1
|
Zhang Y, Zhang S, Xiao H, Li H, Liao D, Xue Y, Huang X, Su Q, Xiao Y. Changes in the Distribution Range of the Genus Cardiocrinum in China Under Climate Change and Human Activities. BIOLOGY 2025; 14:581. [PMID: 40427770 PMCID: PMC12109186 DOI: 10.3390/biology14050581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2025] [Revised: 05/17/2025] [Accepted: 05/19/2025] [Indexed: 05/29/2025]
Abstract
Cardiocrinum are perennial herbaceous plants of the Liliaceae family with high ornamental, nutritional, and medicinal value. However, critical knowledge gaps remain regarding the following: (1) the fine-scale habitat preferences of Cardiocrinum; (2) the key ecological drivers influencing their growth and distribution. The MaxEnt software 3.4.1 was used to simulate the current and future suitable habitats of Cardiocrinum, evaluate the impacts of environmental changes on its distribution, and determine the distribution changes under climate change scenarios. The AUC value of the model used in the current study was >0.98, which indicates that the model had good accuracy. The results show that as a typical understory herb, precipitation in the warmest quarter (bio18) and temperature seasonality (bio04) are the main factors affecting the distribution of Cardiocrinum. In addition, Cardiocrinum giganteum and Cardiocrinum giganteum var. yunnanense are also affected by slope and human activity. Under the SSP126, SSP245, and SSP585 climate scenarios, the suitable habitat areas of Cardiocrinum cathayanum and C. giganteum showed an increasing trend. The suitable habitat area of C. giganteum var. yunnanense increased under the SSP126 climate scenario; however, it substantially declined in SSP245 and SSP585 scenarios. The distribution area of Cardiocrinum shifted to higher latitudes. The centroid of C. cathayanum shifted more than 5 degrees of latitude during SSP585 2081s, while the centroid of C. giganteum and C. giganteum var. yunnanense did not shift more than 2 degrees of latitude. In addition, the centroid longitudes of C. giganteum and C. giganteum var. yunnanense shifted westward under the three climate scenarios. There is ecological niche differentiation among C. cathayanum and others, whilst C. giganteum and C. giganteum var. yunnanense have overlapping ecological niches. In the future, we will strengthen the protection of wild Cardiocrinum resources in accordance with environmental factors and suitable habitats for Cardiocrinum.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qitao Su
- Key Laboratory of Jiangxi Province for Biological Invasion and Biosecurity, School of Life Sciences, Jinggangshan University, Ji’an 343009, China
| | - Yian Xiao
- Key Laboratory of Jiangxi Province for Biological Invasion and Biosecurity, School of Life Sciences, Jinggangshan University, Ji’an 343009, China
| |
Collapse
|
2
|
Chen JH, Yu RT. Assessing the distribution pattern of Saussurea medusa under climate change using an optimized MaxEnt model in Qinghai-Xizang Plateau. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:165. [PMID: 39800841 DOI: 10.1007/s10661-024-13549-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/09/2024] [Indexed: 01/29/2025]
Abstract
Saussurea medusa is a rare alpine plant with significant medicinal value. To better understand the changes in its habitat in the context of climate change, this study used an optimized MaxEnt model to predict the current and future habitat of S. medusa under four shared socioeconomic pathways (SSPs) across three time periods (current, mid-century, and end-century) based on three climate system models. The results showed that the suitable habitat of S. medusa is mainly located in the southern and eastern parts of the Qinghai-Xizang Plateau (QXP), exhibiting a fragmented distribution pattern. The future suitable area of S. medusa is projected to decrease significantly by 42.5% to 96.7%, accompanied by a southward shift in its centroid and an upward shift in altitude. The study found that the highest temperature in the warmest month is the most important environmental factor affecting the distribution of S. medusa. This species is highly sensitive to climate change and requires urgent protection measures. Priority should focus on strengthening habitat protection in the southeastern Qinghai-Xizang Plateau, where some stable habitats remain outside protected areas. Expanding population monitoring, promoting ex-situ conservation, enhancing public education, and encouraging community involvement are essential. Additionally, as a medicinal plant, alternative strategies are needed to curb overharvesting of wild resources.
Collapse
Affiliation(s)
- Jing-Hua Chen
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences, Xining, 810001, Qinghai, China
| | - Rui-Tao Yu
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China.
- Key Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences, Xining, 810001, Qinghai, China.
| |
Collapse
|
3
|
Wang S, Wang C, Zhang J, Jiang K, Nian F. Allelopathy and potential allelochemicals of Ligularia sagitta as an invasive plant. PLANT SIGNALING & BEHAVIOR 2024; 19:2335025. [PMID: 38678583 PMCID: PMC11057658 DOI: 10.1080/15592324.2024.2335025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/20/2024] [Indexed: 05/01/2024]
Abstract
Allelopathy is the main chemical means in the invasion process of exotic plants and one of the key factors in grassland degradation. In this experiment, we investigated the effects of ethyl acetate phase extract (EAE), n-butanol phase extract (BE) and aqueous phase extract (AE) from the aboveground (stems and leaves) and roots of Ligularia sagitta on seed germination and seedling growth of four Gramineae forages (Poa pratensis L. Festuca ovina L. Elymus nutans Griseb. Agropyron cristatum (L.) Gaertn.) in their sympatric domains and one Legosuminae forage (Medicago sativa L.). The chemical components in each phase extract of L. sagitta were determined with UHPLC-MS/MS non-targeted metabolomics, and the differential compounds were screened using Orthogonal Partial Least Squares-Discriminant Analysis (OPLS-DA). Within a set concentration range, EAE significantly inhibited seed germination and seedling growth of four Gramineae forages. BE and AE acted mainly in the seedling growth stage and did not significantly inhibit forage seed germination. P. pratensis was most sensitive to L. sagitta extracts; at 2.0 mg/mL of EAE from roots, germination energy and germination rate of P. pratensis seeds were 0. L. sagitta extracts inhibited the growth of M. sativa seedlings and did not inhibit its seed germination. A total of 904 compounds were identified with UHPLC-MS/MS, among which 31, 64, 81 and 66 metabolites displayed different accumulation patterns in the four comparison groups (R.EAE vs. R.BE, R.EAE vs. R.AE, SL.EAE vs. SL.BE, SL.EAE vs. SL.AE), respectively. In particular, 9 compounds were found to be common up-regulated differential metabolites in the four comparison groups and were enriched in EAE. Additionally, N,N-dimethylaniline, Caffeic acid, 4-Hydroxybenzoic acid, 4-Hydroxybenzaldehyde and cis-9-Octadecenoic acid as potential allelochemicals in L. sagitta. The results of this study support efforts at finding alternative control plants for the restoration of poisonous grass-type degraded grasslands.
Collapse
Affiliation(s)
- Shengxiao Wang
- College of Science, Gansu Agricultural University, Lanzhou, China
| | - Chenyue Wang
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Jun Zhang
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Kan Jiang
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Fang Nian
- College of Science, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
4
|
Wang X, Li Z, Zhang L, Wang Y, Liu Y, Ma Y. The optimized Maxent model reveals the pattern of distribution and changes in the suitable cultivation areas for Reaumuria songarica being driven by climate change. Ecol Evol 2024; 14:e70015. [PMID: 39026959 PMCID: PMC11255383 DOI: 10.1002/ece3.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/16/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024] Open
Abstract
Reaumuria songarica, a drought-resistant shrub, is widely distributed and plays a crucial role in the northern deserts of China. It is a key species for desert rehabilitation and afforestation efforts. Using the Maxent model to predict suitable planting areas for R. songarica is an important strategy for combating desertification. With 184 occurrence points of R. songarica and 13 environmental variables, the optimized Maxent model has identified the main limiting factors for its distribution. Distribution patterns and variation trends of R. songarica were projected for current and future climates (2030s, 2050s, 2070s, and 2090s) and different scenarios (ssp_126, ssp_370, and ssp_585). Results show that setting parameters to RM (regulation multiplier) = 4 and FC (feature combination) = LQHPT yields a model with good accuracy and high reliability. Currently, R. songarica is primarily suitable for desert control in eight provinces and autonomous regions, including Inner Mongolia, Xinjiang, Qinghai, and Ningxia. The total suitable planting area is 148.80 × 104 km2, representing 15.45% of China's land area. Precipitation (Precipitation of the wettest month, Precipitation of the warmest quarter, and Annual precipitation) and Ultraviolet-B seasonality are the primary environmental factors limiting the growth and distribution of R. songarica. Mean temperature of the warmest quarter is the primary factor driving changes in the distribution of suitable areas for R. songarica under future climate scenarios. In future climate scenarios, the suitable planting area of R. songarica will shrink, and the distribution center will shift towards higher latitude, potentially indicate further desertification. The area of highly suitable habitat has increased, while moderately and less suitable habitat areas have decreased. Increased precipitation within R. songarica's water tolerance range is favorable for its growth and reproduction. With changes in the suitable cultivation area for R. songarica, priority should be given to exploring and utilizing its germplasm resources. Introduction and cultivation can be conducted in expanding regions, while scientifically effective measures should be implemented to protect germplasm resources in contracting regions. The findings of this study provide a theoretical basis for addressing desertification resulting from climate change and offer practical insights for the development, utilization, introduction, and cultivation of R. songarica germplasm resources.
Collapse
Affiliation(s)
- Xinyou Wang
- Qinghai Academy of Animal and Veterinary Sciences, Qinghai Provincial Key Laboratory of Adaptive Management on Alpine Grassland, Key Laboratory of Superior Forage Germplasm in the Qinghai‐Tibetan Plateau, Qinghai UniversityXiningQinghaiChina
| | - Zhengsheng Li
- Qinghai Academy of Animal and Veterinary Sciences, Qinghai Provincial Key Laboratory of Adaptive Management on Alpine Grassland, Key Laboratory of Superior Forage Germplasm in the Qinghai‐Tibetan Plateau, Qinghai UniversityXiningQinghaiChina
| | - Lijun Zhang
- Qinghai Academy of Animal and Veterinary Sciences, Qinghai Provincial Key Laboratory of Adaptive Management on Alpine Grassland, Key Laboratory of Superior Forage Germplasm in the Qinghai‐Tibetan Plateau, Qinghai UniversityXiningQinghaiChina
| | - Yanlong Wang
- Qinghai Academy of Animal and Veterinary Sciences, Qinghai Provincial Key Laboratory of Adaptive Management on Alpine Grassland, Key Laboratory of Superior Forage Germplasm in the Qinghai‐Tibetan Plateau, Qinghai UniversityXiningQinghaiChina
| | - Ying Liu
- Qinghai Academy of Animal and Veterinary Sciences, Qinghai Provincial Key Laboratory of Adaptive Management on Alpine Grassland, Key Laboratory of Superior Forage Germplasm in the Qinghai‐Tibetan Plateau, Qinghai UniversityXiningQinghaiChina
| | - Yushou Ma
- Qinghai Academy of Animal and Veterinary Sciences, Qinghai Provincial Key Laboratory of Adaptive Management on Alpine Grassland, Key Laboratory of Superior Forage Germplasm in the Qinghai‐Tibetan Plateau, Qinghai UniversityXiningQinghaiChina
| |
Collapse
|
5
|
Wang E, Lu Z, Rohani ER, Ou J, Tong X, Han R. Current and future distribution of Forsythia suspensa in China under climate change adopting the MaxEnt model. FRONTIERS IN PLANT SCIENCE 2024; 15:1394799. [PMID: 38887460 PMCID: PMC11180877 DOI: 10.3389/fpls.2024.1394799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024]
Abstract
This study evaluated the potential impact of climate change on the distribution of Forsythia suspensa, a valuable traditional Chinese medicinal plant, using the MaxEnt model integrated with Geographic Information System (GIS). By analyzing occurrence data from various databases and environmental variables including climate and soil factors, we forecasted the present and future (2050s and 2070s) habitat suitability of F. suspensa under different greenhouse gas emission scenarios (RCP8.5, RCP4.5, RCP2.6). Results indicated that the suitable habitats for F. suspensa were primarily located in North, East, Central, Northwest, and Southwest China, with a significant potential expansion of suitable habitats anticipated by the 2070s, particularly under the high emission scenario. The study identified precipitation and temperature as the primary environmental drivers impacting the distribution of F. suspensa. Furthermore, a northward shift in the centroid of suitable habitats under future climate scenarios suggested a potential migration response to global warming. This work provides crucial insights into the future conservation and cultivation strategies for F. suspensa amidst changing climatic conditions.
Collapse
Affiliation(s)
- En Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Zongran Lu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | | | - Jinmei Ou
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xiaohui Tong
- School of Life Sciences, Anhui University of Chinese Medicine, Hefei, China
| | - Rongchun Han
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
- Joint Research Center for Chinese Herbal Medicine of Anhui of IHM, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
6
|
Li D, Gan H, Li X, Zhou H, Zhang H, Liu Y, Dong R, Hua L, Hu G. Changes in the Range of Four Advantageous Grasshopper Habitats in the Hexi Corridor under Future Climate Conditions. INSECTS 2024; 15:243. [PMID: 38667373 PMCID: PMC11049823 DOI: 10.3390/insects15040243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/21/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024]
Abstract
Angaracris rhodopa (Fischer et Walheim), Calliptamus abbreviatus (Ikonnikov), Myrmeleotettix palpalis (Zubowsky), and Oedaleus decorus asiaticus (Bey-Bienko) are the main grasshoppers that harm the natural grassland in the Hexi Corridor in Gansu, northwest China. In this study, the MaxEnt model was employed to identify the key environmental factors affecting the distribution of the four grasshoppers' habitats and to assess their distribution under current and future climate conditions. The aim was to provide a basis for grasshopper monitoring, prediction, and precise control. In this study, distribution of suitable habitats for A. rhodopa, C. abbreviates, M. palpalis, O. decorus asiaticus were predicted under current and future climatic scenarios using the Maxent model. The average AUC (area under the ROC curve) and TSS (true skill statistic) values of the four grasshoppers were greater than 0.9, and the simulation results were excellent and highly reliable. The mean annual precipitation was the main factor limiting the current range of suitable areas for these four species. Under the current climate, A. rhodopa, C. abbreviatus, and O. decorus asiaticus were mainly distributed in the central and eastern parts of the Hexi Corridor, and M. palpalis was distributed throughout the Hexi Corridor, with a suitable area of 1.29 × 104, 1.43 × 104, 1.44 × 104, and 2.12 × 104 km2, accounting for 13.7%, 15.2%, 15.3%, and 22.5% of the total area of the grasslands in the Hexi Corridor, respectively. The highly suitable areas of A. rhodopa, C. abbreviatus, and O. decorus asiaticus were mainly distributed in the eastern-central part of Zhangye City, the western part of Wuwei City, and the western and southern parts of Jinchang City, with areas of 0.20 × 104, 0.29 × 104, and 0.35 × 104 km2, accounting for 2.2%, 3%, and 3.7% of the grassland area, respectively. The high habitat of M. palpalis was mainly distributed in the southeast of Jiuquan City, the west, middle, and east of Zhangye City, the west of Wuwei City, and the west and south of Jinchang City, with an area of 0.32 × 104 km2, accounting for 3.4% of the grassland area. In the 2030s, the range of A. rhodopa, C. abbreviatus, and O. decorus asiaticus was predicted to increase; the range of M. palpalis will decrease. The results of this study could provide a theoretical basis for the precise monitoring and control of key areas of grasshoppers in the Hexi Corridor.
Collapse
Affiliation(s)
- Donghong Li
- Key Laboratory of Grassland Ecosystem of the Ministry of Education, Engineering and Technology Research Center for Alpine Rodent Pest Control National Forestry and Grassland Administration, Pratacultural College, Gansu Agricultural University, Lanzhou 730070, China; (D.L.); (H.Z.); (Y.L.); (R.D.); (L.H.)
| | - Huilin Gan
- Grassland Workstation of Zhangye City, Zhangye 734000, China;
| | - Xiaopeng Li
- Grassland Technical Extension Station of Gansu Province, Lanzhou 730046, China; (X.L.); (H.Z.)
| | - Huili Zhou
- Grassland Technical Extension Station of Gansu Province, Lanzhou 730046, China; (X.L.); (H.Z.)
| | - Hang Zhang
- Key Laboratory of Grassland Ecosystem of the Ministry of Education, Engineering and Technology Research Center for Alpine Rodent Pest Control National Forestry and Grassland Administration, Pratacultural College, Gansu Agricultural University, Lanzhou 730070, China; (D.L.); (H.Z.); (Y.L.); (R.D.); (L.H.)
| | - Yaomeng Liu
- Key Laboratory of Grassland Ecosystem of the Ministry of Education, Engineering and Technology Research Center for Alpine Rodent Pest Control National Forestry and Grassland Administration, Pratacultural College, Gansu Agricultural University, Lanzhou 730070, China; (D.L.); (H.Z.); (Y.L.); (R.D.); (L.H.)
| | - Rui Dong
- Key Laboratory of Grassland Ecosystem of the Ministry of Education, Engineering and Technology Research Center for Alpine Rodent Pest Control National Forestry and Grassland Administration, Pratacultural College, Gansu Agricultural University, Lanzhou 730070, China; (D.L.); (H.Z.); (Y.L.); (R.D.); (L.H.)
| | - Limin Hua
- Key Laboratory of Grassland Ecosystem of the Ministry of Education, Engineering and Technology Research Center for Alpine Rodent Pest Control National Forestry and Grassland Administration, Pratacultural College, Gansu Agricultural University, Lanzhou 730070, China; (D.L.); (H.Z.); (Y.L.); (R.D.); (L.H.)
| | - Guixin Hu
- Key Laboratory of Grassland Ecosystem of the Ministry of Education, Engineering and Technology Research Center for Alpine Rodent Pest Control National Forestry and Grassland Administration, Pratacultural College, Gansu Agricultural University, Lanzhou 730070, China; (D.L.); (H.Z.); (Y.L.); (R.D.); (L.H.)
| |
Collapse
|
7
|
Xu L, Fan Y, Zheng J, Guan J, Lin J, Wu J, Liu L, Wu R, Liu Y. Impacts of climate change and human activity on the potential distribution of Aconitum leucostomum in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168829. [PMID: 38030008 DOI: 10.1016/j.scitotenv.2023.168829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
Aconitum leucostomum is a poisonous grass that disturbs grassland populations and livestock development, and its spread is influenced by climate change and human activities. Therefore, exploring its potential distribution area under such conditions is crucial to maintain grassland ecological security and livestock development. The present study initially selected 39 variables that may influence the spatial distribution of A. leucostomum, including bioclimate, soil, topography, solar radiation, and human footprint data; the variables were screened by Spearman's correlation coefficient and the jackknife method. Twenty variables were finally identified, and three types of models based on the maximum entropy (MaxEnt) model were constructed to predict the distribution of A. leucostomum within China under three shared economy pathways (SSP126, SSP245, and SSP585): A: prediction of environmental variables under the current climate model; B: prediction of environmental variables + human footprint under the current climate model; and C: prediction of environmental variables under the future climate model (including the 2030s, 2050s, and 2070s). The effects of human activities and climate change on the potential geographic distribution of A. leucostomum were explored separately. The results show that precipitation seasonality, human footprint, solar radiation and mean diurnal range are the main factors affecting the distribution of A. leucostomum. Human activities inhibit the spread of A. leucostomum, and climate change promotes its growth, with areas of high suitability and area variation mainly in northern Xinjiang and northern Yunnan. With climate change, in the future, the distribution center of A. leucostomum shows a tendency to migrate to the southeast on the horizontal gradient and to move to higher altitudes on the vertical gradient. This study provides a positive reference value for the control of A. leucostomum and the maintenance of grassland ecological security.
Collapse
Affiliation(s)
- Li Xu
- College of Geography and Remote Sensing Science, Xinjiang University, Urumqi 830046, China; Xinjiang Key Laboratory of Oasis Ecology, Urumqi 830046, China
| | - Yuan Fan
- College of Geography and Remote Sensing Science, Xinjiang University, Urumqi 830046, China; Xinjiang Key Laboratory of Oasis Ecology, Urumqi 830046, China
| | - Jianghua Zheng
- College of Geography and Remote Sensing Science, Xinjiang University, Urumqi 830046, China; Xinjiang Key Laboratory of Oasis Ecology, Urumqi 830046, China.
| | - Jingyun Guan
- College of Geography and Remote Sensing Science, Xinjiang University, Urumqi 830046, China; College of Tourism, Xinjiang University of Finance & Economics, Urumqi 830012, China
| | - Jun Lin
- Xinjiang Office of Locust Control and Rodent Eradication Command, Urumqi 830001, China
| | - Jianguo Wu
- Xinjiang Office of Locust Control and Rodent Eradication Command, Urumqi 830001, China
| | - Liang Liu
- College of Geography and Remote Sensing Science, Xinjiang University, Urumqi 830046, China; Xinjiang Key Laboratory of Oasis Ecology, Urumqi 830046, China
| | - Rui Wu
- College of Geography and Remote Sensing Science, Xinjiang University, Urumqi 830046, China; Xinjiang Key Laboratory of Oasis Ecology, Urumqi 830046, China
| | - Yujia Liu
- College of Geography and Remote Sensing Science, Xinjiang University, Urumqi 830046, China; Xinjiang Key Laboratory of Oasis Ecology, Urumqi 830046, China
| |
Collapse
|