Evolutionary relationships were consistent with the introns and exons domains, which were highly conserved patterns. A large number of cis elements related to light, phytohormones and stress resistance were present in the promoters of ATP synthase genes in rubber trees, of which the light signal accounts for the most. Transcriptome and qRT-PCR analysis showed that HbATP synthases responded to cold stress and hormone stimulation, and the response to ethylene was most significant. HbMATPR3 was strongly induced by ethylene and salicylic acid, reaching 122-fold and 17-fold, respectively. HbMATP7-1 was 41 times higher than the control after induction by jasmonic acid. These results laid a foundation for further studies on the function of ATP synthase, especially in plant hormone signaling in rubber trees.
Collapse
Affiliation(s)
| | | | | | | | | | - Lifeng Wang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs, State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Special Natural Rubber Processing Technology Innovation Center, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (B.G.); (S.F.); (M.L.); (H.Y.); (L.D.)
| |
Collapse
|
3
|
Das MK, Park S, Adhikari ND, Mou B. Genome-wide association study of salt tolerance at the seed germination stage in lettuce. PLoS One 2024; 19:e0308818. [PMID: 39423209 PMCID: PMC11488735 DOI: 10.1371/journal.pone.0308818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/26/2024] [Indexed: 10/21/2024] Open
Abstract
Developing lettuce varieties with salt tolerance at the seed germination stage is essential since lettuce seeds are planted half an inch deep in soil where salt levels are often highest in the salinity-affected growing regions. Greater knowledge of genetics and genomics of salt tolerance in lettuce will facilitate breeding of improved lettuce varieties with salt tolerance. Accordingly, we conducted a genome-wide association study (GWAS) in lettuce to identify marker-trait association for salt tolerance at the seed germination stage. The study involved 445 diverse lettuce accessions and 56,820 single nucleotide polymorphism (SNP) markers obtained through genotype-by-sequencing technology using lettuce reference genome version v8. GWAS using two single-locus and three multi-locus models for germination rate (GR) under salinity stress, 5 days post seeding (GR5d_S) and a salinity susceptibility index (SSI) based on GR under salinity stress and control conditions, 5 days post seeding (SSI_GR5d) revealed 10 significant SNPs on lettuce chromosomes 2, 4, and 7. The 10 SNPs were associated with five novel QTLs for salt tolerance in lettuce, explaining phenotyping variations of 5.85%, 4.38%, 4.26%, 3.77%, and 1.80%, indicating the quantitative nature of these two salt tolerance-related traits. Using the basic local alignment search tool (BLAST) within 100 Kb upstream and downstream of each of the 10 SNPs, we identified 25 salt tolerance-related putative candidate genes including four genes encoding for major transcription factors. The 10 significant salt tolerance-related SNPs and the 25 candidate genes identified in the current study will be a valuable resource for molecular marker development and marker-assisted selection for breeding lettuce varieties with improved salt tolerance at the seed germination stage.
Collapse
Affiliation(s)
- Modan K. Das
- USDA-Agricultural Research Service, Sam Farr United States Crop Improvement and Protection Research Center, Salinas, CA, United States of America
| | - Sunchung Park
- USDA-Agricultural Research Service, Sam Farr United States Crop Improvement and Protection Research Center, Salinas, CA, United States of America
| | - Neil D. Adhikari
- USDA-Agricultural Research Service, Sam Farr United States Crop Improvement and Protection Research Center, Salinas, CA, United States of America
| | - Beiquan Mou
- USDA-Agricultural Research Service, Sam Farr United States Crop Improvement and Protection Research Center, Salinas, CA, United States of America
| |
Collapse
|
4
|
Sharma S, Arpita K, Nirgude M, Srivastava H, Kumar K, Sreevathsa R, Bhattacharya R, Gaikwad K. Genomic insights into cytokinin oxidase/dehydrogenase (CKX) gene family, identification, phylogeny and synteny analysis for its possible role in regulating seed number in Pigeonpea (Cajanus cajan (L.) Millsp.). Int J Biol Macromol 2024; 277:134194. [PMID: 39097061 DOI: 10.1016/j.ijbiomac.2024.134194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/28/2024] [Accepted: 07/25/2024] [Indexed: 08/05/2024]
Abstract
Cytokinin oxidase/dehydrogenase (CKX) regulates cytokinin levels in plants which are vital for plant growth and development. However, there is a paucity of evidence regarding their role in controlling embryo/seed development in pigeonpea. This comprehensive study provides information on the identification and characterization of CKX genes in pigeonpea. A genome-wide analysis identified 18 CKX genes, each with distinct structure, expression patterns, and possible diverse functions. Domain analysis revealed the presence of the sequences including FAD and CK-Binding domain, and subcellular localization analysis showed that almost 50 % of them reside within the nucleus. They were observed to be located unevenly on chromosome numbers 2, 4, 6, 7, and 11 with a majority of them present on the scaffolds. The 8 homologous pairs and various orthologous gene pairs provided further insights into their evolution pattern. Further, SNP/Indels variation in CKX genes and haplotype groups among contrasting genotypes for SNPP (seed number per pod) were analyzed. Spatiotemporal expression analysis revealed the significant expression pattern of CcCKX15, CcCKX17, and CcCKX2 in genotypes carrying low SNPP reiterating their possible role as negative regulators. These genes can be potential targets to undertake seed and biomass improvement in pigeonpea.
Collapse
Affiliation(s)
- Sandhya Sharma
- ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India
| | - Kumari Arpita
- ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India
| | - Machindra Nirgude
- ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India
| | - Harsha Srivastava
- ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India
| | - Kuldeep Kumar
- ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India
| | - Rohini Sreevathsa
- ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India
| | | | - Kishor Gaikwad
- ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India.
| |
Collapse
|
5
|
Zhou F, Feng W, Mou K, Yu Z, Zeng Y, Zhang W, Zhou Y, Li Y, Gao H, Xu K, Feng C, Jing Y, Li H. Genome-Wide Analysis and Expression Profiling of Soybean RbcS Family in Response to Plant Hormones and Functional Identification of GmRbcS8 in Soybean Mosaic Virus. Int J Mol Sci 2024; 25:9231. [PMID: 39273180 PMCID: PMC11395302 DOI: 10.3390/ijms25179231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Rubisco small subunit (RbcS), a core component with crucial effects on the structure and kinetic properties of the Rubisco enzyme, plays an important role in response to plant growth, development, and various stresses. Although Rbcs genes have been characterized in many plants, their muti-functions in soybeans remain elusive. In this study, a total of 11 GmRbcS genes were identified and subsequently divided into three subgroups based on a phylogenetic relationship. The evolutionary analysis revealed that whole-genome duplication has a profound effect on GmRbcSs. The cis-acting elements responsive to plant hormones, development, and stress-related were widely found in the promoter region. Expression patterns based on the RT-qPCR assay exhibited that GmRbcS genes are expressed in multiple tissues, and notably Glyma.19G046600 (GmRbcS8) exhibited the highest expression level compared to other members, especially in leaves. Moreover, differential expressions of GmRbcS genes were found to be significantly regulated by exogenous plant hormones, demonstrating their potential functions in diverse biology processes. Finally, the function of GmRbcS8 in enhancing soybean resistance to soybean mosaic virus (SMV) was further determined through the virus-induced gene silencing (VIGS) assay. All these findings establish a strong basis for further elucidating the biological functions of RbcS genes in soybeans.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Yan Jing
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (F.Z.); (W.F.); (K.M.); (Z.Y.); (Y.Z.); (W.Z.); (Y.Z.); (Y.L.); (H.G.); (K.X.); (C.F.)
| | - Haiyan Li
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (F.Z.); (W.F.); (K.M.); (Z.Y.); (Y.Z.); (W.Z.); (Y.Z.); (Y.L.); (H.G.); (K.X.); (C.F.)
| |
Collapse
|
6
|
Zhang Z, Xu Y, Liu C, Chen L, Zhang Y, He Z, Wang R, Xun C, Ma Y, Yuan X, Wang X, Chen Y, Yang X. Cataloging the Genetic Response: Unveiling Drought-Responsive Gene Expression in Oil Tea Camellia ( Camellia oleifera Abel.) through Transcriptomics. Life (Basel) 2024; 14:989. [PMID: 39202731 PMCID: PMC11355629 DOI: 10.3390/life14080989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
Drought stress is a critical environmental factor that significantly impacts plant growth and productivity. However, the transcriptome analysis of differentially expressed genes in response to drought stress in Camellia oleifera Abel. is still unclear. This study analyzed the transcriptome sequencing data of C. oleifera under drought treatments. A total of 20,674 differentially expressed genes (DEGs) were identified under drought stress, with the number of DEGs increasing with the duration of drought. Specifically, 11,793 and 18,046 DEGs were detected after 8 and 15 days of drought treatment, respectively, including numerous upregulated and downregulated genes. Gene Ontology (GO) enrichment analysis showed that the DEGs were primarily involved in various biological processes. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed that carbon metabolism, glyoxylate and dicarboxylate metabolism, proteasome, glycine, serine, and threonine metabolism were the main affected pathways. Among the DEGs, 376 protein kinases, 42 proteases, 168 transcription factor (TF) genes, and 152 other potential functional genes were identified, which may play significant roles in the drought response of C. oleifera. The expression of relevant functional genes was further validated using quantitative real-time PCR (qRT-PCR). These findings contribute to the comprehension of drought tolerance mechanisms in C. oleifera and bolster the identification of drought-resistant genes for molecular breeding purposes.
Collapse
Affiliation(s)
- Zhen Zhang
- Hunan Academy of Forestry, Changsha 410000, China; (Z.Z.); (Y.X.); (C.L.); (L.C.); (Y.Z.); (Z.H.); (R.W.); (C.X.); (Y.M.); (X.W.)
- National Engineering Research Center for Oil Tea Camellia, Changsha 410000, China
| | - Yanming Xu
- Hunan Academy of Forestry, Changsha 410000, China; (Z.Z.); (Y.X.); (C.L.); (L.C.); (Y.Z.); (Z.H.); (R.W.); (C.X.); (Y.M.); (X.W.)
- National Engineering Research Center for Oil Tea Camellia, Changsha 410000, China
| | - Caixia Liu
- Hunan Academy of Forestry, Changsha 410000, China; (Z.Z.); (Y.X.); (C.L.); (L.C.); (Y.Z.); (Z.H.); (R.W.); (C.X.); (Y.M.); (X.W.)
- National Engineering Research Center for Oil Tea Camellia, Changsha 410000, China
| | - Longsheng Chen
- Hunan Academy of Forestry, Changsha 410000, China; (Z.Z.); (Y.X.); (C.L.); (L.C.); (Y.Z.); (Z.H.); (R.W.); (C.X.); (Y.M.); (X.W.)
- National Engineering Research Center for Oil Tea Camellia, Changsha 410000, China
| | - Ying Zhang
- Hunan Academy of Forestry, Changsha 410000, China; (Z.Z.); (Y.X.); (C.L.); (L.C.); (Y.Z.); (Z.H.); (R.W.); (C.X.); (Y.M.); (X.W.)
- National Engineering Research Center for Oil Tea Camellia, Changsha 410000, China
| | - Zhilong He
- Hunan Academy of Forestry, Changsha 410000, China; (Z.Z.); (Y.X.); (C.L.); (L.C.); (Y.Z.); (Z.H.); (R.W.); (C.X.); (Y.M.); (X.W.)
- National Engineering Research Center for Oil Tea Camellia, Changsha 410000, China
| | - Rui Wang
- Hunan Academy of Forestry, Changsha 410000, China; (Z.Z.); (Y.X.); (C.L.); (L.C.); (Y.Z.); (Z.H.); (R.W.); (C.X.); (Y.M.); (X.W.)
- National Engineering Research Center for Oil Tea Camellia, Changsha 410000, China
| | - Chengfeng Xun
- Hunan Academy of Forestry, Changsha 410000, China; (Z.Z.); (Y.X.); (C.L.); (L.C.); (Y.Z.); (Z.H.); (R.W.); (C.X.); (Y.M.); (X.W.)
- National Engineering Research Center for Oil Tea Camellia, Changsha 410000, China
| | - Yushen Ma
- Hunan Academy of Forestry, Changsha 410000, China; (Z.Z.); (Y.X.); (C.L.); (L.C.); (Y.Z.); (Z.H.); (R.W.); (C.X.); (Y.M.); (X.W.)
- National Engineering Research Center for Oil Tea Camellia, Changsha 410000, China
| | - Xiaokang Yuan
- Hunan Key Laboratory of Meteorological Disaster Prevention and Reduction, Hunan Research Institute of Meteorological Sciences, Changsha 410000, China;
| | - Xiangnan Wang
- Hunan Academy of Forestry, Changsha 410000, China; (Z.Z.); (Y.X.); (C.L.); (L.C.); (Y.Z.); (Z.H.); (R.W.); (C.X.); (Y.M.); (X.W.)
- National Engineering Research Center for Oil Tea Camellia, Changsha 410000, China
| | - Yongzhong Chen
- Hunan Academy of Forestry, Changsha 410000, China; (Z.Z.); (Y.X.); (C.L.); (L.C.); (Y.Z.); (Z.H.); (R.W.); (C.X.); (Y.M.); (X.W.)
- National Engineering Research Center for Oil Tea Camellia, Changsha 410000, China
| | - Xiaohu Yang
- Hunan Academy of Forestry, Changsha 410000, China; (Z.Z.); (Y.X.); (C.L.); (L.C.); (Y.Z.); (Z.H.); (R.W.); (C.X.); (Y.M.); (X.W.)
- National Engineering Research Center for Oil Tea Camellia, Changsha 410000, China
| |
Collapse
|
7
|
Xu X, Wang Y, Lu H, Zhao X, Jiang J, Liu M, Yang C. Morphological characterization and transcriptome analysis of rolled and narrow leaf mutant in soybean. BMC PLANT BIOLOGY 2024; 24:686. [PMID: 39026194 PMCID: PMC11264519 DOI: 10.1186/s12870-024-05389-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/05/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND In plants, the leaf functions as a solar panel, where photosynthesis converts carbon dioxide and water into carbohydrates and oxygen. In soybean, leaf type traits, including leaf shape, leaf area, leaf width, and leaf width so on, are considered to be associated with yield. In this study, we performed morphological characterization, transcriptome analysis, and endogenous hormone analysis of a rolled and narrow leaf mutant line (rl) in soybean. RESULTS Compared with wild type HX3, mutant line rl showed rolled and narrower leaflet, and smaller leaf, meanwhile rl also performed narrower pod and narrower seed. Anatomical analysis of leaflet demonstrated that cell area of upper epidermis was bigger than the cell area of lower epidermis in rl, which may lead rolled and narrow leaf. Transcriptome analysis revealed that several cytokinin oxidase/dehydrogenase (CKX) genes (Glyma.06G028900, Glyma.09G225400, Glyma.13G104700, Glyma.14G099000, and Glyma.17G054500) were up-regulation dramatically, which may cause lower cytokinin level in rl. Endogenous hormone analysis verified that cytokinin content of rl was lower. Hormone treatment results indicated that 6-BA rescued rolled leaf enough, rescued partly narrow leaf. And after 6-BA treatment, the cell area was similar between upper epidermis and lower epidermis in rl. Although IAA content and ABA content were reduced in rl, but exogenous IAA and ABA didn't affect leaf type of HX3 and rl. CONCLUSIONS Our results suggest abnormal cytokinin metabolism caused rolled and narrow leaf in rl, and provide valuable clues for further understanding the mechanisms underlying leaf development in soybean.
Collapse
Affiliation(s)
- Xiaomin Xu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Yongzhen Wang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Housheng Lu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Xueqian Zhao
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Jiacan Jiang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Mengshi Liu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Cunyi Yang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
- Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
8
|
Hamid R, Jacob F, Ghorbanzadeh Z, Khayam Nekouei M, Zeinalabedini M, Mardi M, Sadeghi A, Kumar S, Ghaffari MR. Genomic insights into CKX genes: key players in cotton fibre development and abiotic stress responses. PeerJ 2024; 12:e17462. [PMID: 38827302 PMCID: PMC11144395 DOI: 10.7717/peerj.17462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/05/2024] [Indexed: 06/04/2024] Open
Abstract
Cytokinin oxidase/dehydrogenase (CKX), responsible for irreversible cytokinin degradation, also controls plant growth and development and response to abiotic stress. While the CKX gene has been studied in other plants extensively, its function in cotton is still unknown. Therefore, a genome-wide study to identify the CKX gene family in the four cotton species was conducted using transcriptomics, quantitative real-time PCR (qRT-PCR) and bioinformatics. As a result, in G. hirsutum and G. barbadense (the tetraploid cotton species), 87 and 96 CKX genes respectively and 62 genes each in G. arboreum and G. raimondii, were identified. Based on the evolutionary studies, the cotton CKX gene family has been divided into five distinct subfamilies. It was observed that CKX genes in cotton have conserved sequence logos and gene family expansion was due to segmental duplication or whole genome duplication (WGD). Collinearity and multiple synteny studies showed an expansion of gene families during evolution and purifying selection pressure has been exerted. G. hirsutum CKX genes displayed multiple exons/introns, uneven chromosomal distribution, conserved protein motifs, and cis-elements related to growth and stress in their promoter regions. Cis-elements related to resistance, physiological metabolism and hormonal regulation were identified within the promoter regions of the CKX genes. Expression analysis under different stress conditions (cold, heat, drought and salt) revealed different expression patterns in the different tissues. Through virus-induced gene silencing (VIGS), the GhCKX34A gene was found to improve cold resistance by modulating antioxidant-related activity. Since GhCKX29A is highly expressed during fibre development, we hypothesize that the increased expression of GhCKX29A in fibres has significant effects on fibre elongation. Consequently, these results contribute to our understanding of the involvement of GhCKXs in both fibre development and response to abiotic stress.
Collapse
Affiliation(s)
- Rasmieh Hamid
- Department of Plant Breeding, Cotton Research Institute of Iran (CRII), Agricultural Research, Education and Extension Organization (AREEO), Gorgan, Golestan, Iran
| | - Feba Jacob
- Centre for Plant Biotechnology and Molecular Biology, Kerala Agricultural University, Thrissur, Kerala, India
| | - Zahra Ghorbanzadeh
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Alborz, Iran
| | | | - Mehrshad Zeinalabedini
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Alborz, Iran
| | - Mohsen Mardi
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Alborz, Iran
| | - Akram Sadeghi
- Department of Microbial Biotechnology and Biosafety, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Alborrz, Iran
| | - Sushil Kumar
- Agricultural Biotechnology, Anand agricultural University, Anand, Gujarat, India
| | - Mohammad Reza Ghaffari
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Alborz, Iran
| |
Collapse
|
9
|
Zhou XW, Yao XD, He DX, Sun HX, Xie FT. Comparative physiological and transcriptomic analysis of two salt-tolerant soybean germplasms response to low phosphorus stress: role of phosphorus uptake and antioxidant capacity. BMC PLANT BIOLOGY 2023; 23:662. [PMID: 38124037 PMCID: PMC10731862 DOI: 10.1186/s12870-023-04677-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Phosphorus (P) and salt stress are common abiotic stressors that limit crop growth and development, but the response mechanism of soybean to low phosphorus (LP) and salt (S) combined stress remains unclear. RESULTS In this study, two soybean germplasms with similar salt tolerance but contrasting P-efficiency, A74 (salt-tolerant and P-efficient) and A6 (salt-tolerant and P-inefficient), were selected as materials. By combining physiochemical and transcriptional analysis, we aimed to elucidate the mechanism by which soybean maintains high P-efficiency under salt stress. In total, 14,075 differentially expressed genes were identified through pairwise comparison. PageMan analysis subsequently revealed several significantly enriched categories in the LP vs. control (CK) or low phosphorus + salt (LPS) vs. S comparative combination when compared to A6, in the case of A74. These categories included genes involved in mitochondrial electron transport, secondary metabolism, stress, misc, transcription factors and transport. Additionally, weighted correlation network analysis identified two modules that were highly correlated with acid phosphatase and antioxidant enzyme activity. Citrate synthase gene (CS), acyl-coenzyme A oxidase4 gene (ACX), cytokinin dehydrogenase 7 gene (CKXs), and two-component response regulator ARR2 gene (ARR2) were identified as the most central hub genes in these two modules. CONCLUSION In summary, we have pinpointed the gene categories responsible for the LP response variations between the two salt-tolerant germplasms, which are mainly related to antioxidant, and P uptake process. Further, the discovery of the hub genes layed the foundation for further exploration of the molecular mechanism of salt-tolerant and P-efficient in soybean.
Collapse
Affiliation(s)
- Xiu-Wen Zhou
- Soybean Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Xing-Dong Yao
- Soybean Research Institute, Shenyang Agricultural University, Shenyang, China
| | - De-Xin He
- Soybean Research Institute, Shenyang Agricultural University, Shenyang, China
| | - He-Xiang Sun
- Soybean Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Fu-Ti Xie
- Soybean Research Institute, Shenyang Agricultural University, Shenyang, China.
| |
Collapse
|
10
|
Gong Y, Wang D, Xie H, Zhao Z, Chen Y, Zhang D, Jiao Y, Shi M, Lv P, Sha Q, Yang J, Chu P, Sun Y. Genome-wide identification and expression analysis of the KCS gene family in soybean ( Glycine max) reveal their potential roles in response to abiotic stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1291731. [PMID: 38116151 PMCID: PMC10728876 DOI: 10.3389/fpls.2023.1291731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/01/2023] [Indexed: 12/21/2023]
Abstract
Very long chain fatty acids (VLCFAs) are fatty acids with chain lengths of 20 or more carbon atoms, which are the building blocks of various lipids that regulate developmental processes and plant stress responses. 3-ketoacyl-CoA synthase encoded by the KCS gene is the key rate-limiting enzyme in VLCFA biosynthesis, but the KCS gene family in soybean (Glycine max) has not been adequately studied thus far. In this study, 31 KCS genes (namely GmKCS1 - GmKCS31) were identified in the soybean genome, which are unevenly distributed on 14 chromosomes. These GmKCS genes could be phylogenetically classified into seven groups. A total of 27 paralogous GmKCS gene pairs were identified with their Ka/Ks ratios indicating that they had undergone purifying selection during soybean genome expansion. Cis-acting element analysis revealed that GmKCS promoters contained multiple hormone- and stress-responsive elements, indicating that GmKCS gene expression levels may be regulated by various developmental and environmental stimuli. Expression profiles derived from RNA-seq data and qRT-PCR experiments indicated that GmKCS genes were diversely expressed in different organs/tissues, and many GmKCS genes were found to be differentially expressed in the leaves under cold, heat, salt, and drought stresses, suggesting their critical role in soybean resistance to abiotic stress. These results provide fundamental information about the soybean KCS genes and will aid in their further functional elucidation and exploitation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Pengfei Chu
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng, China
| | - Yongwang Sun
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng, China
| |
Collapse
|
11
|
Shen L, Xia X, Zhang L, Yang S, Yang X. Genome-Wide Identification of Catalase Gene Family and the Function of SmCAT4 in Eggplant Response to Salt Stress. Int J Mol Sci 2023; 24:16979. [PMID: 38069301 PMCID: PMC10706941 DOI: 10.3390/ijms242316979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Salinity is an important abiotic stress, damaging plant tissues by causing a burst of reactive oxygen species (ROS). Catalase (CAT) enzyme coded by Catalase (CAT) genes are potent in reducing harmful ROS and hydrogen peroxide (H2O2) produced. Herein, we performed bioinformatics and functional characterization of four SmCAT genes, retrieved from the eggplant genome database. Evolutionary analysis CAT genes revealed that they are divided into subgroups I and II. The RT-qPCR analysis of SmCAT displayed a differential expression pattern in response to abiotic stresses. All the CAT proteins of eggplant were localized in the peroxisome, except for SmCAT4, which localized in the cytomembrane and nucleus. Silencing of SmCAT4 compromised the tolerance of eggplant to salt stress. Suppressed expression levels of salt stress defense related genes SmTAS14 and SmDHN1, as well as increase of H2O2 content and decrease of CAT enzyme activity was observed in the SmCAT4 silenced eggplants. Our data provided insightful knowledge of CAT gene family in eggplant. Positive regulation of eggplant response to salinity by SmCAT4 provides resource for future breeding programs.
Collapse
Affiliation(s)
| | | | | | | | - Xu Yang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (L.S.); (X.X.); (L.Z.); (S.Y.)
| |
Collapse
|
12
|
Li J, Pang Q, Yan X. Unique Features of the m 6A Methylome and Its Response to Salt Stress in the Roots of Sugar Beet ( Beta vulgaris). Int J Mol Sci 2023; 24:11659. [PMID: 37511417 PMCID: PMC10380635 DOI: 10.3390/ijms241411659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Salt is one of the most important environmental factors in crop growth and development. N6-methyladenosine (m6A) is an epigenetic modification that regulates plant-environment interaction at transcriptional and translational levels. Sugar beet is a salt-tolerant sugar-yielding crop, but how m6A modification affects its response to salt stress remains unknown. In this study, m6A-seq was used to explore the role of m6A modification in response to salt stress in sugar beet (Beta vulgaris). Transcriptome-wide m6A methylation profiles and physiological responses to high salinity were investigated in beet roots. After treatment with 300 mM NaCl, the activities of peroxidase and catalase, the root activity, and the contents of Na+, K+, and Ca2+ in the roots were significantly affected by salt stress. Compared with the control plants, 6904 differentially expressed genes (DEGs) and 566 differentially methylated peaks (DMPs) were identified. Association analysis revealed that 243 DEGs contained DMP, and 80% of these DEGs had expression patterns that were negatively correlated with the extent of m6A modification. Further analysis verified that m6A methylation may regulate the expression of some genes by controlling their mRNA stability. Functional analysis revealed that m6A modifications primarily affect the expression of genes involved in energy metabolism, transport, signal transduction, transcription factors, and cell wall organization. This study provides evidence that a post-transcriptional regulatory mechanism mediates gene expression during salt stress by affecting the stability of mRNA in the root.
Collapse
Affiliation(s)
- Junliang Li
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Institute for Eco-Environmental Research of Sanyang Wetland, College of Life and Environmental Science, Wenzhou University, Zhong-Xin Street, Wenzhou 325035, China
- Post-Doctoral Research Stations, Northeast Forestry University, Harbin 150040, China
| | - Qiuying Pang
- Post-Doctoral Research Stations, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Xiufeng Yan
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Institute for Eco-Environmental Research of Sanyang Wetland, College of Life and Environmental Science, Wenzhou University, Zhong-Xin Street, Wenzhou 325035, China
| |
Collapse
|