1
|
Charagh S, Wang J, Hui S, Raza A, Cao R, Zhou L, Yang L, Xu B, Zhang Y, Mawia AM, Sheng Z, Tang S, Hu S, Hu P. Smart reprogramming of plants against cadmium toxicity using membrane transporters and modern tools. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 224:109919. [PMID: 40239253 DOI: 10.1016/j.plaphy.2025.109919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 02/25/2025] [Accepted: 04/11/2025] [Indexed: 04/18/2025]
Abstract
Cadmium (Cd) in soil and water streams is now recognized as a significant environmental issue that harms plants and animals. Plants damaged by Cd toxicity experience various effects, from germination to yield reduction. Plant- and animal-based goods are allowing more Cd to enter our food chain, which could harm human health. Therefore, this urgent global concern must be addressed by implementing appropriate remedial measures. Plant-based phytoremediation is one safe, economical, and environmentally acceptable way to remove hazardous metals from the environment. Hyperaccumulator plants possess specialized transport proteins, such as metal transporters located in membranes of roots, as well as they facilitate Cd uptake from soil. This review outlines the latest findings about these membrane transporters. Moreover, we also discuss how innovative modern tools such as microbiomes, omics, nanotechnology, and genome editing have revealed molecular regulators connected to Cd tolerance, which may be employed to develop Cd-tolerant future plants. We can develop effective solutions to enhance tolerance of plant to Cd toxicity by leveraging membrane transporters and modern biotechnological tools. Additionally, implementing strategies to increase tolerance of Cd and restrict its bioavailability in plants' edible parts is crucial for improving food safety. These combined efforts will lead to the cultivation of safer food crops and support sustainable agricultural practices in contaminated environments.
Collapse
Affiliation(s)
- Sidra Charagh
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, 310006, China
| | - Jingxin Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, 310006, China
| | - Suozhen Hui
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, 310006, China
| | - Ali Raza
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Ruijie Cao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, 310006, China
| | - Liang Zhou
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, 310006, China
| | - Lingwei Yang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, 310006, China
| | - Bo Xu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, 310006, China
| | - Yuanyuan Zhang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, 310006, China
| | - Amos Musyoki Mawia
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, 310006, China
| | - Zhonghua Sheng
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, 310006, China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, 310006, China
| | - Shikai Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, 310006, China.
| | - Peisong Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, 310006, China.
| |
Collapse
|
2
|
Khan M, Nizamani MM, Asif M, Kamran A, He G, Li X, Yang S, Xie X. Comprehensive approaches to heavy metal bioremediation: Integrating microbial insights and genetic innovations. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 374:123969. [PMID: 39765072 DOI: 10.1016/j.jenvman.2024.123969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 12/25/2024] [Accepted: 12/28/2024] [Indexed: 01/29/2025]
Abstract
The increasing contamination of ecosystems with heavy metals (HMs) due to industrial activities raises significant jeopardies to environmental health and human well-being. Addressing this issue, recent advances in the field of bioremediation have highlighted the potential of plant-associated microbiomes and genetically engineered organisms (GEOs) to mitigate HMs pollution. This review explores recent advancements in bioremediation strategies for HMs detoxification, with particular attention to omics technologies such as metagenomics, metabolomics, and metaproteomics in deepening the understanding of microbial interactions and their potential for neutralizing HMs. Additionally, Emerging strategies and technologies in GEOs and microorganism-aided nanotechnology have proven to be effective bioremediation tools, particularly for alleviating HM contamination. Despite the promising strategies developed in laboratory settings, several challenges impede their practical application, including ecological risks, regulatory limitations, and public concerns regarding the practice of genetically modified organisms. A comprehensive approach that involves interdisciplinary research is essential to enhance the efficacy and safety of bioremediation technologies. This approach should be coupled with robust regulatory frameworks and active public engagement to ensure environmental integrity and societal acceptance. This review underscores the importance of developing sustainable bioremediation strategies that align with ecological conservation goals and public health priorities.
Collapse
Affiliation(s)
- Mehran Khan
- College of Agriculture, Guizhou University, Guiyang, 550025, PR China
| | | | - Muhammad Asif
- College of Agriculture, Guizhou University, Guiyang, 550025, PR China
| | - Ali Kamran
- College of Agriculture, Guizhou University, Guiyang, 550025, PR China
| | - Guandi He
- College of Agriculture, Guizhou University, Guiyang, 550025, PR China
| | - Xiangyang Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Sanwei Yang
- College of Agriculture, Guizhou University, Guiyang, 550025, PR China.
| | - Xin Xie
- College of Agriculture, Guizhou University, Guiyang, 550025, PR China.
| |
Collapse
|
3
|
Rizwan HM, He J, Nawaz M, Lu K, Wang M. The members of zinc finger-homeodomain (ZF-HD) transcription factors are associated with abiotic stresses in soybean: insights from genomics and expression analysis. BMC PLANT BIOLOGY 2025; 25:56. [PMID: 39810081 PMCID: PMC11730174 DOI: 10.1186/s12870-024-06028-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/27/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND Zinc finger homeodomain (ZF-HD) belongs to the plant-specific transcription factor (TF) family and is widely involved in plant growth, development and stress responses. Despite their importance, a comprehensive identification and analysis of ZF-HD genes in the soybean (Glycine max) genome and their possible roles under abiotic stress remain unexplored. RESULTS In this study, 51 ZF-HD genes were identified in the soybean genome that were unevenly distributed on 17 chromosomes. All GmZF-HD genes contained a conserved ZF-HD_dimer domain and had diverse physicochemical features. Furthermore, the GmZF-HD gene structures exhibited 3 to 10 conserved motifs, and most of them showed intronless gene structures. Phylogenetic analysis categorized them into eight major groups with the highest closeness to dicots including Brassica rapa and Malus domestica. The cis-element analysis recognized plant growth and development (10%), phytohormones (31%) and stress-responsive (59%) elements. Synteny analysis identified 73 segmental and 1 tandem duplicated genes that underwent purifying selection. The collinearity analysis revealed that GmZF-HD genes showed higher homology with dicot species, indicating common ancestors with close evolutionary relationships. A total of 94 gma-miRNAs from 41 diverse miRNA families were identified, targeting 40 GmZF-HD genes, with GmZF-HD6 being most targeted by 7 miRNAs, and gma-miR4993 emerging as the dominant miRNA family. Different TFs including ERF, LBD, BBR-BPC and MYB, etc., were predicted in all 51 GmZF-HD genes upstream regions and visualized in the network. Expression profiling through RNA-Seq showed diverse expressions of GmZF-HD genes in different tissues including seeds, roots, shoots and leaves under diverse conditions. Further, the qRT-PCR analysis demonstrated that all tested GmZF-HD genes were significantly induced in soybean leaves, mainly the GmZF-HD5/6/13/39 and GmZF-HD45 genes were significantly upregulated (2.5 to 8.8 folds) under the tested stress treatments compared to control, highlighting their potential roles in response to stresses in soybean. CONCLUSION Overall, this study reveals comprehensive insights into the ZF-HD genes in soybeans and provides a valuable contribution towards functional studies for soybean improvement under stress conditions.
Collapse
Affiliation(s)
- Hafiz Muhammad Rizwan
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, 518060, China
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jiayi He
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Muhammad Nawaz
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Keyu Lu
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Mingfu Wang
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, 518060, China.
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
4
|
Khan K, Li ZW, Khan R, Ali S, Ahmad H, Shah MA, Zhou XB. Co-exposure impact of nickel oxide nanomaterials and Bacillus subtilis on soybean growth and nitrogen assimilation dynamics. PLANT PHYSIOLOGY 2024; 197:kiae638. [PMID: 39607727 DOI: 10.1093/plphys/kiae638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/01/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024]
Abstract
Nickel oxide nanoparticles (NiO-NPs) pose potential threats to agricultural production. Bacillus subtilis has emerged as a stress-mitigating microbe that alleviates the phytotoxicity caused by NiO-NPs. However, the mechanisms underlying its effectiveness, particularly in root-nodule symbiosis and biological N2-fixation (BNF), remain unclear. Here, we tested the combined exposure of NiO-NPs (50 mg kg-1) and B. subtilis on soybean (Glycine max L.) growth and BNF. Combined exposure increased root length, shoot length, root biomass, and shoot biomass by 19% to 26%, while Ni (200 mg kg-1) reduced them by 38% to 53% compared to the control. NiO-NPs at 100 and 200 mg kg-1 significantly (P < 0.05) reduced nodule formation by 16% and 58% and Nitrogen assimilation enzyme activities levels (urease, nitrate reductase, glutamine synthetase, and glutamate synthetase) by 13% to 57%. However, co-exposure with B. subtilis improved nodule formation by 22% to 44%. Co-exposure of NiO-NPs (200 mg kg-1) with B. subtilis increased peroxidase, catalase, and glutathione peroxidase activity levels by 20%, 16%, and 14% while reducing malondialdehyde (14%) and hydrogen peroxide (12%) levels compared to NiO-NPs alone. Additionally, co-exposure of NiO-NPs (100 and 200 mg kg-1) with B. subtilis enhanced the relative abundance of Stenotrophomonas, Gemmatimonas, and B. subtilis, is associated with N2-cycling and N2-fixation potential. This study confirms that B. subtilis effectively mitigates NiO-NP toxicity in soybean, offering a sustainable method to enhance BNF and crop growth and contribute to addressing global food insecurity.
Collapse
Affiliation(s)
- Kashif Khan
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Zhen Wei Li
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Rayyan Khan
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Shahid Ali
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Haseeb Ahmad
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Muhammad Ali Shah
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xun Bo Zhou
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Guangxi University, Nanning 530004, China
| |
Collapse
|
5
|
Shaffique S, Shah AA, Kang SM, Injamum-Ul-Hoque M, Shahzad R, Azzawi TNIA, Yun BW, Lee IJ. Melatonin: dual players mitigating drought-induced stress in tomatoes via modulation of phytohormones and antioxidant signaling cascades. BMC PLANT BIOLOGY 2024; 24:1101. [PMID: 39563264 DOI: 10.1186/s12870-024-05752-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/25/2024] [Indexed: 11/21/2024]
Abstract
Drought stress significantly retards the plant production. Melatonin is a vital hormone, signaling molecule, and bio-regulator of diverse physiological growth and development processes. Its role in boosting agronomic traits under diverse stress conditions has received considerable attention. However, the underlying molecular mechanism of action and how they increase drought stress tolerance has not been fully interpreted. The current study aimed to ascertain the protective role of melatonin in fortifying the antioxidant defense system, modulating the phytohormone profile, and improving agronomic traits of tomato seedlings under drought stress. After the V1 stage (1st leaf fully emerged), tomato seedlings were exposed to PEG-6000 to mimic drought-induced stress (DR 10% and DR 20%), followed by exogenous application of 100 µM soil drench. Drought-induced stress negatively impacted tomato seedlings by reducing growth and development and biomass accumulation, diminishing salicylic acid (SA) and chlorophyll levels, and dramatically lowering the antioxidant defense ability. However, melatonin protected them by activating the defense system, which decreased the oxidative burst and increased the activities of SOD, CAT, and APX. Administration of 100 µM melatonin by soil drench most remarkably downregulated the transcription factors of SlDREB3 and SlNCED3. This study has validated the moderating potential of melatonin against drought-induced stress by maintaining plant growth and development, enhancing hormone levels, elevating antioxidant enzyme activities, and suppressing the relative expression of drought-responsive genes. These findings also provide a basis for the potential use of MT in agricultural research and other relevant fields of study.
Collapse
Affiliation(s)
- Shifa Shaffique
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Anis Ali Shah
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Sang-Mo Kang
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Md Injamum-Ul-Hoque
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Raheem Shahzad
- Department of Horticulture, The University of Haripur, Haripur, Khyber Pakhtunkhwa, 22620, Pakistan
| | | | - Byung-Wook Yun
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
6
|
Zhang Y, Shen Z, Zhou W, Liu C, Li Y, Ding B, Zhang P, Zhang X, Zhang Z. Environmental problems of emerging toxic metals and treatment technology and methods. RSC Adv 2024; 14:37299-37310. [PMID: 39588236 PMCID: PMC11586922 DOI: 10.1039/d4ra06085g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/02/2024] [Indexed: 11/27/2024] Open
Abstract
The increasing industrial use of toxic metals essential for modern electronics and renewable energy presents significant environmental and health challenges. This review was needed to address the environmental risks posed by toxic metals, particularly those accumulating in soil and sediment ecosystems. The objective is to examine the sources of toxic metal pollution, their ecological impacts, and the effectiveness of existing treatment technologies. By comprehensively reviewing the recent literature, we analyzed the physiological and molecular responses of plants to toxic metals, focusing on their toxicity mechanisms. Key parameters measured include toxic metal concentration, soil and sediment health, microbial diversity, and plant stress responses. Our findings highlight that toxic metals, such as lithium, nickel, and indium, fueled by industrial activities, including mining and electronic waste disposal, significantly disrupt ecosystems. These metals bioaccumulate, harming soil microbial communities and aquatic life. For instance, in soil ecosystems, cadmium and lead inhibit microbial functions, while in aquatic systems, resuspension of sediment-bound metals leads to persistent contamination. Data show that phytoremediation and microbial techniques are effective in reducing toxic metal concentrations up to 30-40%. In conclusion, long-term monitoring and sustainable remediation strategies are essential to mitigate these environmental impacts. Future efforts should focus on enhancing the efficiency of bioremediation techniques and integrating these methods into global toxic metal management practices.
Collapse
Affiliation(s)
- Yanhao Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University Jinan 250101 China
| | - Zhiyuan Shen
- School of Municipal and Environmental Engineering, Shandong Jianzhu University Jinan 250101 China
| | - Wenlu Zhou
- School of Municipal and Environmental Engineering, Shandong Jianzhu University Jinan 250101 China
| | - Chengying Liu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University Jinan 250101 China
| | - Yi Li
- Shandong Academy for Environmental Planning Jinan 250101 China
| | - Botao Ding
- Shandong Academy for Environmental Planning Jinan 250101 China
| | - Peng Zhang
- Yantai Economic and Technological Development Zone Water Supply Co., Ltd Yantai 264006 China
| | - Xu Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University Jinan 250101 China
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences Beijing 100085 China
| | - Zhibin Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University Jinan 250101 China
| |
Collapse
|
7
|
Babar S, Baloch A, Qasim M, Wang J, Wang X, Li Y, Khalid S, Jiang C. Unearthing the soil-bacteria nexus to enhance potassium bioavailability for global sustainable agriculture: A mechanistic preview. Microbiol Res 2024; 288:127885. [PMID: 39236472 DOI: 10.1016/j.micres.2024.127885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/02/2024] [Accepted: 08/25/2024] [Indexed: 09/07/2024]
Abstract
Established as a plant macronutrient, potassium (K) substantially bestows plant growth and thus, global food production. It is absorbed by plants as potassium cation (K+) from soil solution, which is enriched through slow-release from soil minerals or addition of soluble fertilizers. Contribution of bioavailable K+ from soil is usually insignificant (< 2 %), although the earth's crust is rich in K-bearing minerals. However, K is fixed largely in interlayer spaces of K-bearing minerals, which can be released by K-solubilizing bacteria (KSB) such as Bacillus, Pseudomonas, Enterobacter, and Acidithiobacillus. The underlying mechanisms of K dissolution by KSB include acidolysis, ion exchange reactions, chelation, complexolysis, and release of various organic and inorganic acids such as citric, oxalic, acetic, gluconic, and tartaric acids. These acids cause disintegration of K-bearing minerals and bring K+ into soil solution that becomes available to the plants. Current literature review updates the scientific information about microbial species, factors, and mechanisms governing the bio-intrusion of K-bearing minerals. Moreover, it explores the potential of KSB not only for K-solubilization but also to enhance bioavailability of phosphorus, nitrogen, and micronutrients, as well as its other beneficial impact on plant growth. Thus, in the context of sustainable agricultural production and global food security, utilization of KSB may facilitate plant nutrient availability, conserve natural resources, and reduce environmental impacts caused by chemical fertilizers.
Collapse
Affiliation(s)
- Saba Babar
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Amanullah Baloch
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Muhammad Qasim
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| | - Jiyuan Wang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xiangling Wang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Yuxuan Li
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Sarmand Khalid
- Key Laboratory of Horticulture Plant Biology of Ministry of Education, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| | - Cuncang Jiang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| |
Collapse
|
8
|
Xie X, Gan L, Wang C, He T. Salt-tolerant plant growth-promoting bacteria as a versatile tool for combating salt stress in crop plants. Arch Microbiol 2024; 206:341. [PMID: 38967784 DOI: 10.1007/s00203-024-04071-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/14/2024] [Accepted: 06/23/2024] [Indexed: 07/06/2024]
Abstract
Soil salinization poses a great threat to global agricultural ecosystems, and finding ways to improve the soils affected by salt and maintain soil health and sustainable productivity has become a major challenge. Various physical, chemical and biological approaches are being evaluated to address this escalating environmental issue. Among them, fully utilizing salt-tolerant plant growth-promoting bacteria (PGPB) has been labeled as a potential strategy to alleviate salt stress, since they can not only adapt well to saline soil environments but also enhance soil fertility and plant development under saline conditions. In the last few years, an increasing number of salt-tolerant PGPB have been excavated from specific ecological niches, and various mechanisms mediated by such bacterial strains, including but not limited to siderophore production, nitrogen fixation, enhanced nutrient availability, and phytohormone modulation, have been intensively studied to develop microbial inoculants in agriculture. This review outlines the positive impacts and growth-promoting mechanisms of a variety of salt-tolerant PGPB and opens up new avenues to commercialize cultivable microbes and reduce the detrimental impacts of salt stress on plant growth. Furthermore, considering the practical limitations of salt-tolerant PGPB in the implementation and potential integration of advanced biological techniques in salt-tolerant PGPB to enhance their effectiveness in promoting sustainable agriculture under salt stress are also accentuated.
Collapse
Affiliation(s)
- Xue Xie
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Longzhan Gan
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou, China.
| | - Chengyang Wang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Tengxia He
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
9
|
Preiner J, Steccari I, Oburger E, Wienkoop S. Rhizobium symbiosis improves amino acid and secondary metabolite biosynthesis of tungsten-stressed soybean ( Glycine max). FRONTIERS IN PLANT SCIENCE 2024; 15:1355136. [PMID: 38628363 PMCID: PMC11020092 DOI: 10.3389/fpls.2024.1355136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/01/2024] [Indexed: 04/19/2024]
Abstract
The industrially important transition metal tungsten (W) shares certain chemical properties with the essential plant micronutrient molybdenum and inhibits the activity of molybdoenzymes such as nitrate reductase, impacting plant growth. Furthermore, tungsten appears to interfere with metabolic processes on a much wider scale and to trigger common heavy metal stress response mechanisms. We have previously found evidence that the tungsten stress response of soybeans (Glycine max) grown with symbiotically associated N2-fixing rhizobia (Bradyrhizobium japonicum) differs from that observed in nitrogen-fertilized soy plants. This study aimed to investigate how association with symbiotic rhizobia affects the primary and secondary metabolite profiles of tungsten-stressed soybean and whether changes in metabolite composition enhance the plant's resilience to tungsten. This comprehensive metabolomic and proteomic study presents further evidence that the tungsten-stress response of soybean plants is shaped by associated rhizobia. Symbiotically grown plants (N fix) were able to significantly increase the synthesis of an array of protective compounds such as phenols, polyamines, gluconic acid, and amino acids such as proline. This resulted in a higher antioxidant capacity, reduced root-to-shoot translocation of tungsten, and, potentially, also enhanced resilience of N fix plants compared to non-symbiotic counterparts (N fed). Taken together, our study revealed a symbiosis-specific metabolic readjustment in tungsten-stressed soybean plants and contributed to a deeper understanding of the mechanisms involved in the rhizobium-induced systemic resistance in response to heavy metals.
Collapse
Affiliation(s)
- Julian Preiner
- Molecular Systems Biology Unit, Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Irene Steccari
- Molecular Systems Biology Unit, Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Eva Oburger
- Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences Vienna, Tulln, Austria
| | - Stefanie Wienkoop
- Molecular Systems Biology Unit, Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Shaffique S, Hussain S, Kang SM, Imran M, Injamum-Ul-Hoque M, Khan MA, Lee IJ. Phytohormonal modulation of the drought stress in soybean: outlook, research progress, and cross-talk. FRONTIERS IN PLANT SCIENCE 2023; 14:1237295. [PMID: 37929163 PMCID: PMC10623132 DOI: 10.3389/fpls.2023.1237295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/07/2023] [Indexed: 11/07/2023]
Abstract
Phytohormones play vital roles in stress modulation and enhancing the growth of plants. They interact with one another to produce programmed signaling responses by regulating gene expression. Environmental stress, including drought stress, hampers food and energy security. Drought is abiotic stress that negatively affects the productivity of the crops. Abscisic acid (ABA) acts as a prime controller during an acute transient response that leads to stomatal closure. Under long-term stress conditions, ABA interacts with other hormones, such as jasmonic acid (JA), gibberellins (GAs), salicylic acid (SA), and brassinosteroids (BRs), to promote stomatal closure by regulating genetic expression. Regarding antagonistic approaches, cytokinins (CK) and auxins (IAA) regulate stomatal opening. Exogenous application of phytohormone enhances drought stress tolerance in soybean. Thus, phytohormone-producing microbes have received considerable attention from researchers owing to their ability to enhance drought-stress tolerance and regulate biological processes in plants. The present study was conducted to summarize the role of phytohormones (exogenous and endogenous) and their corresponding microbes in drought stress tolerance in model plant soybean. A total of n=137 relevant studies were collected and reviewed using different research databases.
Collapse
Affiliation(s)
- Shifa Shaffique
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Sang-Mo Kang
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Muhamad Imran
- Biosafety Division, National Institute of Agriculture Science, Rural Development Administration, Jeonju, Republic of Korea
| | - Md. Injamum-Ul-Hoque
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Muhammad Aaqil Khan
- Department of Chemical and Life Science, Qurtaba University of Science and Information Technology, Peshawar, Pakistan
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|