1
|
Liang Z, Yan J, Zhao S, He L, Zhao X, Cai L, You C, Wang F. Efficient Extraction, Chemical Characterization, and Bioactivity of Essential Oil From Pine Needles. PHYTOCHEMICAL ANALYSIS : PCA 2025. [PMID: 40079166 DOI: 10.1002/pca.3529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 02/26/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025]
Abstract
INTRODUCTION Pine needles are a rich source of bioactive compounds, and there are few reports on the extraction and identification of active substances in various types of pine needles. OBJECTIVES The objective of this study is to enhance the efficiency and yield of pine needle essential oil extraction by employing an innovative ultrasonic-assisted salt-out hydrodistillation technology. It also aims to establish a correlation between gas chromatography-mass spectrometry (GC-MS) and electronic nose (E-nose) to distinguish essential oils from Cedrus deodara, Pinus thunbergii, Pinus massoniana, and Pinus koraiensis. METHODS Optimal extraction conditions will be determined through dynamic curve fitting and response surface analysis. Essential oils will be analyzed by E-nose and GC-MS coupled with chemometrics. Radical-scavenging effects on ·OH, DPPH·, ABTS+ radicals, and antibacterial activity against Escherichia coli and Staphylococcus aureus will be evaluated. RESULTS Optimal extraction conditions were 100 min of distillation, 7.762% sodium chloride, 9.596-mL/g liquid material ratio, and 170.155-W ultrasonic power. Essential oil yields were 0.144%, 0.214%, 0.425%, and 0.852% for C. deodara, P. thunbergii, P. massoniana, and P. koraiensis, respectively. GC-MS identified 74 volatile components. PLS-DA revealed nine key compounds, including α-Myrcene, α-Pinene, α-Phellandrene, Limonene, Caryophyllene, Bornyl acetate, β-Pinene, Germacrene D, and Camphene. PCA of E-nose and GC-MS data highlighted sample differences. All essential oils exhibited antioxidant and antibacterial activities, linked to α-pinene, β-Pinene, and Germacrene D. CONCLUSION This study introduces efficient methods for efficient extraction and characterization of pine needle essential oils, providing a foundation for bioactive applications and enhancing product quality and global innovation in the industry.
Collapse
Affiliation(s)
- Zhengyun Liang
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Jiamin Yan
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Sidan Zhao
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Lingxiao He
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Xinxu Zhao
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Lingchao Cai
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Chaoqun You
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Fei Wang
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
2
|
Zhang B, Cao M, Wang X, Guo S, Ding Z, Kang Y, Hu L, Xiong L, Pei J, Ma Y, Guo X. The Combined Analysis of GC-IMS and GC-MS Reveals the Differences in Volatile Flavor Compounds between Yak and Cattle-Yak Meat. Foods 2024; 13:2364. [PMID: 39123555 PMCID: PMC11311445 DOI: 10.3390/foods13152364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
In order to investigate the composition and differences in volatile organic compounds (VOCs) in yak and cattle-yak meat and determine the key metabolites and metabolic pathways related to flavor formation. In this study, the VOCs and non-volatile metabolites in Longissimus dorsi muscle of two groups of samples were detected and analyzed by gas chromatography-ion migration spectrometry (GC-IMS) and gas chromatography-mass spectrometry (GC-MS). The results showed that 31 VOCs were identified by GC-IMS, including 5 alcohols, 5 ketones, 5 esters, 3 aldehydes, 2 furans, 2 hydrocarbons, 1 amine, 1 acid, 1 thiazole, 1 pyrazine, and 5 others. Most of them were alcohols, ketones, esters, and aldehydes. A total of 75 non-volatile metabolites with significant differences were obtained by GC-MS screening, among which amino acid contents such as serine, glycine, phenylalanine, and aspartic acid were significantly up-regulated in cattle-yak, and glutamic acid and tyrosine were significantly up-regulated in yak. The non-volatile differential metabolites in the two groups were significantly enriched in the metabolic pathways of arginine biosynthesis and oxidative phosphorylation. By combining GC-IMS and GC-MS, this study comprehensively and intuitively reflected the differences in VOCs between yak and cattle-yak meat, and clarified the metabolomic reasons for the differences in VOCs, so as to provide a theoretical basis for meat quality improvement.
Collapse
Affiliation(s)
- Ben Zhang
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (B.Z.); (M.C.); (X.W.); (S.G.); (Z.D.); (Y.K.); (L.H.); (L.X.); (J.P.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Mengli Cao
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (B.Z.); (M.C.); (X.W.); (S.G.); (Z.D.); (Y.K.); (L.H.); (L.X.); (J.P.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xingdong Wang
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (B.Z.); (M.C.); (X.W.); (S.G.); (Z.D.); (Y.K.); (L.H.); (L.X.); (J.P.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Shaoke Guo
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (B.Z.); (M.C.); (X.W.); (S.G.); (Z.D.); (Y.K.); (L.H.); (L.X.); (J.P.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Ziqiang Ding
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (B.Z.); (M.C.); (X.W.); (S.G.); (Z.D.); (Y.K.); (L.H.); (L.X.); (J.P.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Yandong Kang
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (B.Z.); (M.C.); (X.W.); (S.G.); (Z.D.); (Y.K.); (L.H.); (L.X.); (J.P.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Liyan Hu
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (B.Z.); (M.C.); (X.W.); (S.G.); (Z.D.); (Y.K.); (L.H.); (L.X.); (J.P.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Lin Xiong
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (B.Z.); (M.C.); (X.W.); (S.G.); (Z.D.); (Y.K.); (L.H.); (L.X.); (J.P.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Jie Pei
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (B.Z.); (M.C.); (X.W.); (S.G.); (Z.D.); (Y.K.); (L.H.); (L.X.); (J.P.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Yi Ma
- Institute of Animal Husbandry and Veterinary Science, Tianjin Academy of Agriculture Sciences, Tianjin 300381, China
| | - Xian Guo
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (B.Z.); (M.C.); (X.W.); (S.G.); (Z.D.); (Y.K.); (L.H.); (L.X.); (J.P.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| |
Collapse
|
3
|
Xing L, Lei J, Liu J, Yang Z, Chai Z, Cai W, Zhang M, Meng D, Wang Y, Yin H. Enhancing the quality of fermented plant leaves: the role of metabolite signatures and associated fungi. FRONTIERS IN PLANT SCIENCE 2024; 15:1335850. [PMID: 38571709 PMCID: PMC10987691 DOI: 10.3389/fpls.2024.1335850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/26/2024] [Indexed: 04/05/2024]
Abstract
Fungi play a pivotal role in fermentation processes, influencing the breakdown and transformation of metabolites. However, studies focusing on the effects of fungal-metabolite correlations on leaf fermentation quality enhancement are limited. This study investigated specific metabolites and fungi associated with high- and low-quality fermented plant leaves. Their changes were monitored over fermentation periods of 0, 8, 16, and 24 days. The results indicated that organoheterocyclic compounds, lipids, lipid-like molecules, organic nitrogen compounds, phenylpropanoids, and polyketides were predominant in high-quality samples. The fungi Saccharomyces (14.8%) and Thermoascus (4.6%) were predominantly found in these samples. These markers exhibited significant changes during the 24-day fermentation period. The critical influence of fungal community equilibrium was demonstrated by interspecies interactions (e.g., between Saccharomyces and Eurotium). A co-occurrence network analysis identified Saccharomyces as the primary contributor to high-quality samples. These markers collectively enhance the quality and sensory characteristics of the final product.
Collapse
Affiliation(s)
- Lei Xing
- China Tobacco Sichuan Industrial Co., Ltd, Chengdu, China
- Cigar Fermentation Technology Key Laboratory of China Tobacco (China Tobacco Sichuan Industrial Co., Ltd.), Chengdu, China
- Industrial Efficient Utilization of Domestic Cigar Tobacco Key Laboratory of Sichuan Province, Chengdu, China
| | - Jinshan Lei
- China Tobacco Sichuan Industrial Co., Ltd, Chengdu, China
- Cigar Fermentation Technology Key Laboratory of China Tobacco (China Tobacco Sichuan Industrial Co., Ltd.), Chengdu, China
- Industrial Efficient Utilization of Domestic Cigar Tobacco Key Laboratory of Sichuan Province, Chengdu, China
| | - Jie Liu
- China Tobacco Sichuan Industrial Co., Ltd, Chengdu, China
- Cigar Fermentation Technology Key Laboratory of China Tobacco (China Tobacco Sichuan Industrial Co., Ltd.), Chengdu, China
- Industrial Efficient Utilization of Domestic Cigar Tobacco Key Laboratory of Sichuan Province, Chengdu, China
| | - Zhen Yang
- China Tobacco Sichuan Industrial Co., Ltd, Chengdu, China
- Cigar Fermentation Technology Key Laboratory of China Tobacco (China Tobacco Sichuan Industrial Co., Ltd.), Chengdu, China
- Industrial Efficient Utilization of Domestic Cigar Tobacco Key Laboratory of Sichuan Province, Chengdu, China
| | - Zhishun Chai
- China Tobacco Sichuan Industrial Co., Ltd, Chengdu, China
- Cigar Fermentation Technology Key Laboratory of China Tobacco (China Tobacco Sichuan Industrial Co., Ltd.), Chengdu, China
- Industrial Efficient Utilization of Domestic Cigar Tobacco Key Laboratory of Sichuan Province, Chengdu, China
| | - Wen Cai
- China Tobacco Sichuan Industrial Co., Ltd, Chengdu, China
- Cigar Fermentation Technology Key Laboratory of China Tobacco (China Tobacco Sichuan Industrial Co., Ltd.), Chengdu, China
- Industrial Efficient Utilization of Domestic Cigar Tobacco Key Laboratory of Sichuan Province, Chengdu, China
| | - Min Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Delong Meng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Yujie Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha, China
| |
Collapse
|