1
|
Pashkov A, Dakhtin I. Direct Comparison of EEG Resting State and Task Functional Connectivity Patterns for Predicting Working Memory Performance Using Connectome-Based Predictive Modeling. Brain Connect 2025. [PMID: 40317131 DOI: 10.1089/brain.2024.0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025] Open
Abstract
Background: The integration of machine learning with advanced neuroimaging has emerged as a powerful approach for uncovering the relationship between neuronal activity patterns and behavioral traits. While resting-state neuroimaging has significantly contributed to understanding the neural basis of cognition, recent fMRI studies suggest that task-based paradigms may offer superior predictive power for cognitive outcomes. However, this hypothesis has never been tested using electroencephalography (EEG) data. Methods: We conducted the first experimental comparison of predictive models built on high-density EEG data recorded during both resting-state and an auditory working memory task. Multiple data processing pipelines were employed to ensure robustness and reliability. Model performance was evaluated by computing the Pearson correlation coefficient between predicted and observed behavioral scores, supplemented by mean absolute error and root mean square error metrics for each model configuration. Results: Consistent with prior fMRI findings, task-based EEG data yielded slightly better modeling performance than resting-state data. Both conditions demonstrated high predictive accuracy, with peak correlations between observed and predicted values reaching r = 0.5. Alpha and beta band functional connectivity were the strongest predictors of working memory performance, followed by theta and gamma bands. Additionally, the choice of parcellation atlas and connectivity method significantly influenced results, highlighting the importance of methodological considerations. Conclusion: Our findings support the advantage of task-based EEG over resting-state data in predicting cognitive performance, aligning with. The study underscores the critical role of frequency-specific functional connectivity and methodological choices in model performance. These insights should guide future experimental designs in cognitive neuroscience.
Collapse
Affiliation(s)
- Anton Pashkov
- FSBI "Federal Center of Neurosurgery", Novosibirsk, Russia
- Department of neurosurgery, Novosibirsk State Medical University, Novosibirsk, Russia
- Department of Data Collection and Processing Systems, Novosibirsk State Technical University, Novosibirsk, Russia
| | - Ivan Dakhtin
- School of Medical Biology, South Ural State University, Chelyabinsk, Russia
- Department of Fundamental Medicine, Chelyabinsk State University, Chelyabinsk, Russia
| |
Collapse
|
2
|
Fide E, Bora E, Yener G. Network Segregation and Integration Changes in Healthy Aging: Evidence From EEG Subbands During the Visual Short-Term Memory Binding Task. Eur J Neurosci 2025; 61:e70001. [PMID: 39906991 PMCID: PMC11795350 DOI: 10.1111/ejn.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/08/2024] [Accepted: 01/07/2025] [Indexed: 02/06/2025]
Abstract
Working memory, which tends to be the most vulnerable cognitive domain to aging, is thought to depend on a functional brain network for efficient communication. The dynamic communication within this network is represented by segregation and integration. This study aimed to investigate healthy aging by examining age effect on outcomes of graph theory analysis during the visual short-term memory binding (VSTMB) task. VSTMB tasks rely on the integration of visual features and are less sensitive to semantic and verbal strategies. Effects of age on neuropsychological test scores, along with the EEG graph-theoretical integration, segregation and global organization metrics in frequencies from delta to gamma band were investigated. Neuropsychological assessment showed low sensitivity as a measure of age-related changes. EEG results indicated that network architecture changed more effectively during middle age, while this effectiveness appears to vanish or show compensatory mechanisms in the elderly. These differences were further found to be related to cognitive domain scores. This study is the first to demonstrate differences in working memory network architecture across a broad age range.
Collapse
Affiliation(s)
- Ezgi Fide
- Department of Psychology, Faculty of HealthYork UniversityTorontoOntarioCanada
| | - Emre Bora
- Department of Neurosciences, Institute of Health SciencesDokuz Eylül UniversityIzmirTurkey
- Faculty of Medicine, Department of PsychiatryDokuz Eylül UniversityIzmirTurkey
| | - Görsev Yener
- Department of Neurosciences, Institute of Health SciencesDokuz Eylül UniversityIzmirTurkey
- Faculty of Medicine, Department of NeurologyDokuz Eylül UniversityIzmirTurkey
- Izmir International Biomedicine and Genome InstituteDokuz Eylül UniversityIzmirTurkey
| |
Collapse
|
3
|
Koloski MF, Hulyalkar S, Barnes SA, Mishra J, Ramanathan DS. Cortico-striatal beta oscillations as a reward-related signal. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:839-859. [PMID: 39147929 PMCID: PMC11390840 DOI: 10.3758/s13415-024-01208-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/13/2024] [Indexed: 08/17/2024]
Abstract
The value associated with reward is sensitive to external factors, such as the time between the choice and reward delivery as classically manipulated in temporal discounting tasks. Subjective preference for two reward options is dependent on objective variables of reward magnitude and reward delay. Single neuron correlates of reward value have been observed in regions, including ventral striatum, orbital, and medial prefrontal cortex. Brain imaging studies show cortico-striatal-limbic network activity related to subjective preferences. To explore how oscillatory dynamics represent reward processing across brain regions, we measured local field potentials of rats performing a temporal discounting task. Our goal was to use a data-driven approach to identify an electrophysiological marker that correlates with reward preference. We found that reward-locked oscillations at beta frequencies signaled the magnitude of reward and decayed with longer temporal delays. Electrodes in orbitofrontal/medial prefrontal cortex, anterior insula, ventral striatum, and amygdala individually increased power and were functionally connected at beta frequencies during reward outcome. Beta power during reward outcome correlated with subjective value as defined by a computational model fit to the discounting behavior. These data suggest that cortico-striatal beta oscillations are a reward signal correlated, which may represent subjective value and hold potential to serve as a biomarker and potential therapeutic target.
Collapse
Affiliation(s)
- M F Koloski
- Mental Health Service, VA San Diego Healthcare Syst, La Jolla, CA, USA.
- Department of Psychiatry, UC San Diego, La Jolla, CA, USA.
| | - S Hulyalkar
- Mental Health Service, VA San Diego Healthcare Syst, La Jolla, CA, USA
- Department of Psychiatry, UC San Diego, La Jolla, CA, USA
| | - S A Barnes
- Department of Psychiatry, UC San Diego, La Jolla, CA, USA
| | - J Mishra
- Department of Psychiatry, UC San Diego, La Jolla, CA, USA
| | - D S Ramanathan
- Mental Health Service, VA San Diego Healthcare Syst, La Jolla, CA, USA
- Department of Psychiatry, UC San Diego, La Jolla, CA, USA
| |
Collapse
|
4
|
Balconi M, Rovelli K, Angioletti L, Allegretta RA. Working Memory Workload When Making Complex Decisions: A Behavioral and EEG Study. SENSORS (BASEL, SWITZERLAND) 2024; 24:5754. [PMID: 39275665 PMCID: PMC11397910 DOI: 10.3390/s24175754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024]
Abstract
Working memory (WM) is crucial for adequate performance execution in effective decision-making, enabling individuals to identify patterns and link information by focusing on current and past situations. This work explored behavioral and electrophysiological (EEG) WM correlates through a novel decision-making task, based on real-life situations, assessing WM workload related to contextual variables. A total of 24 participants performed three task phases (encoding, retrieval, and metacognition) while their EEG activity (delta, theta, alpha, and beta frequency bands) was continuously recorded. From the three phases, three main behavioral indices were computed: Efficiency in complex Decision-making, Tolerance of Decisional Complexity, and Metacognition of Difficulties. Results showed the central role of alpha and beta bands during encoding and retrieval: decreased alpha/beta activity in temporoparietal areas during encoding might indicate activation of regions related to verbal WM performance and a load-related effect, while decreased alpha activity in the same areas and increased beta activity over posterior areas during retrieval might indicate, respectively, active information processing and focused attention. Evidence from correlational analysis between the three indices and EEG bands are also discussed. Integration of behavioral and metacognitive data gathered through this novel task and their interrelation with EEG correlates during task performance proves useful to assess WM workload during complex managerial decision-making.
Collapse
Affiliation(s)
- Michela Balconi
- International research center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, 20123 Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, 20123 Milan, Italy
| | - Katia Rovelli
- International research center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, 20123 Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, 20123 Milan, Italy
| | - Laura Angioletti
- International research center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, 20123 Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, 20123 Milan, Italy
| | - Roberta A Allegretta
- International research center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, 20123 Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, 20123 Milan, Italy
| |
Collapse
|
5
|
Kremer I, Halimi W, Walshe A, Cerf M, Mainar P. Predicting cognitive load with EEG using Riemannian geometry-based features. J Neural Eng 2024; 21:056002. [PMID: 39059443 DOI: 10.1088/1741-2552/ad680b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/26/2024] [Indexed: 07/28/2024]
Abstract
Objective. We show that electroencephalography (EEG)-based cognitive load (CL) prediction using Riemannian geometry features outperforms existing models. The performance is estimated using Riemannian Procrustes Analysis (RPA) with a test set of subjects unseen during training.Approach. Performance is evaluated by using the Minimum Distance to Riemannian Mean model trained on CL classification. The baseline performance is established using spatial covariance matrices of the signal as features. Various novel features are explored and analyzed in depth, including spatial covariance and correlation matrices computed on the EEG signal and its first-order derivative. Furthermore, each RPA step effect on the performance is investigated, and the generalization performance of RPA is compared against a few different generalization methods.Main results. Performances are greatly improved by using the spatial covariance matrix of the first-order derivative of the signal as features. Furthermore, this work highlights both the importance and efficiency of RPA for CL prediction: it achieves good generalizability with little amounts of calibration data and largely outperforms all the comparison methods.Significance. CL prediction using RPA for generalizability across subjects is an approach worth exploring further, especially for real-world applications where calibration time is limited. Furthermore, the feature exploration uncovers new, promising features that can be used and further experimented within any Riemannian geometry setting.
Collapse
Affiliation(s)
- Iris Kremer
- Logitech, Lausanne, Switzerland
- École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | | | - Moran Cerf
- Columbia University, New York, NY, United States of America
| | | |
Collapse
|
6
|
Parviainen T, Alexandrou AM, Lapinkero H, Sipilä S, Kujala J. The link between executive skills and neural dynamics during encoding, inhibition, and retrieval of visual information in the elderly. Hum Brain Mapp 2024; 45:e26755. [PMID: 39185717 PMCID: PMC11345698 DOI: 10.1002/hbm.26755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 05/07/2024] [Accepted: 05/27/2024] [Indexed: 08/27/2024] Open
Abstract
During aging the inter-individual variability in both the neural and behavioral functions is likely to be emphasized. Decreased competence particularly in working memory and general executive control compromises many aspects of the quality of life also within the nonclinical population. We aimed, first, to clarify the brain basis of visual working memory and inhibition during multi-stage natural-like task performance, and second, to identify associations between variation in task-related neural activity and relevant cognitive skills, namely inhibition and general working memory capacity. We recorded, using magnetoencephalography (MEG), the neural modulations associated with encoding, maintenance, and retrieval, as well as interference suppression during a visual working memory task in older adults. We quantified the neural correlates of these cognitive processes through two complementary approaches: evoked responses and oscillatory activity. Neural activity during memory retrieval and interference suppression were correlated with behavioral measures of task switching and general executive functions. Our results show that general inhibitory control induced frontocentral neural modulation across a broad range of frequencies whereas domain-specific inhibition was limited to right posterior areas. Our findings also suggest that modulations particularly in phase-locked evoked neural activity can be reliably associated with explicit measures of cognitive skills, with better inhibitory control linked with an early neural effect of distractor inhibition during retrieval. In general, we show that exploiting the inherent inter-individual variability in neural measures and behavioral markers of cognition in aging populations can help establish reliable links between specific brain functions and their behavioral manifestations.
Collapse
Affiliation(s)
- Tiina Parviainen
- Department of PsychologyUniversity of JyväskyläJyväskyläFinland
- Jyväskylä Centre for Interdisciplinary Brain Research (CIBR), Faculty of Education and PsychologyUniversity of JyväskyläJyväskyläFinland
| | - Anna Maria Alexandrou
- Department of PsychologyUniversity of JyväskyläJyväskyläFinland
- Jyväskylä Centre for Interdisciplinary Brain Research (CIBR), Faculty of Education and PsychologyUniversity of JyväskyläJyväskyläFinland
| | - Hanna‐Maija Lapinkero
- Department of PsychologyUniversity of JyväskyläJyväskyläFinland
- Jyväskylä Centre for Interdisciplinary Brain Research (CIBR), Faculty of Education and PsychologyUniversity of JyväskyläJyväskyläFinland
| | - Sarianna Sipilä
- Gerontology Research Center and Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland
| | - Jan Kujala
- Department of PsychologyUniversity of JyväskyläJyväskyläFinland
- Jyväskylä Centre for Interdisciplinary Brain Research (CIBR), Faculty of Education and PsychologyUniversity of JyväskyläJyväskyläFinland
| |
Collapse
|
7
|
Zhang L, Bao K, Liao Y. Enhanced Post-Movement Beta Rebound: Unraveling the Impact of Preplanned Sequential Actions. J Mot Behav 2024; 56:727-737. [PMID: 39138969 DOI: 10.1080/00222895.2024.2384886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/16/2024] [Accepted: 07/20/2024] [Indexed: 08/15/2024]
Abstract
The Post-Movement Beta Rebound (PMBR) is the increase in beta-band power after voluntary movement ends, but its specific role in cognitive processing is unclear. Current theory links PMBR with updates to internal models, mental frameworks that help anticipate and react to sensory feedback. However, research has not explored how reactivating a preexisting action plan, another source for internal model updates, might affect PMBR intensity. To address this gap, we recruited 20 participants (mean age 18.55 ± 0.51; 12 females) for an experiment involving isolated (single-step) or sequential (two-step) motor tasks based on predetermined cues. We compared PMBR after single-step movements with PMBR after the first movement in two-step tasks to assess the influence of a subsequent action on the PMBR power associated with the first action. The results show a significant increase in PMBR magnitude after the first movement in sequential tasks compared to the second action and the isolated movements. Notably, this increase is more pronounced for right-hand movements, suggesting lateralized brain activity in the left hemisphere. These findings indicate that PMBR is influenced not only by external stimuli but also by internal cognitive processes such as working memory. This insight enhances our understanding of PMBR's role in motor control, emphasizing the integration of both external and internal information.
Collapse
Affiliation(s)
- Lingli Zhang
- School of Education, Soochow University, Suzhou, Jiangsu, China
| | - Kaige Bao
- School of Education, Soochow University, Suzhou, Jiangsu, China
| | - Yu Liao
- School of Education, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
8
|
Gómez CM, Linares R, Rodríguez-Martínez EI, Pelegrina S. Age-related changes in brain oscillatory patterns during an n-back task in children and adolescents. Int J Psychophysiol 2024; 202:112372. [PMID: 38849088 DOI: 10.1016/j.ijpsycho.2024.112372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/15/2024] [Accepted: 05/25/2024] [Indexed: 06/09/2024]
Abstract
The development of brain oscillatory responses and their possible role in the working memory (WM) performance of children, adolescents and young adults was investigated. A set of 0- and 1-back tasks with letter stimuli were administered to a final sample of 131 subjects (between 6 and 20 years of age). A decrease in response times (RTs) and an increase of the sensitivity index d-prime (d') were seen with increased age. RTs increased and d' decreased with load, indicating higher difficulty for higher loads. Event-related synchronization (ERS) and event-related desynchronization (ERD) were obtained by the convolution of Morlet wavelets on the recorded EEG. Statistical analyses were performed of the absolute and relative power of brain oscillations defined by topography, frequency and latency. Posterior alpha and beta ERD, and frontocentral theta ERS, were induced by the stimuli presented during the n-back task. While relative theta ERS increased with age, absolute theta ERS, absolute and relative alpha and, absolute beta ERD, decreased with age. Age-related improvement in behavioral performance was mediated by relative theta. Alpha and beta ERD were more pronounced for the most difficult task (1-back) and for the target condition. Globally, there was high consistency of the effects of target type and task load across development. Theta ERS maturation is a crucial step for improving WM performance during development, while alpha and beta ERD maturation seem to be less critical for behavioral performance improvement with age, possibly due to a sufficient level of alpha-beta ERD for good performance in young children.
Collapse
Affiliation(s)
- Carlos M Gómez
- University of Sevilla, Experimental Psychology Department, Human Psychobiology Lab., Sevilla, Spain
| | - Rocío Linares
- University of Jaén, Department of Psychology, Jaén, Spain
| | | | | |
Collapse
|
9
|
Hernández-Sabaté A, Yauri J, Folch P, Álvarez D, Gil D. EEG Dataset Collection for Mental Workload Predictions in Flight-Deck Environment. SENSORS (BASEL, SWITZERLAND) 2024; 24:1174. [PMID: 38400332 PMCID: PMC10891818 DOI: 10.3390/s24041174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/26/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024]
Abstract
High mental workload reduces human performance and the ability to correctly carry out complex tasks. In particular, aircraft pilots enduring high mental workloads are at high risk of failure, even with catastrophic outcomes. Despite progress, there is still a lack of knowledge about the interrelationship between mental workload and brain functionality, and there is still limited data on flight-deck scenarios. Although recent emerging deep-learning (DL) methods using physiological data have presented new ways to find new physiological markers to detect and assess cognitive states, they demand large amounts of properly annotated datasets to achieve good performance. We present a new dataset of electroencephalogram (EEG) recordings specifically collected for the recognition of different levels of mental workload. The data were recorded from three experiments, where participants were induced to different levels of workload through tasks of increasing cognition demand. The first involved playing the N-back test, which combines memory recall with arithmetical skills. The second was playing Heat-the-Chair, a serious game specifically designed to emphasize and monitor subjects under controlled concurrent tasks. The third was flying in an Airbus320 simulator and solving several critical situations. The design of the dataset has been validated on three different levels: (1) correlation of the theoretical difficulty of each scenario to the self-perceived difficulty and performance of subjects; (2) significant difference in EEG temporal patterns across the theoretical difficulties and (3) usefulness for the training and evaluation of AI models.
Collapse
Affiliation(s)
- Aura Hernández-Sabaté
- Computer Vision Center (CVC), C/ Sitges, Edifici O, 08193 Bellaterra, Spain; (J.Y.); (D.G.)
- Engineering School, Universitat Autònoma de Barcelona, C/ Sitges, Edifici Q, 08193 Bellaterra, Spain;
| | - José Yauri
- Computer Vision Center (CVC), C/ Sitges, Edifici O, 08193 Bellaterra, Spain; (J.Y.); (D.G.)
| | - Pau Folch
- Engineering School, Universitat Autònoma de Barcelona, C/ Sitges, Edifici Q, 08193 Bellaterra, Spain;
| | | | - Debora Gil
- Computer Vision Center (CVC), C/ Sitges, Edifici O, 08193 Bellaterra, Spain; (J.Y.); (D.G.)
- Engineering School, Universitat Autònoma de Barcelona, C/ Sitges, Edifici Q, 08193 Bellaterra, Spain;
| |
Collapse
|
10
|
Pomper U, Curetti LZ, Chait M. Neural dynamics underlying successful auditory short-term memory performance. Eur J Neurosci 2023; 58:3859-3878. [PMID: 37691137 PMCID: PMC10946728 DOI: 10.1111/ejn.16140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 09/12/2023]
Abstract
Listeners often operate in complex acoustic environments, consisting of many concurrent sounds. Accurately encoding and maintaining such auditory objects in short-term memory is crucial for communication and scene analysis. Yet, the neural underpinnings of successful auditory short-term memory (ASTM) performance are currently not well understood. To elucidate this issue, we presented a novel, challenging auditory delayed match-to-sample task while recording MEG. Human participants listened to 'scenes' comprising three concurrent tone pip streams. The task was to indicate, after a delay, whether a probe stream was present in the just-heard scene. We present three key findings: First, behavioural performance revealed faster responses in correct versus incorrect trials as well as in 'probe present' versus 'probe absent' trials, consistent with ASTM search. Second, successful compared with unsuccessful ASTM performance was associated with a significant enhancement of event-related fields and oscillatory activity in the theta, alpha and beta frequency ranges. This extends previous findings of an overall increase of persistent activity during short-term memory performance. Third, using distributed source modelling, we found these effects to be confined mostly to sensory areas during encoding, presumably related to ASTM contents per se. Parietal and frontal sources then became relevant during the maintenance stage, indicating that effective STM operation also relies on ongoing inhibitory processes suppressing task-irrelevant information. In summary, our results deliver a detailed account of the neural patterns that differentiate successful from unsuccessful ASTM performance in the context of a complex, multi-object auditory scene.
Collapse
Affiliation(s)
- Ulrich Pomper
- Ear InstituteUniversity College LondonLondonUK
- Faculty of PsychologyUniversity of ViennaViennaAustria
| | | | - Maria Chait
- Ear InstituteUniversity College LondonLondonUK
| |
Collapse
|
11
|
Nikolin S, Martin D, Loo CK, Boonstra TW. Transcranial Direct Current Stimulation Modulates Working Memory Maintenance Processes in Healthy Individuals. J Cogn Neurosci 2023; 35:468-484. [PMID: 36603051 DOI: 10.1162/jocn_a_01957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The effects of transcranial direct current stimulation (tDCS) at the pFC are often investigated using cognitive paradigms, particularly working memory tasks. However, the neural basis for the neuromodulatory cognitive effects of tDCS, including which subprocesses are affected by stimulation, is not completely understood. We investigated the effects of tDCS on working memory task-related spectral activity during and after tDCS to gain better insights into the neurophysiological changes associated with stimulation. We reanalyzed data from 100 healthy participants grouped by allocation to receive either sham (0 mA, 0.016 mA, and 0.034 mA) or active (1 mA or 2 mA) stimulation during a 3-back task. EEG data were used to analyze event-related spectral power in frequency bands associated with working memory performance. Frontal theta event-related synchronization (ERS) was significantly reduced post-tDCS in the active group. Participants receiving active tDCS had slower RTs following tDCS compared with sham, suggesting interference with practice effects associated with task repetition. Theta ERS was not significantly correlated with RTs or accuracy. tDCS reduced frontal theta ERS poststimulation, suggesting a selective disruption to working memory cognitive control and maintenance processes. These findings suggest that tDCS selectively affects specific subprocesses during working memory, which may explain heterogenous behavioral effects.
Collapse
Affiliation(s)
- Stevan Nikolin
- University of New South Wales, Sydney, Australia
- Black Dog Institute, Sydney, New South Wales, Australia
| | - Donel Martin
- University of New South Wales, Sydney, Australia
- Black Dog Institute, Sydney, New South Wales, Australia
| | - Colleen K Loo
- University of New South Wales, Sydney, Australia
- Black Dog Institute, Sydney, New South Wales, Australia
| | - Tjeerd W Boonstra
- University of New South Wales, Sydney, Australia
- Maastricht University, The Netherlands
| |
Collapse
|
12
|
Giustiniani A, Danesin L, Bozzetto B, Macina A, Benavides-Varela S, Burgio F. Functional changes in brain oscillations in dementia: a review. Rev Neurosci 2023; 34:25-47. [PMID: 35724724 DOI: 10.1515/revneuro-2022-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/16/2022] [Indexed: 01/11/2023]
Abstract
A growing body of evidence indicates that several characteristics of electroencephalography (EEG) and magnetoencephalography (MEG) play a functional role in cognition and could be linked to the progression of cognitive decline in some neurological diseases such as dementia. The present paper reviews previous studies investigating changes in brain oscillations associated to the most common types of dementia, namely Alzheimer's disease (AD), frontotemporal degeneration (FTD), and vascular dementia (VaD), with the aim of identifying pathology-specific patterns of alterations and supporting differential diagnosis in clinical practice. The included studies analysed changes in frequency power, functional connectivity, and event-related potentials, as well as the relationship between electrophysiological changes and cognitive deficits. Current evidence suggests that an increase in slow wave activity (i.e., theta and delta) as well as a general reduction in the power of faster frequency bands (i.e., alpha and beta) characterizes AD, VaD, and FTD. Additionally, compared to healthy controls, AD exhibits alteration in latencies and amplitudes of the most common event related potentials. In the reviewed studies, these changes generally correlate with performances in many cognitive tests. In conclusion, particularly in AD, neurophysiological changes can be reliable early markers of dementia.
Collapse
Affiliation(s)
| | - Laura Danesin
- IRCCS San Camillo Hospital, via Alberoni 70, 30126 Venice, Italy
| | | | - AnnaRita Macina
- Department of Developmental Psychology and Socialization, University of Padua, via Venezia 8, 35131 Padova, Italy
| | - Silvia Benavides-Varela
- Department of Developmental Psychology and Socialization, University of Padua, via Venezia 8, 35131 Padova, Italy.,Department of Neuroscience, University of Padova, 35128 Padova, Italy.,Padova Neuroscience Center, University of Padova, 35131 Padova, Italy
| | - Francesca Burgio
- IRCCS San Camillo Hospital, via Alberoni 70, 30126 Venice, Italy
| |
Collapse
|
13
|
Chikhi S, Matton N, Blanchet S. EEG
power spectral measures of cognitive workload: A meta‐analysis. Psychophysiology 2022; 59:e14009. [DOI: 10.1111/psyp.14009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/13/2021] [Accepted: 01/10/2022] [Indexed: 12/22/2022]
Affiliation(s)
- Samy Chikhi
- Laboratoire Mémoire, Cerveau et Cognition (MC2Lab, URP 7536), Institute of Psychology University of Paris Boulogne‐Billancourt France
| | - Nadine Matton
- CLLE‐LTC University of Toulouse, CNRS (UMR5263) Toulouse France
- ENAC Research Lab École Nationale d’Aviation Civile Toulouse France
| | - Sophie Blanchet
- Laboratoire Mémoire, Cerveau et Cognition (MC2Lab, URP 7536), Institute of Psychology University of Paris Boulogne‐Billancourt France
| |
Collapse
|
14
|
Fodor Z, Horváth A, Hidasi Z, Gouw AA, Stam CJ, Csukly G. EEG Alpha and Beta Band Functional Connectivity and Network Structure Mark Hub Overload in Mild Cognitive Impairment During Memory Maintenance. Front Aging Neurosci 2021; 13:680200. [PMID: 34690735 PMCID: PMC8529331 DOI: 10.3389/fnagi.2021.680200] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 09/20/2021] [Indexed: 12/18/2022] Open
Abstract
Background: While decreased alpha and beta-band functional connectivity (FC) and changes in network topology have been reported in Alzheimer's disease, it is not yet entirely known whether these differences can mark cognitive decline in the early stages of the disease. Our study aimed to analyze electroencephalography (EEG) FC and network differences in the alpha and beta frequency band during visuospatial memory maintenance between Mild Cognitive Impairment (MCI) patients and healthy elderly with subjective memory complaints. Methods: Functional connectivity and network structure of 17 MCI patients and 20 control participants were studied with 128-channel EEG during a visuospatial memory task with varying memory load. FC between EEG channels was measured by amplitude envelope correlation with leakage correction (AEC-c), while network analysis was performed by applying the Minimum Spanning Tree (MST) approach, which reconstructs the critical backbone of the original network. Results: Memory load (increasing number of to-be-learned items) enhanced the mean AEC-c in the control group in both frequency bands. In contrast to that, after an initial increase, the MCI group showed significantly (p < 0.05) diminished FC in the alpha band in the highest memory load condition, while in the beta band this modulation was absent. Moreover, mean alpha and beta AEC-c correlated significantly with the size of medial temporal lobe structures in the entire sample. The network analysis revealed increased maximum degree, betweenness centrality, and degree divergence, and decreased diameter and eccentricity in the MCI group compared to the control group in both frequency bands independently of the memory load. This suggests a rerouted network in the MCI group with a more centralized topology and a more unequal traffic load distribution. Conclusion: Alpha- and beta-band FC measured by AEC-c correlates with cognitive load-related modulation, with subtle medial temporal lobe atrophy, and with the disruption of hippocampal fiber integrity in the earliest stages of cognitive decline. The more integrated network topology of the MCI group is in line with the "hub overload and failure" framework and might be part of a compensatory mechanism or a consequence of neural disinhibition.
Collapse
Affiliation(s)
- Zsuzsanna Fodor
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - András Horváth
- Department of Neurology, National Institute of Clinical Neurosciences, Budapest, Hungary
| | - Zoltán Hidasi
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Alida A. Gouw
- Department of Clinical Neurophysiology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam University Medical Centers, Amsterdam, Netherlands
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Cornelis J. Stam
- Department of Clinical Neurophysiology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Gábor Csukly
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| |
Collapse
|
15
|
Aksoy M, Ufodiama CE, Bateson AD, Martin S, Asghar AUR. A comparative experimental study of visual brain event-related potentials to a working memory task: virtual reality head-mounted display versus a desktop computer screen. Exp Brain Res 2021; 239:3007-3022. [PMID: 34347129 PMCID: PMC8536609 DOI: 10.1007/s00221-021-06158-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/19/2021] [Indexed: 11/20/2022]
Abstract
Virtual reality head mounted display (VR HMD) systems are increasingly utilised in combination with electroencephalography (EEG) in the experimental study of cognitive tasks. The aim of our investigation was to determine the similarities/differences between VR HMD and the computer screen (CS) in response to an n-back working memory task by comparing visual electrophysiological event-related potential (ERP) waveforms (N1/P1/P3 components). The same protocol was undertaken for VR HMD and CS with participants wearing the same EEG headcap. ERP waveforms obtained with the VR HMD environment followed a similar time course to those acquired in CS. The P3 mean and peak amplitudes obtained in VR HMD were not significantly different to those obtained in CS. In contrast, the N1 component was significantly higher in mean and peak amplitudes for the VR HMD environment compared to CS at the frontal electrodes. Significantly higher P1 mean and peak amplitudes were found at the occipital region compared to the temporal for VR HMD. Our results show that successful acquisition of ERP components to a working memory task is achievable by combining VR HMD with EEG. In addition, the higher amplitude N1/P1 components seen in VR HMD indicates the potential utility of this VR modality in the investigation of early ERPs. In conclusion, the combination of VR HMD with EEG/ERP would be a useful approach to advance the study of cognitive function in experimental brain research.
Collapse
Affiliation(s)
- Murat Aksoy
- Centre for Anatomical and Human Sciences, Hull York Medical School, University of Hull, Hull, HU6 7RX, UK
| | - Chiedu E Ufodiama
- Centre for Anatomical and Human Sciences, Hull York Medical School, University of Hull, Hull, HU6 7RX, UK
| | - Anthony D Bateson
- Department of Engineering, Faculty Science and Engineering, University of Hull, Cottingham Road, Hull, HU6 7RX, UK
| | - Stewart Martin
- School of Education and Social Sciences, University of Hull, Cottingham Road, Hull, HU6 7RX, UK
| | - Aziz U R Asghar
- Centre for Anatomical and Human Sciences, Hull York Medical School, University of Hull, Hull, HU6 7RX, UK.
| |
Collapse
|
16
|
Quantitative EEG measures in profoundly deaf and normal hearing individuals while performing a vibrotactile temporal discrimination task. Int J Psychophysiol 2021; 166:71-82. [PMID: 34023377 DOI: 10.1016/j.ijpsycho.2021.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/10/2021] [Accepted: 05/16/2021] [Indexed: 11/22/2022]
Abstract
Challenges in early oral language acquisition in profoundly deaf individuals have an impact on cognitive neurodevelopment. This has led to the exploration of alternative sound perception methods involving training of vibrotactile discrimination of sounds within the language spectrum. In particular, stimulus duration plays an important role in linguistic categorical perception. We comparatively evaluated vibrotactile temporal discrimination of sound and how specific training can modify the underlying electrical brain activity. Fifteen profoundly deaf (PD) and 15 normal-hearing (NH) subjects performed a vibrotactile oddball task with simultaneous EEG recording, before and after a short training period (5 one-hour sessions; in 2.5-3 weeks). The stimuli consisted of 700 Hz pure-tones with different duration (target: long 500 ms; non-target: short 250 ms). The sound-wave stimuli were delivered by a small device worn on the right index finger. A similar behavioral training effect was observed in both groups showing significant improvement in sound-duration discrimination. However, quantitative EEG measurements reveal distinct neurophysiological patterns characterized by higher and more diffuse delta band magnitudes in the PD group, together with a generalized decrement in absolute power in both groups that might reflect a facilitating process associated to learning. Furthermore, training-related changes were found in the beta-band in NH. Findings suggest PD have different cognitive adaptive mechanisms which are not a mere amplification effect due to greater cortical excitability.
Collapse
|
17
|
Costers L, Van Schependom J, Laton J, Baijot J, Sjøgård M, Wens V, De Tiège X, Goldman S, D'Haeseleer M, D'hooghe MB, Woolrich M, Nagels G. The role of hippocampal theta oscillations in working memory impairment in multiple sclerosis. Hum Brain Mapp 2021; 42:1376-1390. [PMID: 33247542 PMCID: PMC7927306 DOI: 10.1002/hbm.25299] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 01/04/2023] Open
Abstract
Working memory (WM) problems are frequently present in people with multiple sclerosis (MS). Even though hippocampal damage has been repeatedly shown to play an important role, the underlying neurophysiological mechanisms remain unclear. This study aimed to investigate the neurophysiological underpinnings of WM impairment in MS using magnetoencephalography (MEG) data from a visual-verbal 2-back task. We analysed MEG recordings of 79 MS patients and 38 healthy subjects through event-related fields and theta (4-8 Hz) and alpha (8-13 Hz) oscillatory processes. Data was source reconstructed and parcellated based on previous findings in the healthy subject sample. MS patients showed a smaller maximum theta power increase in the right hippocampus between 0 and 400 ms than healthy subjects (p = .014). This theta power increase value correlated negatively with reaction time on the task in MS (r = -.32, p = .029). Evidence was provided that this relationship could not be explained by a 'common cause' confounding relationship with MS-related neuronal damage. This study provides the first neurophysiological evidence of the influence of hippocampal dysfunction on WM performance in MS.
Collapse
Affiliation(s)
- Lars Costers
- AIMS Lab, Center For NeurosciencesUZ Brussel, Vrije Universiteit BrusselBrusselBelgium
| | - Jeroen Van Schependom
- AIMS Lab, Center For NeurosciencesUZ Brussel, Vrije Universiteit BrusselBrusselBelgium
- Departement of Electronics and Informatics (ETRO)Vrije Universiteit BrusselBrusselBelgium
- Departement of RadiologyUZ BrusselBrusselBelgium
| | - Jorne Laton
- AIMS Lab, Center For NeurosciencesUZ Brussel, Vrije Universiteit BrusselBrusselBelgium
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Johan Baijot
- AIMS Lab, Center For NeurosciencesUZ Brussel, Vrije Universiteit BrusselBrusselBelgium
| | - Martin Sjøgård
- Laboratoire de Cartographie Fonctionnelle du Cerveau (LCFC)UNI—ULB Neuroscience Institute, Université libre de Bruxelles (ULB)BruxellesBelgium
| | - Vincent Wens
- Laboratoire de Cartographie Fonctionnelle du Cerveau (LCFC)UNI—ULB Neuroscience Institute, Université libre de Bruxelles (ULB)BruxellesBelgium
- Magnetoencephalography Unit, Department of Functional Neuroimaging, Service of Nuclear MedicineCUB‐Hôpital ErasmeBruxellesBelgium
| | - Xavier De Tiège
- Laboratoire de Cartographie Fonctionnelle du Cerveau (LCFC)UNI—ULB Neuroscience Institute, Université libre de Bruxelles (ULB)BruxellesBelgium
- Magnetoencephalography Unit, Department of Functional Neuroimaging, Service of Nuclear MedicineCUB‐Hôpital ErasmeBruxellesBelgium
| | - Serge Goldman
- Laboratoire de Cartographie Fonctionnelle du Cerveau (LCFC)UNI—ULB Neuroscience Institute, Université libre de Bruxelles (ULB)BruxellesBelgium
- Magnetoencephalography Unit, Department of Functional Neuroimaging, Service of Nuclear MedicineCUB‐Hôpital ErasmeBruxellesBelgium
| | - Miguel D'Haeseleer
- Department of NeurologyNational MS Center MelsbroekMelsbroekBelgium
- Department of NeurologyUZ BrusselsBruxellesBelgium
| | - Marie Beatrice D'hooghe
- Department of NeurologyNational MS Center MelsbroekMelsbroekBelgium
- Department of NeurologyUZ BrusselsBruxellesBelgium
| | - Mark Woolrich
- Oxford Centre for Human Brain Activity (OHBA)University of OxfordOxfordUK
- Oxford University Centre for Functional MRI of the Brain (FMRIB)University of OxfordOxfordUK
| | - Guy Nagels
- AIMS Lab, Center For NeurosciencesUZ Brussel, Vrije Universiteit BrusselBrusselBelgium
- Department of NeurologyUZ BrusselsBruxellesBelgium
- St Edmund HallUniversity of OxfordOxfordUK
| |
Collapse
|
18
|
Beppi C, Ribeiro Violante I, Scott G, Sandrone S. EEG, MEG and neuromodulatory approaches to explore cognition: Current status and future directions. Brain Cogn 2021; 148:105677. [PMID: 33486194 DOI: 10.1016/j.bandc.2020.105677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/26/2020] [Accepted: 12/27/2020] [Indexed: 01/04/2023]
Abstract
Neural oscillations and their association with brain states and cognitive functions have been object of extensive investigation over the last decades. Several electroencephalography (EEG) and magnetoencephalography (MEG) analysis approaches have been explored and oscillatory properties have been identified, in parallel with the technical and computational advancement. This review provides an up-to-date account of how EEG/MEG oscillations have contributed to the understanding of cognition. Methodological challenges, recent developments and translational potential, along with future research avenues, are discussed.
Collapse
Affiliation(s)
- Carolina Beppi
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland; Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland; Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland.
| | - Inês Ribeiro Violante
- Computational, Cognitive and Clinical Neuroscience Laboratory (C3NL), Department of Brain Sciences, Imperial College London, London, United Kingdom; School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom.
| | - Gregory Scott
- Computational, Cognitive and Clinical Neuroscience Laboratory (C3NL), Department of Brain Sciences, Imperial College London, London, United Kingdom.
| | - Stefano Sandrone
- Computational, Cognitive and Clinical Neuroscience Laboratory (C3NL), Department of Brain Sciences, Imperial College London, London, United Kingdom.
| |
Collapse
|
19
|
Pei Z, Xu T, Bezerianos A, Li J, Sun Y, Wang H. The Effect of Longitudinal Training on Working Memory Capacities: An Exploratory EEG Study. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:42-45. [PMID: 33017926 DOI: 10.1109/embc44109.2020.9176070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The study of working memory (WM) is a hot topic in recent years and accumulating literatures underlying the achievement and neural mechanism of WM. However, the effect of WM training on cognitive functions were rarely studied. In this study, nineteen healthy young subjects participated in a longitudinal design with one week N-back training (N=1,2,3,4). Experimental results demonstrated that training procedure could help the subjects master more complex psychological tasks when comparing the pre-training performance with those post-training. More specifically, the behavior accuracy increased from 68.14±9.34%, 45.09±14.90%, 39.12±12.71%, and 32.11±10.98% for 1-back, 2-back, 3-back and 4-back respectively to 73.52±4.01%, 69.14±5.28%, 69.09±6.41% and 64.41±5.12% after training. Furthermore, we applied electroencephalogram (EEG) power and functional connectivity to reveal the neural mechanisms of this beneficial effect and found that the EEG power of δ, θ and α band located in the left temporal and occipital lobe increased significantly. Meanwhile, the functional connectivity strength also increased obviously in δ and θ band. In sum, we showed positive effect of WM training on psychological performance and explored the neural mechanisms. Our findings may have the implications for enhancing the performance of participants who are prone to cognitive.
Collapse
|
20
|
Jang KM, Kim MS, Kim DW. The Dynamic Properties of a Brain Network During Spatial Working Memory Tasks in College Students With ADHD Traits. Front Hum Neurosci 2020; 14:580813. [PMID: 33132887 PMCID: PMC7505193 DOI: 10.3389/fnhum.2020.580813] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/14/2020] [Indexed: 11/13/2022] Open
Abstract
This study investigated deficits of spatial working memory in college students with attention-deficit/hyperactivity disorder (ADHD) traits using event-related potentials (ERPs) and the spatial 2-back task. We also computed sensory-level activity using EEG data and investigated theta and alpha neural oscillations, phase-locking values (PLV), and brain networks. Based on the scores from the Adult ADHD Self-Report Scale (ASRS) and Conners' Adult ADHD Rating Scales (CAARS), an ADHD-trait group (n = 40) and a normal control group (n = 41) were selected. Participants were required to respond to whether the presented stimulus was at the same location as that presented two trials earlier. The ADHD-trait group showed significantly slower response times than the control group in the spatial 2-back task. In terms of spectrum, the ADHD-trait group showed significantly reduced theta power than the control group. In contrast, the ADHD-trait group exhibited an increased alpha power compared to the control group with the 250-1000 ms interval after stimulus onset. In terms of the PLV, the ADHD-trait group showed significantly weaker theta phase synchrony and fewer connection numbers in frontal-occipital areas than the control group. In terms of the theta brain network, the ADHD-trait group showed a significantly lower clustering coefficient and longer characteristic path length than the control group for the theta band. The present results indicate that college students with ADHD traits have deficits in spatial working memory and that these abnormal activities in neural oscillation, functional connectivity, and the network may contribute to spatial working memory deficits.
Collapse
Affiliation(s)
- Kyoung-Mi Jang
- Department of Psychology, Sungshin Women's University, Seoul, South Korea
| | - Myung-Sun Kim
- Department of Psychology, Sungshin Women's University, Seoul, South Korea
| | - Do-Won Kim
- Department of Biomedical Engineering, Chonnam National University, Yeosu, South Korea
| |
Collapse
|
21
|
Murphy O, Hoy K, Wong D, Bailey N, Fitzgerald P, Segrave R. Transcranial random noise stimulation is more effective than transcranial direct current stimulation for enhancing working memory in healthy individuals: Behavioural and electrophysiological evidence. Brain Stimul 2020; 13:1370-1380. [DOI: 10.1016/j.brs.2020.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/16/2020] [Accepted: 07/01/2020] [Indexed: 01/22/2023] Open
|
22
|
Zanto TP, Liu H, Pan P, Gazzaley A. Temporal attention is not affected by working memory load. Cortex 2020; 130:351-361. [PMID: 32738582 DOI: 10.1016/j.cortex.2020.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/12/2020] [Accepted: 06/09/2020] [Indexed: 10/23/2022]
Abstract
Temporal attention refers to the ability to orient attention in time, which serves to enhance performance such as target detection and discrimination and is a fundamental component of cognitive function. Although some research indicates that temporal attention ability is affected by working memory updating, it is unclear whether temporal attention is also affected by the availability of working memory stores. To address this, participants were presented a dual-task paradigm requiring zero, three, or six digits to be held in working memory while engaged in a temporally cued visual discrimination task. Results show that working memory load did not differentially affect the ability to benefit from predictive temporal cues during the visual discrimination task. This indicates that temporal attention is not affected by available working memory stores. Interestingly, posterior beta band (12-30 Hz) activity was differentially modulated by temporal attention and working memory load, such that it decreased prior to expected targets and increased with load. Analysis across participants indicated that those individuals who exhibited greater temporal attention-based modulation of beta activity (i.e., predictive < neutrally cued) displayed improved discrimination performance, but also yielded lowered working memory accuracy. Thus, the ability to benefit from temporal attention processes while multitasking comes at the cost of lowered secondary task performance. Together, these results indicate that available working memory stores do not affect temporal attention ability. Rather, limitations in divided attention ability result in a performance cost that prioritizes one task over another, which may be indexed by beta band activity.
Collapse
Affiliation(s)
- Theodore P Zanto
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA; Neuroscape, University of California San Francisco, San Francisco, CA, USA.
| | - Helen Liu
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Peter Pan
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Adam Gazzaley
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA; Neuroscape, University of California San Francisco, San Francisco, CA, USA; Departments of Physiology and Psychiatry, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
23
|
Kang H, An SC, Kim NO, Sung M, Kang Y, Lee US, Yang HJ. Meditative Movement Affects Working Memory Related to Neural Activity in Adolescents: A Randomized Controlled Trial. Front Psychol 2020; 11:931. [PMID: 32477223 PMCID: PMC7236766 DOI: 10.3389/fpsyg.2020.00931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/15/2020] [Indexed: 11/13/2022] Open
Abstract
Numerous studies have revealed that meditative movement changes brain activity and improves the cognitive function of adults. However, there is still insufficient data on whether meditative movement contributes to the cognitive function of adolescents whose brain is still under development. Therefore, this study aimed to uncover the effects of meditative movement on the cognitive performance and its relation with brain activity in adolescents. Forty healthy adolescent participants (mean age of 17∼18) were randomly allocated into two groups: meditative movement and control group. The meditative movement group was instructed to perform the meditative movement, twice a day for 9 min each, for a duration of 3 weeks. During the same time of the day, the control group was instructed to rest under the same condition. To measure changes in cognitive abilities, a dual n-back task was performed before and after the intervention and analyzed by repeated two-way analysis of variance (ANOVA). During the task, electroencephalogram signals were collected to find the relation of brain activity with working memory performance and was analyzed by regression analysis. A repeated two-way ANOVA with Bonferroni correction showed that working memory performance was significantly increased by meditative movement compared with the retest effect. Based on regression analysis, the amplitude of high-beta rhythm in the F3 channel showed a significant correlation with dual n-back score in the experimental group after the intervention, while there was no correlation in the control group. Our results suggest that meditative movement improves the performance of working memory, which is related to brain activity in adolescents. Clinical Trial Registration:cris.nih.go.kr/cris, identifier KCT0004706.
Collapse
Affiliation(s)
- Hojung Kang
- Korea Institute of Brain Science, Seoul, South Korea
| | - Seung Chan An
- Korea Institute of Brain Science, Seoul, South Korea
| | - Nah Ok Kim
- Korea Institute of Brain Science, Seoul, South Korea
| | - Minkyu Sung
- Korea Institute of Brain Science, Seoul, South Korea
| | - Yunjung Kang
- Korea Institute of Brain Science, Seoul, South Korea
| | - Ul Soon Lee
- Department of Brain Education, Global Cyber University, Cheonan-si, South Korea
| | - Hyun-Jeong Yang
- Korea Institute of Brain Science, Seoul, South Korea.,Department of Integrative Biosciences, University of Brain Education, Cheonan-si, South Korea.,Department of Integrative Health Care, University of Brain Education, Cheonan-si, South Korea
| |
Collapse
|
24
|
Gudi-Mindermann H, Rimmele JM, Bruns P, Kloosterman NA, Donner TH, Engel AK, Röder B. Post-training Load-Related Changes of Auditory Working Memory - An EEG Study. Front Hum Neurosci 2020; 14:72. [PMID: 32256326 PMCID: PMC7092637 DOI: 10.3389/fnhum.2020.00072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/19/2020] [Indexed: 11/13/2022] Open
Abstract
Working memory (WM) refers to the temporary retention and manipulation of information, and its capacity is highly susceptible to training. Yet, the neural mechanisms that allow for increased performance under demanding conditions are not fully understood. We expected that post-training efficiency in WM performance modulates neural processing during high load tasks. We tested this hypothesis, using electroencephalography (EEG) (N = 39), by comparing source space spectral power of healthy adults performing low and high load auditory WM tasks. Prior to the assessment, participants either underwent a modality-specific auditory WM training, or a modality-irrelevant tactile WM training, or were not trained (active control). After a modality-specific training participants showed higher behavioral performance, compared to the control. EEG data analysis revealed general effects of WM load, across all training groups, in the theta-, alpha-, and beta-frequency bands. With increased load theta-band power increased over frontal, and decreased over parietal areas. Centro-parietal alpha-band power and central beta-band power decreased with load. Interestingly, in the high load condition a tendency toward reduced beta-band power in the right medial temporal lobe was observed in the modality-specific WM training group compared to the modality-irrelevant and active control groups. Our finding that WM processing during the high load condition changed after modality-specific WM training, showing reduced beta-band activity in voice-selective regions, possibly indicates a more efficient maintenance of task-relevant stimuli. The general load effects suggest that WM performance at high load demands involves complementary mechanisms, combining a strengthening of task-relevant and a suppression of task-irrelevant processing.
Collapse
Affiliation(s)
- Helene Gudi-Mindermann
- Department of Biological Psychology and Neuropsychology, University of Hamburg, Hamburg, Germany
| | - Johanna M Rimmele
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Neuroscience, Max-Planck-Institute for Empirical Aesthetics, Frankfurt am Main, Germany
| | - Patrick Bruns
- Department of Biological Psychology and Neuropsychology, University of Hamburg, Hamburg, Germany
| | - Niels A Kloosterman
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Max-Planck-Institute for Human Development, Berlin, Germany
| | - Tobias H Donner
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas K Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Brigitte Röder
- Department of Biological Psychology and Neuropsychology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
25
|
Costers L, Van Schependom J, Laton J, Baijot J, Sjøgård M, Wens V, De Tiège X, Goldman S, D'Haeseleer M, D'hooghe MB, Woolrich M, Nagels G. Spatiotemporal and spectral dynamics of multi-item working memory as revealed by the n-back task using MEG. Hum Brain Mapp 2020; 41:2431-2446. [PMID: 32180307 PMCID: PMC7267970 DOI: 10.1002/hbm.24955] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/21/2020] [Accepted: 02/10/2020] [Indexed: 01/08/2023] Open
Abstract
Multi‐item working memory (WM) is a complex cognitive function thought to arise from specific frequency band oscillations and their interactions. While some theories and consistent findings have been established, there is still a lot of unclarity about the sources, temporal dynamics, and roles of event‐related fields (ERFs) and theta, alpha, and beta oscillations during WM activity. In this study, we performed an extensive whole‐brain ERF and time‐frequency analysis on n‐back magnetoencephalography data from 38 healthy controls. We identified the previously unknown sources of the n‐back M300, the right inferior temporal and parahippocampal gyrus and left inferior temporal gyrus, and frontal theta power increase, the orbitofrontal cortex. We shed new light on the role of the precuneus during n‐back activity, based on an early ERF and theta power increase, and suggest it to be a crucial link between lower‐level and higher‐level information processing. In addition, we provide strong evidence for the central role of the hippocampus in multi‐item WM behavior through the dynamics of theta and alpha oscillatory changes. Almost simultaneous alpha power decreases observed in the hippocampus and occipital fusiform gyri, regions known to be involved in letter processing, suggest that these regions together enable letter recognition, encoding and storage in WM. In summary, this study offers an extensive investigation into the spatial, temporal, and spectral characteristics of n‐back multi‐item WM activity.
Collapse
Affiliation(s)
- Lars Costers
- Center For Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jeroen Van Schependom
- Center For Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium.,Departement of Electronics and Informatics (ETRO), Vrije Universiteit Brussel, Brussels, Belgium.,Radiology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Jorne Laton
- Center For Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium.,Institute of Biomedical Engineering (IBME), University of Oxford, Oxford, UK
| | - Johan Baijot
- Center For Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Martin Sjøgård
- Laboratoire de Cartographie Fonctionnelle du Cerveau (LCFC), Université Libre de Bruxelles, Brussels, Belgium
| | - Vincent Wens
- Laboratoire de Cartographie Fonctionnelle du Cerveau (LCFC), Université Libre de Bruxelles, Brussels, Belgium.,Magnetoencephalography Unit, CUB-Hôpital Erasme, Brussels, Belgium
| | - Xavier De Tiège
- Laboratoire de Cartographie Fonctionnelle du Cerveau (LCFC), Université Libre de Bruxelles, Brussels, Belgium.,Magnetoencephalography Unit, CUB-Hôpital Erasme, Brussels, Belgium
| | - Serge Goldman
- Laboratoire de Cartographie Fonctionnelle du Cerveau (LCFC), Université Libre de Bruxelles, Brussels, Belgium.,Magnetoencephalography Unit, CUB-Hôpital Erasme, Brussels, Belgium
| | - Miguel D'Haeseleer
- Center For Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium.,Neurology, National MS Center Melsbroek, Melsbroek, Belgium
| | - Marie Beatrice D'hooghe
- Center For Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium.,Neurology, National MS Center Melsbroek, Melsbroek, Belgium
| | - Mark Woolrich
- Oxford Centre for Human Brain Activity (OHBA), University of Oxford, Oxford, UK.,Oxford University Centre for Functional MRI of the Brain (FMRIB), University of Oxford, Oxford, UK
| | - Guy Nagels
- Center For Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium.,St Edmund Hall, University of Oxford, Oxford, UK.,Neurology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| |
Collapse
|
26
|
Kao SC, Wang CH, Hillman CH. Acute effects of aerobic exercise on response variability and neuroelectric indices during a serial n-back task. Brain Cogn 2019; 138:105508. [PMID: 31838302 DOI: 10.1016/j.bandc.2019.105508] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/25/2019] [Accepted: 11/29/2019] [Indexed: 12/17/2022]
Abstract
To determine the neuroelectric underpinnings of exercise-induced changes in working memory, this study investigated the acute effects ofaerobic exercise (AE) on the P3 component of an event-related potential and brain oscillations during a serial n-back task. Task-related electroencephalography was collected in 23 young adults following 20 min of rest and AE on separate, counterbalanced days. The results revealed reductions in standard deviation of response time and coefficient of variation of response time following AE compared to rest. Neuroelectric analyses showed increased P3 amplitude following AE compared to rest. Task-related frontal alpha desynchronization was stronger in the 2-back compared with the 1-back task following AE, while no such modulation was observed following rest. These findings suggest AE may temporarily enhance working memory, as reflected by decreases in response variability, which are accompanied by neuroelectric indices reflecting greater upregulation of attentional processes.
Collapse
Affiliation(s)
- Shih-Chun Kao
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN, United States.
| | - Chun-Hao Wang
- Institute of Physical Education, Health & Leisure Studies, National Cheng Kung University, Tainan City, Taiwan, ROC
| | - Charles H Hillman
- Department of Psychology, Department of Physical Therapy, Movement & Rehabilitation Sciences, Northeastern University, Boston, MA, United States
| |
Collapse
|
27
|
Román-López TV, Caballero-Sánchez U, Cisneros-Luna S, Franco-Rodríguez JA, Méndez-Díaz M, Prospéro-García O, Ruiz-Contreras AE. Brain electrical activity from encoding to retrieval while maintaining and manipulating information in working memory. Memory 2019; 27:1063-1078. [DOI: 10.1080/09658211.2019.1620287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Talía V. Román-López
- Lab. Neurogenómica Cognitiva, Coord. Psicobiología y Neurociencias, Fac. Psicología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Ulises Caballero-Sánchez
- Lab. Neurogenómica Cognitiva, Coord. Psicobiología y Neurociencias, Fac. Psicología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Silvia Cisneros-Luna
- Lab. Neurogenómica Cognitiva, Coord. Psicobiología y Neurociencias, Fac. Psicología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - J. Antonio Franco-Rodríguez
- Lab. Neurogenómica Cognitiva, Coord. Psicobiología y Neurociencias, Fac. Psicología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Mónica Méndez-Díaz
- Lab. Cannabinoides, Depto. Fisiología, Fac. Medicina, UNAM, Ciudad de México, México
| | - Oscar Prospéro-García
- Lab. Cannabinoides, Depto. Fisiología, Fac. Medicina, UNAM, Ciudad de México, México
| | - Alejandra E. Ruiz-Contreras
- Lab. Neurogenómica Cognitiva, Coord. Psicobiología y Neurociencias, Fac. Psicología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| |
Collapse
|
28
|
Thornton D, Harkrider AW, Jenson DE, Saltuklaroglu T. Sex differences in early sensorimotor processing for speech discrimination. Sci Rep 2019; 9:392. [PMID: 30674942 PMCID: PMC6344575 DOI: 10.1038/s41598-018-36775-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 11/12/2018] [Indexed: 11/08/2022] Open
Abstract
Sensorimotor activity in speech perception tasks varies as a function of context, cognitive load, and cognitive ability. This study investigated listener sex as an additional variable. Raw EEG data were collected as 21 males and 21 females discriminated /ba/ and /da/ in quiet and noisy backgrounds. Independent component analyses of data from accurately discriminated trials identified sensorimotor mu components with characteristic alpha and beta peaks from 16 members of each sex. Time-frequency decompositions showed that in quiet discrimination, females displayed stronger early mu-alpha synchronization, whereas males showed stronger mu-beta desynchronization. Findings indicate that early attentional mechanisms for speech discrimination were characterized by sensorimotor inhibition in females and predictive sensorimotor activation in males. Both sexes showed stronger early sensorimotor inhibition in noisy discrimination conditions versus in quiet, suggesting sensory gating of the noise. However, the difference in neural activation between quiet and noisy conditions was greater in males than females. Though sex differences appear unrelated to behavioral accuracy, they suggest that males and females exhibit early sensorimotor processing for speech discrimination that is fundamentally different, yet similarly adaptable to adverse conditions. Findings have implications for understanding variability in neuroimaging data and the male prevalence in various neurodevelopmental disorders with inhibitory dysfunction.
Collapse
Affiliation(s)
| | - Ashley W Harkrider
- University of Tennessee Health Science Center, Knoxville, TN, 37996, USA
| | - David E Jenson
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, 99202, USA
| | - Tim Saltuklaroglu
- University of Tennessee Health Science Center, Knoxville, TN, 37996, USA
| |
Collapse
|
29
|
Marinho V, Oliveira T, Bandeira J, Pinto GR, Gomes A, Lima V, Magalhães F, Rocha K, Ayres C, Carvalho V, Velasques B, Ribeiro P, Orsini M, Bastos VH, Gupta D, Teixeira S. Genetic influence alters the brain synchronism in perception and timing. J Biomed Sci 2018; 25:61. [PMID: 30086746 PMCID: PMC6080374 DOI: 10.1186/s12929-018-0463-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 07/31/2018] [Indexed: 12/19/2022] Open
Abstract
Background Studies at the molecular level aim to integrate genetic and neurobiological data to provide an increasingly detailed understanding of phenotypes related to the ability in time perception. Main Text This study suggests that the polymorphisms genetic SLC6A4 5-HTTLPR, 5HTR2A T102C, DRD2/ANKK1-Taq1A, SLC6A3 3’-UTR VNTR, COMT Val158Met, CLOCK genes and GABRB2 A/C as modification factor at neurochemical levels associated with several neurofunctional aspects, modifying the circadian rhythm and built-in cognitive functions in the timing. We conducted a literature review with 102 studies that met inclusion criteria to synthesize findings on genetic polymorphisms and their influence on the timing. Conclusion The findings suggest an association of genetic polymorphisms on behavioral aspects related in timing. However, order to confirm the paradigm of association in the timing as a function of the molecular level, still need to be addressed future research.
Collapse
Affiliation(s)
- Victor Marinho
- Neuro-innovation Technology & Brain Mapping Laboratory, Federal University of Piauí, Av. São Sebastião n° 2819 - Nossa Sra. de Fátima -, Parnaíba, PI, CEP 64202-020, Brazil. .,Genetics and Molecular Biology Laboratory, Federal University of Piauí, Parnaíba, Brazil. .,The Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil.
| | - Thomaz Oliveira
- Neuro-innovation Technology & Brain Mapping Laboratory, Federal University of Piauí, Av. São Sebastião n° 2819 - Nossa Sra. de Fátima -, Parnaíba, PI, CEP 64202-020, Brazil.,Genetics and Molecular Biology Laboratory, Federal University of Piauí, Parnaíba, Brazil
| | - Juliete Bandeira
- Neuro-innovation Technology & Brain Mapping Laboratory, Federal University of Piauí, Av. São Sebastião n° 2819 - Nossa Sra. de Fátima -, Parnaíba, PI, CEP 64202-020, Brazil
| | - Giovanny R Pinto
- Genetics and Molecular Biology Laboratory, Federal University of Piauí, Parnaíba, Brazil.,The Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil
| | - Anderson Gomes
- Genetics and Molecular Biology Laboratory, Federal University of Piauí, Parnaíba, Brazil
| | - Valéria Lima
- Genetics and Molecular Biology Laboratory, Federal University of Piauí, Parnaíba, Brazil
| | - Francisco Magalhães
- Neuro-innovation Technology & Brain Mapping Laboratory, Federal University of Piauí, Av. São Sebastião n° 2819 - Nossa Sra. de Fátima -, Parnaíba, PI, CEP 64202-020, Brazil.,The Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil
| | - Kaline Rocha
- Neuro-innovation Technology & Brain Mapping Laboratory, Federal University of Piauí, Av. São Sebastião n° 2819 - Nossa Sra. de Fátima -, Parnaíba, PI, CEP 64202-020, Brazil.,The Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil
| | - Carla Ayres
- Neuro-innovation Technology & Brain Mapping Laboratory, Federal University of Piauí, Av. São Sebastião n° 2819 - Nossa Sra. de Fátima -, Parnaíba, PI, CEP 64202-020, Brazil
| | - Valécia Carvalho
- Neuro-innovation Technology & Brain Mapping Laboratory, Federal University of Piauí, Av. São Sebastião n° 2819 - Nossa Sra. de Fátima -, Parnaíba, PI, CEP 64202-020, Brazil.,The Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil
| | - Bruna Velasques
- Brain Mapping and Sensory Motor Integration Laboratory, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro Ribeiro
- Brain Mapping and Sensory Motor Integration Laboratory, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marco Orsini
- Master's Program in Local Development Program, University Center Augusto Motta - UNISUAM, Rio de Janeiro, Brazil and Health Sciences Applied - Vassouras University, Rio de Janeiro, Brazil
| | - Victor Hugo Bastos
- Brain Mapping and Functionality Laboratory, Federal University of Piauí, Parnaíba, Brazil
| | - Daya Gupta
- Department of Biology, Camden County College, Blackwood, NJ, USA
| | - Silmar Teixeira
- Neuro-innovation Technology & Brain Mapping Laboratory, Federal University of Piauí, Av. São Sebastião n° 2819 - Nossa Sra. de Fátima -, Parnaíba, PI, CEP 64202-020, Brazil.,The Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil
| |
Collapse
|
30
|
Schroeder SCY, Ball F, Busch NA. The role of alpha oscillations in distractor inhibition during memory retention. Eur J Neurosci 2018; 48:2516-2526. [DOI: 10.1111/ejn.13852] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 12/05/2017] [Accepted: 01/08/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Svea C. Y. Schroeder
- Institute of Psychology; University of Münster; Fliednerstr. 21 48149 Münster Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience; University of Münster; Münster Germany
| | - Felix Ball
- Department of Biological Psychology; Faculty of Natural Science; Otto-von-Guericke-University Magdeburg; Magdeburg Germany
- Department of Neurology; Faculty of Medicine; Otto-von-Guericke-University Magdeburg; Magdeburg Germany
- Center for Behavioural Brain Sciences; Otto-von-Guericke-University Magdeburg; Magdeburg Germany
| | - Niko A. Busch
- Institute of Psychology; University of Münster; Fliednerstr. 21 48149 Münster Germany
| |
Collapse
|
31
|
Binaural auditory beats affect long-term memory. PSYCHOLOGICAL RESEARCH 2017; 83:1124-1136. [DOI: 10.1007/s00426-017-0959-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 12/06/2017] [Indexed: 10/18/2022]
|
32
|
Chung SW, Rogasch NC, Hoy KE, Sullivan CM, Cash RFH, Fitzgerald PB. Impact of different intensities of intermittent theta burst stimulation on the cortical properties during TMS-EEG and working memory performance. Hum Brain Mapp 2017; 39:783-802. [PMID: 29124791 DOI: 10.1002/hbm.23882] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/09/2017] [Accepted: 11/02/2017] [Indexed: 02/06/2023] Open
Abstract
Intermittent theta burst stimulation (iTBS) is a noninvasive brain stimulation technique capable of increasing cortical excitability beyond the stimulation period. Due to the rapid induction of modulatory effects, prefrontal application of iTBS is gaining popularity as a therapeutic tool for psychiatric disorders such as depression. In an attempt to increase efficacy, higher than conventional intensities are currently being applied. The assumption that this increases neuromodulatory may be mechanistically false for iTBS. This study examined the influence of intensity on the neurophysiological and behavioural effects of iTBS in the prefrontal cortex. Sixteen healthy participants received iTBS over prefrontal cortex at either 50, 75 or 100% resting motor threshold in separate sessions. Single-pulse TMS and concurrent electroencephalography (EEG) was used to assess changes in cortical reactivity measured as TMS-evoked potentials and oscillations. The n-back task was used to assess changes in working memory performance. The data can be summarised as an inverse U-shape relationship between intensity and iTBS plastic effects, where 75% iTBS yielded the largest neurophysiological changes. Improvement in reaction time in the 3-back task was supported by the change in alpha power, however, comparison between conditions revealed no significant differences. The assumption that higher intensity results in greater neuromodulatory effects may be false, at least in healthy individuals, and should be carefully considered for clinical populations. Neurophysiological changes associated with working memory following iTBS suggest functional relevance. However, the effects of different intensities on behavioural performance remain elusive in the present healthy sample.
Collapse
Affiliation(s)
- Sung Wook Chung
- Monash Alfred Psychiatry Research Centre, Monash University, Central Clinical School and The Alfred, Melbourne, Australia
| | - Nigel C Rogasch
- Brain and Mental Health Laboratory, School of Psychological Sciences and Monash Biomedical Imaging, Monash Institute of Cognitive and Clinical Neuroscience, Monash University, Melbourne, Australia
| | - Kate E Hoy
- Monash Alfred Psychiatry Research Centre, Monash University, Central Clinical School and The Alfred, Melbourne, Australia
| | - Caley M Sullivan
- Monash Alfred Psychiatry Research Centre, Monash University, Central Clinical School and The Alfred, Melbourne, Australia
| | - Robin F H Cash
- Monash Alfred Psychiatry Research Centre, Monash University, Central Clinical School and The Alfred, Melbourne, Australia
| | - Paul B Fitzgerald
- Monash Alfred Psychiatry Research Centre, Monash University, Central Clinical School and The Alfred, Melbourne, Australia.,Epworth Clinic, Epworth Healthcare, Camberwell, VIC, Australia
| |
Collapse
|
33
|
Beyond the Status Quo: A Role for Beta Oscillations in Endogenous Content (Re)Activation. eNeuro 2017; 4:eN-REV-0170-17. [PMID: 28785729 PMCID: PMC5539431 DOI: 10.1523/eneuro.0170-17.2017] [Citation(s) in RCA: 318] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 12/23/2022] Open
Abstract
Among the rhythms of the brain, oscillations in the beta frequency range (∼13-30 Hz) have been considered the most enigmatic. Traditionally associated with sensorimotor functions, beta oscillations have recently become more broadly implicated in top-down processing, long-range communication, and preservation of the current brain state. Here, we extend and refine these views based on accumulating new findings of content-specific beta-synchronization during endogenous information processing in working memory (WM) and decision making. We characterize such content-specific beta activity as short-lived, flexible network dynamics supporting the endogenous (re)activation of cortical representations. Specifically, we suggest that beta-mediated ensemble formation within and between cortical areas may awake, rather than merely preserve, an endogenous cognitive set in the service of current task demands. This proposal accommodates key aspects of content-specific beta modulations in monkeys and humans, integrates with timely computational models, and outlines a functional role for beta that fits its transient temporal characteristics.
Collapse
|
34
|
Neural oscillations associated with auditory duration maintenance in working memory. Sci Rep 2017; 7:5695. [PMID: 28720790 PMCID: PMC5515924 DOI: 10.1038/s41598-017-06078-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 06/08/2017] [Indexed: 11/09/2022] Open
Abstract
The neural representation of auditory duration remains unknown. Here, we used electroencephalogram (EEG) recordings to investigate neural oscillations during the maintenance of auditory duration in working memory (WM). EEG analyses indicated that the auditory duration length was not associated with changes in the theta band amplitude, whereas the alpha band amplitudes during 3-s and 4-s auditory duration conditions were lower than during the 1-s and 2-s conditions. Moreover, the alpha band amplitude and accuracy were positively correlated in the 2-s duration condition. We also found that the neural representation of auditory duration is segmented, with a critical threshold point of approximately 2 s, which is shorter than that for visual duration (3 s). The results emphasised the involvement of the alpha band in auditory duration maintenance in WM. Our study's findings indicate that different internal representations of auditory durations are maintained in WM below and above 2 s from the perspective of electrophysiology. Additionally, the critical threshold point is related to the sensory modality of duration.
Collapse
|
35
|
Enriquez-Geppert S, Barceló F. Multisubject Decomposition of Event-related Positivities in Cognitive Control: Tackling Age-related Changes in Reactive Control. Brain Topogr 2016; 31:17-34. [PMID: 27522402 PMCID: PMC5772116 DOI: 10.1007/s10548-016-0512-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 08/02/2016] [Indexed: 11/26/2022]
Abstract
Age-related neurocognitive effects have been observed at different levels ranging from reduced amplitudes of even-related potentials and brain oscillations, to topography changes of brain activity. However, their association remains incompletely understood. We investigated time-frequency and time-course effects in functional networks underlying the P300 and their involvement in reactive control. Electroencephalographic (EEG) data of three different age groups (30 young: 18–26 years, 30 mid-aged: 49–58 years, 30 elderly: 65–75 years) was measured while they performed a cued colour/thickness switching task. Neural data was analysed concerning the targets. To consider restart, mixing, and switching processes, the targets´ position after a cue (first or third target) as well as their context in the single-task (distractor cue) or the mixed-task block (switch- or repeat cue) was analysed. P300 EEG data was decomposed by means of group-independent component and time-frequency analyses focusing on theta and beta oscillations. RTs generally slowed down with age (main effect group), and effects were specifically strong in targets after a switching cue (larger Cohens d). Peaking at around 300 ms, we detected five functionally independent networks reflecting the multicomponent process underlying task-switching. These networks differed in terms of their topography (parietal and frontal), their involvement in task processes (switch-specific, mixing-, restart-, and single-task processes) and in terms of frequency effects. All were affected by age, as indicated by amplitude changes of the target-P300 and power reductions most consistently shown in beta oscillations. Most extensive age-related changes were observed in one parietal network sensitive to mixing and restart processes. Changes included a topography shift, P300 and beta amplitudes, and were ongoing in the elderly group.
Collapse
Affiliation(s)
- Stefanie Enriquez-Geppert
- Department of Clinical and Developmental Neuropsychology, University of Groningen, Groningen, Netherlands.
- Department of Psychology, University of the Balearic Islands, Palma de Mallorca, Spain.
| | - Francisco Barceló
- Department of Psychology, University of the Balearic Islands, Palma de Mallorca, Spain
- Asociación de Neuropsicologia Balear, Palma de Mallorca, Spain
| |
Collapse
|