1
|
Brant EJ, May D, Eid A, Altpeter F. Comparison of genotyping assays for detection of targeted CRISPR/Cas mutagenesis in highly polyploid sugarcane. Front Genome Ed 2024; 6:1505844. [PMID: 39726635 PMCID: PMC11669508 DOI: 10.3389/fgeed.2024.1505844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/13/2024] [Indexed: 12/28/2024] Open
Abstract
Sugarcane (Saccharum spp.) is an important biofuel feedstock and a leading source of global table sugar. Saccharum hybrid cultivars are highly polyploid (2n = 100-130), containing large numbers of functionally redundant hom(e)ologs in their genomes. Genome editing with sequence-specific nucleases holds tremendous promise for sugarcane breeding. However, identification of plants with the desired level of co-editing within a pool of primary transformants can be difficult. While DNA sequencing provides direct evidence of targeted mutagenesis, it is cost-prohibitive as a primary screening method in sugarcane and most other methods of identifying mutant lines have not been optimized for use in highly polyploid species. In this study, non-sequencing methods of mutant screening, including capillary electrophoresis (CE), Cas9 RNP assay, and high-resolution melt analysis (HRMA), were compared to assess their potential for CRISPR/Cas9-mediated mutant screening in sugarcane. These assays were used to analyze sugarcane lines containing mutations at one or more of six sgRNA target sites. All three methods distinguished edited lines from wild type, with co-mutation frequencies ranging from 2% to 100%. Cas9 RNP assays were able to identify mutant sugarcane lines with as low as 3.2% co-mutation frequency, and samples could be scored based on undigested band intensity. CE was highlighted as the most comprehensive assay, delivering precise information on both mutagenesis frequency and indel size to a 1 bp resolution across all six targets. This represents an economical and comprehensive alternative to sequencing-based genotyping methods which could be applied in other polyploid species.
Collapse
Affiliation(s)
- Eleanor J. Brant
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, IFAS-Institute of Food and Agricultural Science, Gainesville, FL, United States
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, United States
| | - David May
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, IFAS-Institute of Food and Agricultural Science, Gainesville, FL, United States
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, United States
| | - Ayman Eid
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, IFAS-Institute of Food and Agricultural Science, Gainesville, FL, United States
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, United States
| | - Fredy Altpeter
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, IFAS-Institute of Food and Agricultural Science, Gainesville, FL, United States
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, United States
| |
Collapse
|
2
|
Marino L, Altabe S, Colono CM, Podio M, Ortiz JPA, Balaban D, Stein J, Spoto N, Acuña C, Siena LA, Gerde J, Albertini E, Pessino SC. Transcriptome-guided breeding for Paspalum notatum: producing apomictic hybrids with enhanced omega-3 content. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 138:2. [PMID: 39645625 PMCID: PMC11625688 DOI: 10.1007/s00122-024-04788-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/19/2024] [Indexed: 12/09/2024]
Abstract
KEY MESSAGE Transcriptomics- and FAME-GC-MS-assisted apomixis breeding generated Paspalum notatum hybrids with clonal reproduction and increased α-linolenic acid content, offering the potential to enhance livestock product's nutritional quality and reduce methane emissions A low omega-6:omega-3 fatty acid ratio is considered an indicator of the nutritional impact of milk fat on human health. In ruminants, major long-chain fatty acids, such as linoleic acid (18:2, omega-6) and α-linolenic acid (18:3, omega-3), originate from dietary sources and reach the milk via the bloodstream. Since forages are the primary source of long-chain fatty acids for such animals, they are potential targets for improving milk lipid composition. Moreover, a high 18:3 content in their diet is associated with reduced methane emissions during grazing. This work aimed to develop genotypes of the forage grass Paspalum notatum with high leaf 18:3 content and the ability for clonal reproduction via seeds (apomixis). We assembled diploid and polyploid Paspalum notatum leaf transcriptomes and recovered sequences of two metabolism genes associated with the establishment of lipid profiles, namely SUGAR-DEPENDENT 1 (SDP1) and PEROXISOMAL ABC TRANSPORTER 1 (PXA1). Primers were designed to amplify all expressed paralogs in leaves. qPCR was used to analyse SDP1 and PXA1 expression in seven divergent genotypes. Reduced levels of SDP1 and PXA1 were found in the polyploid sexual genotype Q4188. Fatty acid methyl esters/gas chromatography/mass spectrometry (FAME/GC/MS) assays confirmed an increased percentage of 18:3 in this genotype. Crosses between Q4188 and the obligate apomictic pollen donor Q4117 resulted in two apomictic F1 hybrids (JS9 and JS71) with reduced SDP1 and PXA1 levels, increased 18:3 content, and clonal maternal reproduction. These materials could enhance milk and meat quality while reducing greenhouse gas emissions during grazing.
Collapse
Affiliation(s)
- Lara Marino
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Parque Villarino S/N, Z2125ZAA Zavalla, Rosario, Santa Fe, Argentina
| | - Silvia Altabe
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR), 27 de Febrero 27 Bis, 2000, Rosario, Argentina
| | - Carolina Marta Colono
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Parque Villarino S/N, Z2125ZAA Zavalla, Rosario, Santa Fe, Argentina
| | - Maricel Podio
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Parque Villarino S/N, Z2125ZAA Zavalla, Rosario, Santa Fe, Argentina
| | - Juan Pablo Amelio Ortiz
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Parque Villarino S/N, Z2125ZAA Zavalla, Rosario, Santa Fe, Argentina
| | - David Balaban
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Parque Villarino S/N, Z2125ZAA Zavalla, Rosario, Santa Fe, Argentina
| | - Juliana Stein
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Parque Villarino S/N, Z2125ZAA Zavalla, Rosario, Santa Fe, Argentina
| | - Nicolás Spoto
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Parque Villarino S/N, Z2125ZAA Zavalla, Rosario, Santa Fe, Argentina
| | - Carlos Acuña
- Instituto de Botánica del Nordeste (IBONE-CONICET-UNNE), Sargento Cabral 2134, 3400, Corrientes, Argentina
| | - Lorena Adelina Siena
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Parque Villarino S/N, Z2125ZAA Zavalla, Rosario, Santa Fe, Argentina
| | - José Gerde
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Parque Villarino S/N, Z2125ZAA Zavalla, Rosario, Santa Fe, Argentina
| | - Emidio Albertini
- Dipartimento Di Scienze Agrarie, Alimentari E Ambientali, Università Degli Studi Di Perugia, 06121, Perugia, Italy
| | - Silvina Claudia Pessino
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Parque Villarino S/N, Z2125ZAA Zavalla, Rosario, Santa Fe, Argentina.
| |
Collapse
|
3
|
Vega JM, Podio M, Orjuela J, Siena LA, Pessino SC, Combes MC, Mariac C, Albertini E, Pupilli F, Ortiz JPA, Leblanc O. Chromosome-scale genome assembly and annotation of Paspalum notatum Flüggé var. saurae. Sci Data 2024; 11:891. [PMID: 39152143 PMCID: PMC11329641 DOI: 10.1038/s41597-024-03731-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024] Open
Abstract
Paspalum notatum Flüggé is an economically important subtropical fodder grass that is widely used in the Americas. Here, we report a new chromosome-scale genome assembly and annotation of a diploid biotype collected in the center of origin of the species. Using Oxford Nanopore long reads, we generated a 557.81 Mb genome assembly (N50 = 56.1 Mb) with high gene completeness (BUSCO = 98.73%). Genome annotation identified 320 Mb (57.86%) of repetitive elements and 45,074 gene models, of which 36,079 have a high level of confidence. Further characterisation included the identification of 59 miRNA precursors together with their putative targets. The present work provides a comprehensive genomic resource for P. notatum improvement and a reference frame for functional and evolutionary research within the genus.
Collapse
Grants
- PUE 22920160100043CO Consejo Nacional de Investigaciones Científicas y Técnicas (National Scientific and Technical Research Council)
- PIP 11220200101680CO Consejo Nacional de Investigaciones Científicas y Técnicas (National Scientific and Technical Research Council)
- PICT 2019 3414 Ministry of Science, Technology and Productive Innovation, Argentina | Agencia Nacional de Promoción Científica y Tecnológica (National Agency for Science and Technology, Argentina)
- PICT 2019-02153 Ministry of Science, Technology and Productive Innovation, Argentina | Agencia Nacional de Promoción Científica y Tecnológica (National Agency for Science and Technology, Argentina)
- PICT-2017-1956 Ministry of Science, Technology and Productive Innovation, Argentina | Agencia Nacional de Promoción Científica y Tecnológica (National Agency for Science and Technology, Argentina)
- PIP 80020190300021UR Universidad Nacional de Rosario (National University of Rosario)
- 101007438 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 Marie Skłodowska-Curie Actions (H2020 Excellent Science - Marie Skłodowska-Curie Actions)
- 872417 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 Marie Skłodowska-Curie Actions (H2020 Excellent Science - Marie Skłodowska-Curie Actions)
- PRIN 2022Z4HLLJ Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- P2022KFJB5 Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
Collapse
Affiliation(s)
- Juan Manuel Vega
- Laboratorio de Biología Molecular, Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR) CONICET-UNR, Facultad de Ciencias Agrarias, Campo Experimental Villarino, Universidad Nacional de Rosario, Zavalla (S2125ZAA), Santa Fe, Argentina
| | - Maricel Podio
- Laboratorio de Biología Molecular, Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR) CONICET-UNR, Facultad de Ciencias Agrarias, Campo Experimental Villarino, Universidad Nacional de Rosario, Zavalla (S2125ZAA), Santa Fe, Argentina
| | - Julie Orjuela
- DIADE, Univ. Montpellier, CIRAD, IRD, Montpellier, France
| | - Lorena A Siena
- Laboratorio de Biología Molecular, Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR) CONICET-UNR, Facultad de Ciencias Agrarias, Campo Experimental Villarino, Universidad Nacional de Rosario, Zavalla (S2125ZAA), Santa Fe, Argentina
| | - Silvina C Pessino
- Laboratorio de Biología Molecular, Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR) CONICET-UNR, Facultad de Ciencias Agrarias, Campo Experimental Villarino, Universidad Nacional de Rosario, Zavalla (S2125ZAA), Santa Fe, Argentina
| | | | - Cedric Mariac
- DIADE, Univ. Montpellier, CIRAD, IRD, Montpellier, France
| | - Emidio Albertini
- Department of Agricultural, Food and Environmental Science, University of Perugia, 06121, Perugia, Italy
| | - Fulvio Pupilli
- Institute of Biosciences and Bioresources (IBBR), National Research Council (CNR), 06128, Perugia, Italy
| | - Juan Pablo A Ortiz
- Laboratorio de Biología Molecular, Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR) CONICET-UNR, Facultad de Ciencias Agrarias, Campo Experimental Villarino, Universidad Nacional de Rosario, Zavalla (S2125ZAA), Santa Fe, Argentina.
| | | |
Collapse
|
4
|
Ng HM, Gondo T, Tanaka H, Akashi R. CRISPR/Cas9-mediated knockout of NYC1 gene enhances chlorophyll retention and reduces tillering in Zoysia matrella (L.) Merrill. PLANT CELL REPORTS 2024; 43:50. [PMID: 38305919 PMCID: PMC10837251 DOI: 10.1007/s00299-023-03130-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/11/2023] [Indexed: 02/03/2024]
Abstract
KEY MESSAGE Genome editing by CRISPR/Cas9 can be applied to Z. matrella 'Wakaba', and knockout mutants of ZmNYC1 gene exhibited stay-green phenotype and reduced tillering. Zoysia matrella is a widely used C4 warm-season turfgrass for landscaping, golf courses, and sports fields. Here, we used the CRISPR/Cas9 system to target the Non-Yellow Coloring1 (ZmNYC1) gene in the highly heterozygous allotetraploid Z. matrella 'Wakaba', aiming to generate a novel stay-green variety. Of 441 Agrobacterium-infected calli, 22 (5.0%) were transformed, and 14 of these (63.6%) showed targeted mutations through cleaved amplified polymorphic sequences analysis. Sequencing analysis revealed mutations mostly consisting of 1 or 2 bp indels, occurring 2 to 4 bp upstream of the PAM sequence. Regenerated plants exhibited five ZmNYC1 target locus genotypes, including homozygous mutants with a complete knockout of all four alleles in the T0 generation. Under dark treatment, ZmNYC1-mutated plants displayed suppressed chlorophyll b (Chl b) degradation, leading to higher chlorophyll content and Chl b, with a lower chlorophyll a/chlorophyll b ratio compared to the wild type (WT). However, the ZmNYC1 mutation also inhibited plant growth in homozygous mutant genotypes, exhibiting reduced tillering compared to WT. Additionally, during winter simulation, mutant with a complete knockout retained greenness longer than the WT. This is the first successful use of CRISPR/Cas9 genome editing in zoysiagrass. The mutants of the ZmNYC1 gene would serve as valuable breeding material for developing improved zoysiagrass varieties that can maintain their green color for longer periods, even during winter dormancy.
Collapse
Affiliation(s)
- Hwan May Ng
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, Miyazaki, Japan
| | - Takahiro Gondo
- Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan.
| | - Hidenori Tanaka
- Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | | |
Collapse
|