1
|
Walsh EC, Prim JH, Gibson K, Hynd M, Phillips RD, Dichter GS, Nathan MD, Lundegard L, Schiff L, Bizzell J, Belger A, Rubinow DR, Schiller CE. Effects of estradiol administration on brain activation and anhedonia in perimenopausal women: A pharmaco-fMRI study. J Affect Disord 2025; 378:340-349. [PMID: 39837465 DOI: 10.1016/j.jad.2025.01.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 01/23/2025]
Abstract
BACKGROUND Half of perimenopausal women experience depressive symptoms, including anhedonia. Anhedonia is associated with dysregulation of the frontostriatal circuit. Both the frontrostriatal circuit and depression may be regulated by the reproductive hormone estradiol (E2). Here, we present data from a pharmaco-fMRI trial investigating E2 effects on brain activation and anhedonia in those with perimenopause-onset major depression (PO-MDD). METHODS Participants with PO-MDD (n = 16) and those without depression (i.e., Controls; n = 19) received transdermal E2 for three weeks and completed two fMRI sessions (Pre- and Post-E2), and weekly anhedonia assessments. During each fMRI session, neural responses to anticipation and outcomes of monetary rewards were measured. RESULTS The PO-MDD group exhibited steeper declines in anhedonia following E2 administration (t(101.95) = -8.7, pFDR < 0.001). Contrary to a priori hypotheses, there were no group differences in striatal activation at baseline nor did striatal activation significantly change with E2 administration in either group. However, exploratory whole-brain analyses revealed a significant Group∗Time interaction in a cluster spanning the right inferior, middle, and precentral gyri during reward anticipation (Z = 2.58 and pFWE < 0.05). From Pre-E2 to Post-E2, PO-MDD showed decreased activation within this cluster (t = 3.0, p < 0.009), whereas the Controls did not (t = 1.89, p = 0.08). Further, following E2 administration, both PO-MDD and Control groups exhibited reduced activation in the cerebellum, inferior and medial frontal gyri, and occipital pole during reward anticipation (Z = 2.58, pFWE < 0.05). CONCLUSIONS While both anhedonia and right prefrontal activation during anticipatory reward processing were reduced in PO-MDD after three weeks of E2 administration, further research investigating the antidepressant effects of E2 is needed.
Collapse
Affiliation(s)
- E C Walsh
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - J H Prim
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - K Gibson
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - M Hynd
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - R D Phillips
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - G S Dichter
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - M D Nathan
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - L Lundegard
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - L Schiff
- Department of OBGYN, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - J Bizzell
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - A Belger
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - D R Rubinow
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - C E Schiller
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America.
| |
Collapse
|
2
|
Yeaton JD. The neurobiology of sentence production: A narrative review and meta-analysis. BRAIN AND LANGUAGE 2025; 264:105549. [PMID: 39983635 DOI: 10.1016/j.bandl.2025.105549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/13/2025] [Accepted: 02/05/2025] [Indexed: 02/23/2025]
Abstract
Although there is a sizeable body of literature on sentence comprehension and processing both in healthy and disordered language users, the literature on sentence production remains much more sparse. Linguistic and computational descriptions of expressive syntactic deficits in aphasia are especially rare. In addition, the neuroimaging and (psycho) linguistic literatures operate largely separately. In this paper, I will first lay out the theoretical lay of the land with regard to psycholinguistic models of sentence production. I will then provide a brief narrative overview and large-scale meta-analysis of the neuroimaging literature as it pertains to syntactic computation, followed by an attempt to integrate the psycholinguistic models with the findings from functional and clinical neuroimaging. Finally, I provide a brief overview of the literature surrounding expressive syntactic deficits and propose a path forward to close some of the existing gaps.
Collapse
|
3
|
Panikratova YR, Tomyshev AS, Abdullina EG, Rodionov GI, Arkhipov AY, Tikhonov DV, Bozhko OV, Kaleda VG, Strelets VB, Lebedeva IS. Resting-state functional connectivity correlates of brain structural aging in schizophrenia. Eur Arch Psychiatry Clin Neurosci 2025; 275:755-766. [PMID: 38914851 DOI: 10.1007/s00406-024-01837-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/27/2024] [Indexed: 06/26/2024]
Abstract
A large body of research has shown that schizophrenia patients demonstrate increased brain structural aging. Although this process may be coupled with aberrant changes in intrinsic functional architecture of the brain, they remain understudied. We hypothesized that there are brain regions whose whole-brain functional connectivity at rest is differently associated with brain structural aging in schizophrenia patients compared to healthy controls. Eighty-four male schizophrenia patients and eighty-six male healthy controls underwent structural MRI and resting-state fMRI. The brain-predicted age difference (b-PAD) was a measure of brain structural aging. Resting-state fMRI was applied to obtain global correlation (GCOR) maps comprising voxelwise values of the strength and sign of functional connectivity of a given voxel with the rest of the brain. Schizophrenia patients had higher b-PAD compared to controls (mean between-group difference + 2.9 years). Greater b-PAD in schizophrenia patients, compared to controls, was associated with lower whole-brain functional connectivity of a region in frontal orbital cortex, inferior frontal gyrus, Heschl's Gyrus, plana temporale and polare, insula, and opercular cortices of the right hemisphere (rFTI). According to post hoc seed-based correlation analysis, decrease of functional connectivity with the posterior cingulate gyrus, left superior temporal cortices, as well as right angular gyrus/superior lateral occipital cortex has mainly driven the results. Lower functional connectivity of the rFTI was related to worse verbal working memory and language production. Our findings demonstrate that well-established frontotemporal functional abnormalities in schizophrenia are related to increased brain structural aging.
Collapse
Affiliation(s)
| | | | | | - Georgiy I Rodionov
- Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Moscow, Russia
| | - Andrey Yu Arkhipov
- Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Moscow, Russia
| | | | | | | | - Valeria B Strelets
- Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
4
|
Smith DD, Bartley JE, Peraza JA, Bottenhorn KL, Nomi JS, Uddin LQ, Riedel MC, Salo T, Laird RW, Pruden SM, Sutherland MT, Brewe E, Laird AR. Dynamic reconfiguration of brain coactivation states associated with active and lecture-based learning of university physics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.22.639361. [PMID: 40060400 PMCID: PMC11888302 DOI: 10.1101/2025.02.22.639361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Academic institutions are increasingly adopting active learning methods to enhance educational outcomes. Using functional magnetic resonance imaging (fMRI), we investigated neurobiological differences between active learning and traditional lecture-based approaches in university physics education. Undergraduate students enrolled in an introductory physics course underwent an fMRI session before and after a 15-week semester. Coactivation pattern (CAP) analysis was used to examine the temporal dynamics of brain states across different cognitive contexts, including physics conceptual reasoning, physics knowledge retrieval, and rest. CAP results identified seven distinct brain states, with contributions from frontoparietal, somatomotor, and visuospatial networks. Among active learning students, physics learning was associated with increased engagement of a somatomotor network, supporting an embodied cognition framework, while lecture-based students demonstrated stronger engagement of a visuospatial network, consistent with observational learning. These findings suggest significant neural restructuring over a semester of physics learning, with different instructional approaches preferentially modulating distinct patterns of brain dynamics.
Collapse
Affiliation(s)
- Donisha D. Smith
- Department of Psychology, Florida International University, Miami, FL, USA
| | | | - Julio A. Peraza
- Department of Physics, Florida International University, Miami, FL, USA
| | - Katherine L. Bottenhorn
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Jason S. Nomi
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Lucina Q. Uddin
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
- Department of Psychology, University of California Los Angeles, Los Angeles, CA, USA
| | - Michael C. Riedel
- Department of Physics, Florida International University, Miami, FL, USA
| | - Taylor Salo
- Department of Medicine, Perlman Center of Advanced Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert W. Laird
- Department of Physics, Florida International University, Miami, FL, USA
| | - Shannon M. Pruden
- Department of Psychology, Florida International University, Miami, FL, USA
| | | | - Eric Brewe
- Department of Physics, Drexel University, Philadelphia, PA, USA
| | - Angela R. Laird
- Department of Physics, Florida International University, Miami, FL, USA
| |
Collapse
|
5
|
Rosch KS, Khashab M, Ghanaiem S, Farah R, Horowitz-Kraus T. Differentiating the neurobiological correlates for reading gains in children with reading difficulties with and without attention-deficit/hyperactivity disorder using fMRI. J Int Neuropsychol Soc 2025; 31:75-85. [PMID: 39725652 PMCID: PMC11957940 DOI: 10.1017/s1355617724000717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
OBJECTIVE Reading difficulties (RD) frequently co-occur with attention-deficit/hyperactivity disorder (ADHD), and children with both RD + ADHD often demonstrate greater challenges in reading and executive functions (EF) than those with RD-only. METHODS This study examined the effect of a 4-week EF-based reading intervention on behavioral and neurobiological correlates of EF among 8-12 y.o. English-speaking children with RD + ADHD (n = 19), RD-only (n = 18), and typically developing children (n = 18). Behavioral and resting-state fMRI data were collected from all participants before and after 4 weeks of the EF-based reading computerized program. Group (RD + ADHD, RD-only, typical readers) x Test (pre- and post-intervention) repeated measures ANOVAs were conducted for reading, EF, and brain functional connectivity (FC) measures. RESULTS Across groups, reading (fluency, comprehension) and EF (inhibition, speed of processing) behavioral performance improved following the intervention. Exploratory subgroup comparisons revealed that children with RD + ADHD, but not RD-only, showed significant gains in reading comprehension, whereas inhibition improved in both RD groups, but not among typical readers. Furthermore, across groups, FC between the frontoparietal (FP) and cingulo-opercular (CO) networks decreased following the intervention. Exploratory subgroup comparisons revealed that children with RD + ADHD, but not RD-only, showed a significant decrease in FC of FP-CO and FP-dorsal attention network. CONCLUSIONS These results support the differential response to an EF-based reading intervention of children with RD with and without comorbid ADHD at brain and behavioral levels.
Collapse
Affiliation(s)
- Keri S. Rosch
- Center for Neurodevelopmental and Imaging Research and Center for Neuropsychological and Psychological Assessment, Kennedy Krieger Institute, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Masa Khashab
- Department of Biomedical Engineering, Technion-IIT, Haifa, Israel
| | - Sanad Ghanaiem
- Department of Biomedical Engineering, Technion-IIT, Haifa, Israel
| | - Rola Farah
- Faculty of Education in Science and Technology-IIT, Haifa, Israel
| | - Tzipi Horowitz-Kraus
- Center for Neurodevelopmental and Imaging Research and Center for Neuropsychological and Psychological Assessment, Kennedy Krieger Institute, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Technion-IIT, Haifa, Israel
- Faculty of Education in Science and Technology-IIT, Haifa, Israel
| |
Collapse
|
6
|
Dibaji M, Ospel J, Souza R, Bento M. Sex differences in brain MRI using deep learning toward fairer healthcare outcomes. Front Comput Neurosci 2024; 18:1452457. [PMID: 39606583 PMCID: PMC11598355 DOI: 10.3389/fncom.2024.1452457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/10/2024] [Indexed: 11/29/2024] Open
Abstract
This study leverages deep learning to analyze sex differences in brain MRI data, aiming to further advance fairness in medical imaging. We employed 3D T1-weighted Magnetic Resonance images from four diverse datasets: Calgary-Campinas-359, OASIS-3, Alzheimer's Disease Neuroimaging Initiative, and Cambridge Center for Aging and Neuroscience, ensuring a balanced representation of sexes and a broad demographic scope. Our methodology focused on minimal preprocessing to preserve the integrity of brain structures, utilizing a Convolutional Neural Network model for sex classification. The model achieved an accuracy of 87% on the test set without employing total intracranial volume (TIV) adjustment techniques. We observed that while the model exhibited biases at extreme brain sizes, it performed with less bias when the TIV distributions overlapped more. Saliency maps were used to identify brain regions significant in sex differentiation, revealing that certain supratentorial and infratentorial regions were important for predictions. Furthermore, our interdisciplinary team, comprising machine learning specialists and a radiologist, ensured diverse perspectives in validating the results. The detailed investigation of sex differences in brain MRI in this study, highlighted by the sex differences map, offers valuable insights into sex-specific aspects of medical imaging and could aid in developing sex-based bias mitigation strategies, contributing to the future development of fair AI algorithms. Awareness of the brain's differences between sexes enables more equitable AI predictions, promoting fairness in healthcare outcomes. Our code and saliency maps are available at https://github.com/mahsadibaji/sex-differences-brain-dl.
Collapse
Affiliation(s)
- Mahsa Dibaji
- Department of Electrical and Software Engineering, University of Calgary, Calgary, AB, Canada
| | - Johanna Ospel
- Department of Radiology, University of Calgary, Cumming School of Medicine, Calgary, AB, Canada
| | - Roberto Souza
- Department of Electrical and Software Engineering, University of Calgary, Calgary, AB, Canada
| | - Mariana Bento
- Department of Electrical and Software Engineering, University of Calgary, Calgary, AB, Canada
- Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
7
|
Sheng Zheng Z, Xing-Long Wang K, Millan H, Lee S, Howard M, Rothbart A, Rosario E, Schnakers C. Transcranial direct stimulation over left inferior frontal gyrus improves language production and comprehension in post-stroke aphasia: A double-blind randomized controlled study. BRAIN AND LANGUAGE 2024; 257:105459. [PMID: 39241469 DOI: 10.1016/j.bandl.2024.105459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 04/26/2024] [Accepted: 08/21/2024] [Indexed: 09/09/2024]
Abstract
Transcranial direct current stimulation (tDCS) targeting Broca's area has shown promise for augmenting language production in post-stroke aphasia (PSA). However, previous research has been limited by small sample sizes and inconsistent outcomes. This study employed a double-blind, parallel, randomized, controlled design to evaluate the efficacy of anodal Broca's tDCS, paired with 20-minute speech and language therapy (SLT) focused primarily on expressive language, across 5 daily sessions in 45 chronic PSA patients. Utilizing the Western Aphasia Battery-Revised, which assesses a spectrum of linguistic abilities, we measured changes in both expressive and receptive language skills before and after intervention. The tDCS group demonstrated significant improvements over sham in aphasia quotient, auditory verbal comprehension, and spontaneous speech. Notably, tDCS improved both expressive and receptive domains, whereas sham only benefited expression. These results underscore the broader linguistic benefits of Broca's area stimulation and support the integration of tDCS with SLT to advance aphasia rehabilitation.
Collapse
Affiliation(s)
- Zhong Sheng Zheng
- Research Institute, Casa Colina Hospital and Centers for Healthcare, Pomona, CA, USA.
| | | | - Henry Millan
- Research Institute, Casa Colina Hospital and Centers for Healthcare, Pomona, CA, USA
| | - Sharon Lee
- Research Institute, Casa Colina Hospital and Centers for Healthcare, Pomona, CA, USA
| | - Melissa Howard
- Research Institute, Casa Colina Hospital and Centers for Healthcare, Pomona, CA, USA
| | - Aaron Rothbart
- Research Institute, Casa Colina Hospital and Centers for Healthcare, Pomona, CA, USA
| | - Emily Rosario
- Research Institute, Casa Colina Hospital and Centers for Healthcare, Pomona, CA, USA
| | - Caroline Schnakers
- Research Institute, Casa Colina Hospital and Centers for Healthcare, Pomona, CA, USA
| |
Collapse
|
8
|
Kim HI, Jo S, Kwon M, Park JE, Han JW, Kim KW. Association of Compensatory Mechanisms in Prefrontal Cortex and Impaired Anatomical Correlates in Semantic Verbal Fluency: A Functional Near-Infrared Spectroscopy Study. Psychiatry Investig 2024; 21:1065-1075. [PMID: 39255965 PMCID: PMC11513872 DOI: 10.30773/pi.2023.0447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/16/2024] [Accepted: 07/07/2024] [Indexed: 09/12/2024] Open
Abstract
OBJECTIVE Semantic verbal fluency (SVF) engages cognitive functions such as executive function, mental flexibility, and semantic memory. Left frontal and temporal lobes, particularly the left inferior frontal gyrus (IFG), are crucial for SVF. This study investigates SVF and associated neural processing in older adults with mild SVF impairment and the relationship between structural abnormalities in the left IFG and functional activation during SVF in those individuals. METHODS Fifty-four elderly individuals with modest level of mild cognitive impairment whose global cognition were preserved to normal but exhibited mild SVF impairment were participated. Prefrontal oxyhemoglobin (HbO2) activation and frontal cortical thickness were collected from the participants using functional near-infrared spectroscopy (fNIRS) and brain MRI, respectively. We calculated the β coefficient of HbO2 activation induced by tasks, and performed correlation analysis between SVF induced HbO2 activation and cortical thickness in frontal areas. RESULTS We observed increased prefrontal activation during SVF task compared to the resting and control task. The activation distinct to SVF was identified in the midline superior and left superior prefrontal regions (p<0.05). Correlation analysis revealed an inverse relationship between SVF-specific activation and cortical thickness in the left IFG, particularly in pars triangularis (r(54)=-0.304, p=0.025). CONCLUSION The study contributes to understanding the relationship between reduced cortical thickness in left IFG and increased functional activity in cognitively normal individuals with mild SVF impairment, providing implications on potential compensatory mechanisms for cognitive preservation.
Collapse
Affiliation(s)
- Hae-In Kim
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Sungman Jo
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Minjeong Kwon
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Ji Eun Park
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Ji Won Han
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Ki Woong Kim
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Health Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
9
|
Perron M, Vuong V, Grassi MW, Imran A, Alain C. Engagement of the speech motor system in challenging speech perception: Activation likelihood estimation meta-analyses. Hum Brain Mapp 2024; 45:e70023. [PMID: 39268584 PMCID: PMC11393483 DOI: 10.1002/hbm.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/20/2024] [Accepted: 08/29/2024] [Indexed: 09/17/2024] Open
Abstract
The relationship between speech production and perception is a topic of ongoing debate. Some argue that there is little interaction between the two, while others claim they share representations and processes. One perspective suggests increased recruitment of the speech motor system in demanding listening situations to facilitate perception. However, uncertainties persist regarding the specific regions involved and the listening conditions influencing its engagement. This study used activation likelihood estimation in coordinate-based meta-analyses to investigate the neural overlap between speech production and three speech perception conditions: speech-in-noise, spectrally degraded speech and linguistically complex speech. Neural overlap was observed in the left frontal, insular and temporal regions. Key nodes included the left frontal operculum (FOC), left posterior lateral part of the inferior frontal gyrus (IFG), left planum temporale (PT), and left pre-supplementary motor area (pre-SMA). The left IFG activation was consistently observed during linguistic processing, suggesting sensitivity to the linguistic content of speech. In comparison, the left pre-SMA activation was observed when processing degraded and noisy signals, indicating sensitivity to signal quality. Activations of the left PT and FOC activation were noted in all conditions, with the posterior FOC area overlapping in all conditions. Our meta-analysis reveals context-independent (FOC, PT) and context-dependent (pre-SMA, posterior lateral IFG) regions within the speech motor system during challenging speech perception. These regions could contribute to sensorimotor integration and executive cognitive control for perception and production.
Collapse
Affiliation(s)
- Maxime Perron
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Veronica Vuong
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, Ontario, Canada
- Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Music and Health Science Research Collaboratory, Faculty of Music, University of Toronto, Toronto, Ontario, Canada
| | - Madison W Grassi
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, Ontario, Canada
| | - Ashna Imran
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, Ontario, Canada
| | - Claude Alain
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Music and Health Science Research Collaboratory, Faculty of Music, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Nolan E, Loh KK, Petrides M. Morphological patterns and spatial probability maps of the inferior frontal sulcus in the human brain. Hum Brain Mapp 2024; 45:e26759. [PMID: 38989632 PMCID: PMC11237881 DOI: 10.1002/hbm.26759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/07/2024] [Accepted: 05/31/2024] [Indexed: 07/12/2024] Open
Abstract
The inferior frontal sulcus (ifs) is a prominent sulcus on the lateral frontal cortex, separating the middle frontal gyrus from the inferior frontal gyrus. The morphology of the ifs can be difficult to distinguish from adjacent sulci, which are often misidentified as continuations of the ifs. The morphological variability of the ifs and its relationship to surrounding sulci were examined in 40 healthy human subjects (i.e., 80 hemispheres). The sulci were identified and labeled on the native cortical surface meshes of individual subjects, permitting proper intra-sulcal assessment. Two main morphological patterns of the ifs were identified across hemispheres: in Type I, the ifs was a single continuous sulcus, and in Type II, the ifs was discontinuous and appeared in two segments. The morphology of the ifs could be further subdivided into nine subtypes based on the presence of anterior and posterior sulcal extensions. The ifs was often observed to connect, either superficially or completely, with surrounding sulci, and seldom appeared as an independent sulcus. The spatial variability of the ifs and its various morphological configurations were quantified in the form of surface spatial probability maps which are made publicly available in the standard fsaverage space. These maps demonstrated that the ifs generally occupied a consistent position across hemispheres and across individuals. The normalized mean sulcal depths associated with the main morphological types were also computed. The present study provides the first detailed description of the ifs as a sulcal complex composed of segments and extensions that can be clearly differentiated from adjacent sulci. These descriptions, together with the spatial probability maps, are critical for the accurate identification of the ifs in anatomical and functional neuroimaging studies investigating the structural characteristics and functional organization of this region in the human brain.
Collapse
Affiliation(s)
- Erika Nolan
- Department of Psychology, McGill University, Montreal, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Kep Kee Loh
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
- Department of Psychology, National University of Singapore, Singapore
| | - Michael Petrides
- Department of Psychology, McGill University, Montreal, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
| |
Collapse
|
11
|
Pinto J, Cera N, Pignatelli D. Psychological symptoms and brain activity alterations in women with PCOS and their relation to the reduced quality of life: a narrative review. J Endocrinol Invest 2024; 47:1-22. [PMID: 38485896 PMCID: PMC11196322 DOI: 10.1007/s40618-024-02329-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/03/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is the most common feminine endocrine disorder, characterized by androgen excess, ovulatory dysfunction, and polycystic ovarian morphology. The negative impact of symptoms on the quality of life (QoL) of patients is still not clear. PURPOSE The present review aimed at studying the impact of the symptoms, the psychological symptoms, and brain alterations in women with PCOS. METHODS A systematic search was undertaken for studies that assessed the impact of PCOS symptoms on QoL, psychological symptoms, and brain alterations in PCOS patients. RESULTS Most of the information about QoL came from psychometric studies, which used culture-based questionnaires. Alterations of sleep quality, body image, and mood disorders can negatively affect the QoL of the patients. Sexual satisfaction and desire were affected by PCOS. Brain imaging studies showed functional alterations that are associated with impairments of visuospatial working memory, episodic and verbal memory, attention, and executive function. CONCLUSIONS Several factors can negatively influence the quality of life of the patients, and they are directly related to hyperandrogenism and the risk of infertility. In particular, obesity, hirsutism, acne, and the fear of infertility can have a direct impact on self-esteem and sexual function. Metabolic and psychiatric comorbidities, such as mood, anxiety, and eating disorders, can affect the well-being of the patients. Moreover, specific cognitive alterations, such as impairments in attention and memory, can limit PCOS patients in a series of aspects of daily life.
Collapse
Affiliation(s)
- J Pinto
- Faculty of Psychology and Education Sciences, University of Porto, 4200-135, Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal
| | - N Cera
- Faculty of Psychology and Education Sciences, University of Porto, 4200-135, Porto, Portugal
- Research Unit in Medical Imaging and Radiotherapy, Cross I&D Lisbon Research Center, Escola Superior de Saúde da Cruz Vermelha Portuguesa, Lisbon, Portugal
| | - D Pignatelli
- Department of Endocrinology, Centro Hospitalar Universitário de São João, 4200-319, Porto, Portugal.
- Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal.
- Department of Biomedicine, Faculty of Medicine at University of Porto, Porto, Portugal.
- IPATIMUP Research Institute, Porto, Portugal.
| |
Collapse
|
12
|
Thanaraju A, Marzuki AA, Chan JK, Wong KY, Phon-Amnuaisuk P, Vafa S, Chew J, Chia YC, Jenkins M. Structural and functional brain correlates of socioeconomic status across the life span: A systematic review. Neurosci Biobehav Rev 2024; 162:105716. [PMID: 38729281 DOI: 10.1016/j.neubiorev.2024.105716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/08/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
It is well-established that higher socioeconomic status (SES) is associated with improved brain health. However, the effects of SES across different life stages on brain structure and function is still equivocal. In this systematic review, we aimed to synthesise findings from life course neuroimaging studies that investigated the structural and functional brain correlates of SES across the life span. The results indicated that higher SES across different life stages were independently and cumulatively related to neural outcomes typically reflective of greater brain health (e.g., increased cortical thickness, grey matter volume, fractional anisotropy, and network segregation) in adult individuals. The results also demonstrated that the corticolimbic system was most commonly impacted by socioeconomic disadvantages across the life span. This review highlights the importance of taking into account SES across the life span when studying its effects on brain health. It also provides directions for future research including the need for longitudinal and multimodal research that can inform effective policy interventions tailored to specific life stages.
Collapse
Affiliation(s)
- Arjun Thanaraju
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Malaysia.
| | - Aleya A Marzuki
- Department for Psychiatry and Psychotherapy, Medical School and University Hospital, Eberhard Karls University of Tübingen, Germany
| | - Jee Kei Chan
- Department of Psychology, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Malaysia
| | - Kean Yung Wong
- Sensory Neuroscience and Nutrition Lab, University of Otago, New Zealand
| | - Paveen Phon-Amnuaisuk
- Department of Psychology, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Malaysia
| | - Samira Vafa
- Department of Psychology, School of Medical and Life Sciences, Sunway University, Malaysia
| | - Jactty Chew
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Malaysia
| | - Yook Chin Chia
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Malaysia
| | - Michael Jenkins
- Department of Psychology, School of Medical and Life Sciences, Sunway University, Malaysia
| |
Collapse
|
13
|
Wu J, Cheng Y, Qu X, Kang T, Cai Y, Wang P, Zaccarella E, Friederici AD, Hartwigsen G, Chen L. Continuous Theta-Burst Stimulation on the Left Posterior Inferior Frontal Gyrus Perturbs Complex Syntactic Processing Stability in Mandarin Chinese. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2024; 5:608-627. [PMID: 38939729 PMCID: PMC11210936 DOI: 10.1162/nol_a_00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/12/2024] [Indexed: 06/29/2024]
Abstract
The structure of human language is inherently hierarchical. The left posterior inferior frontal gyrus (LpIFG) is proposed to be a core region for constructing syntactic hierarchies. However, it remains unclear whether LpIFG plays a causal role in syntactic processing in Mandarin Chinese and whether its contribution depends on syntactic complexity, working memory, or both. We addressed these questions by applying inhibitory continuous theta-burst stimulation (cTBS) over LpIFG. Thirty-two participants processed sentences containing embedded relative clauses (i.e., complex syntactic processing), syntactically simpler coordinated sentences (i.e., simple syntactic processing), and non-hierarchical word lists (i.e., word list processing) after receiving real or sham cTBS. We found that cTBS significantly increased the coefficient of variation, a representative index of processing stability, in complex syntactic processing (esp., when subject relative clause was embedded) but not in the other two conditions. No significant changes in d' and reaction time were detected in these conditions. The findings suggest that (a) inhibitory effect of cTBS on the LpIFG might be prominent in perturbing the complex syntactic processing stability but subtle in altering the processing quality; and (b) the causal role of the LpIFG seems to be specific for syntactic processing rather than working memory capacity, further evidencing their separability in LpIFG. Collectively, these results support the notion of the LpIFG as a core region for complex syntactic processing across languages.
Collapse
Affiliation(s)
- Junjie Wu
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China
| | - Yao Cheng
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Xingfang Qu
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Tianmin Kang
- Department of Psychology, Skidmore College, Saratoga Springs, NY, USA
| | - Yimin Cai
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Peng Wang
- Institute of Psychology, University of Regensburg, Regensburg, Germany
- Institute of Psychology, University of Greifswald, Greifswald, Germany
| | - Emiliano Zaccarella
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Angela D. Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Wilhelm Wundt Institute for Psychology, Leipzig University, Leipzig, Germany
| | - Luyao Chen
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Educational System Science, Beijing Normal University, Beijing, China
| |
Collapse
|
14
|
Nabizadeh F, Pirahesh K, Aarabi MH, Wennberg A, Pini L. Behavioral and dysexecutive variant of Alzheimer's disease: Insights from structural and molecular imaging studies. Heliyon 2024; 10:e29420. [PMID: 38638964 PMCID: PMC11024599 DOI: 10.1016/j.heliyon.2024.e29420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024] Open
Abstract
Frontal variant Alzheimer's disease (AD) manifests with either behavioral or dysexecutive syndromes. Recent efforts to gain a deeper understanding of this phenotype have led to a re-conceptualization of frontal AD. Behavioral (bAD) and dysexecutive (dAD) phenotypes could be considered subtypes, as suggested by both clinical and neuroimaging studies. In this review, we focused on imaging studies to highlight specific brain patterns in these two uncommon clinical AD phenotypes. Although studies did not compare directly these two variants, a common epicenter located in the frontal cortex could be inferred. On the contrary, 18F-FDG-PET findings suggested differing metabolic patterns, with bAD showing specific involvement of frontal regions and dAD exhibiting widespread alterations. Structural MRI findings confirmed this pattern, suggesting that degeneration might involve neural circuits associated with behavioral control in bAD and attentional networks in dAD. Furthermore, molecular imaging has identified different neocortical tau distribution in bAD and dAD patients compared to typical AD patients, although the distribution is remarkably heterogeneous. In contrast, Aβ deposition patterns are less differentiated between these atypical variants and typical AD. Although preliminary, these findings underscore the complexity of AD frontal phenotypes and suggest that they represent distinct entities. Further research is essential to refine our understanding of the pathophysiological mechanisms in frontal AD.
Collapse
Affiliation(s)
- Fardin Nabizadeh
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Neuroscience Research Group (NRG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Kasra Pirahesh
- School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | | | - Alexandra Wennberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Lorenzo Pini
- Padova Neuroscience Center, University of Padova, Italy
| |
Collapse
|
15
|
Schneider JM, Scott TL, Legault J, Qi Z. Limited but specific engagement of the mature language network during linguistic statistical learning. Cereb Cortex 2024; 34:bhae123. [PMID: 38566510 PMCID: PMC10987970 DOI: 10.1093/cercor/bhae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Statistical learning (SL) is the ability to detect and learn regularities from input and is foundational to language acquisition. Despite the dominant role of SL as a theoretical construct for language development, there is a lack of direct evidence supporting the shared neural substrates underlying language processing and SL. It is also not clear whether the similarities, if any, are related to linguistic processing, or statistical regularities in general. The current study tests whether the brain regions involved in natural language processing are similarly recruited during auditory, linguistic SL. Twenty-two adults performed an auditory linguistic SL task, an auditory nonlinguistic SL task, and a passive story listening task as their neural activation was monitored. Within the language network, the left posterior temporal gyrus showed sensitivity to embedded speech regularities during auditory, linguistic SL, but not auditory, nonlinguistic SL. Using a multivoxel pattern similarity analysis, we uncovered similarities between the neural representation of auditory, linguistic SL, and language processing within the left posterior temporal gyrus. No other brain regions showed similarities between linguistic SL and language comprehension, suggesting that a shared neurocomputational process for auditory SL and natural language processing within the left posterior temporal gyrus is specific to linguistic stimuli.
Collapse
Affiliation(s)
- Julie M Schneider
- Department of Communication Sciences and Disorders, Louisiana State University, 77 Hatcher Hall, Field House Dr., Baton Rouge, LA 70803, United States
- Department of Linguistics & Cognitive Science, University of Delaware, 125 E Main St, Newark, DE 19716, United States
| | - Terri L Scott
- Department of Communication Sciences and Disorders, Northeastern University, 360 Huntington Ave., Boston, MA, 02115, United States
| | - Jennifer Legault
- Department of Psychology, Elizabethtown College, One Alpha Dr, Elizabethtown, PA 17022, United States
| | - Zhenghan Qi
- Department of Linguistics & Cognitive Science, University of Delaware, 125 E Main St, Newark, DE 19716, United States
- Bouvé College of Health Sciences, Northeastern University, 360 Huntington Ave, Boston, MA 02115, United States
- Department of Psychology, Northeastern University, 105-107 Forsyth St., Boston, MA, 02115, United States
| |
Collapse
|
16
|
Goldstein A, Grinstein-Dabush A, Schain M, Wang H, Hong Z, Aubrey B, Nastase SA, Zada Z, Ham E, Feder A, Gazula H, Buchnik E, Doyle W, Devore S, Dugan P, Reichart R, Friedman D, Brenner M, Hassidim A, Devinsky O, Flinker A, Hasson U. Alignment of brain embeddings and artificial contextual embeddings in natural language points to common geometric patterns. Nat Commun 2024; 15:2768. [PMID: 38553456 PMCID: PMC10980748 DOI: 10.1038/s41467-024-46631-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 03/04/2024] [Indexed: 04/02/2024] Open
Abstract
Contextual embeddings, derived from deep language models (DLMs), provide a continuous vectorial representation of language. This embedding space differs fundamentally from the symbolic representations posited by traditional psycholinguistics. We hypothesize that language areas in the human brain, similar to DLMs, rely on a continuous embedding space to represent language. To test this hypothesis, we densely record the neural activity patterns in the inferior frontal gyrus (IFG) of three participants using dense intracranial arrays while they listened to a 30-minute podcast. From these fine-grained spatiotemporal neural recordings, we derive a continuous vectorial representation for each word (i.e., a brain embedding) in each patient. Using stringent zero-shot mapping we demonstrate that brain embeddings in the IFG and the DLM contextual embedding space have common geometric patterns. The common geometric patterns allow us to predict the brain embedding in IFG of a given left-out word based solely on its geometrical relationship to other non-overlapping words in the podcast. Furthermore, we show that contextual embeddings capture the geometry of IFG embeddings better than static word embeddings. The continuous brain embedding space exposes a vector-based neural code for natural language processing in the human brain.
Collapse
Affiliation(s)
- Ariel Goldstein
- Business School, Data Science department and Cognitive Department, Hebrew University, Jerusalem, Israel.
- Google Research, Tel Aviv, Israel.
| | | | | | - Haocheng Wang
- Department of Psychology and the Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Zhuoqiao Hong
- Department of Psychology and the Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Bobbi Aubrey
- Department of Psychology and the Neuroscience Institute, Princeton University, Princeton, NJ, USA
- New York University Grossman School of Medicine, New York, NY, USA
| | - Samuel A Nastase
- Department of Psychology and the Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Zaid Zada
- Department of Psychology and the Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Eric Ham
- Department of Psychology and the Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | - Harshvardhan Gazula
- Department of Psychology and the Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | - Werner Doyle
- New York University Grossman School of Medicine, New York, NY, USA
| | - Sasha Devore
- New York University Grossman School of Medicine, New York, NY, USA
| | - Patricia Dugan
- New York University Grossman School of Medicine, New York, NY, USA
| | - Roi Reichart
- Faculty of Industrial Engineering and Management, Technion, Israel Institute of Technology, Haifa, Israel
| | - Daniel Friedman
- New York University Grossman School of Medicine, New York, NY, USA
| | - Michael Brenner
- Google Research, Tel Aviv, Israel
- School of Engineering and Applied Science, Harvard University, Cambridge, MA, USA
| | | | - Orrin Devinsky
- New York University Grossman School of Medicine, New York, NY, USA
| | - Adeen Flinker
- New York University Grossman School of Medicine, New York, NY, USA
- New York University Tandon School of Engineering, Brooklyn, NY, USA
| | - Uri Hasson
- Google Research, Tel Aviv, Israel
- Department of Psychology and the Neuroscience Institute, Princeton University, Princeton, NJ, USA
| |
Collapse
|
17
|
Panikratova YR, Lebedeva IS, Akhutina TV, Tikhonov DV, Kaleda VG, Vlasova RM. Executive control of language in schizophrenia patients with history of auditory verbal hallucinations: A neuropsychological and resting-state fMRI study. Schizophr Res 2023; 262:201-210. [PMID: 37923596 DOI: 10.1016/j.schres.2023.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND As demonstrated by a plethora of studies, compromised executive functions (EF) and language are implicated in mechanisms of auditory verbal hallucinations (AVH), but the contribution of their interaction to AVH remains unclear. We hypothesized that schizophrenia patients with history of AVH (AVHh+) vs. without history of AVH (AVHh-) have a specific deficit of executive control of language and alterations in functional connectivity (FC) between the brain regions involved in EF and language, and these neuropsychological and neurophysiological traits are associated with each other. METHODS To explore the executive control of language and its contribution to AVH, we used an integrative approach involving analysis of neuropsychological and resting-state fMRI data of 34 AVHh+, 16 AVHh-, and 40 healthy controls. We identified the neuropsychological and FC measures that differentiated between AVHh+, AVHh-, and HC, and tested the associations between them. RESULTS AVHh+ were characterized by decreased category and phonological verbal fluency, utterance length, productivity in the planning tasks, and poorer retelling. AVHh+ had decreased FC between the left inferior frontal gyrus and the anterior cingulate cortex. Productivity in category verbal fluency was associated with the FC between these regions. CONCLUSIONS Poor executive control of word retrieval and deficient programming of sentence and narrative related to more general deficits of planning may be the neuropsychological traits specific for AVHh+. A neurophysiological trait specific for AVHh+ may be a decreased FC between regions involved in language production and differentiation between alien- vs. self-generated speech and between language production vs. comprehension.
Collapse
Affiliation(s)
- Yana R Panikratova
- Laboratory of Neuroimaging and Multimodal Analysis, Mental Health Research Center, 115522, 34 Kashirskoye shosse, Moscow, Russia.
| | - Irina S Lebedeva
- Laboratory of Neuroimaging and Multimodal Analysis, Mental Health Research Center, 115522, 34 Kashirskoye shosse, Moscow, Russia
| | - Tatiana V Akhutina
- Laboratory of Neuropsychology, Faculty of Psychology, Lomonosov Moscow State University, 125009, 11/9 Mokhovaya street, Moscow, Russia
| | - Denis V Tikhonov
- Department of Youth Psychiatry, Mental Health Research Center, 115522, 34 Kashirskoye shosse, Moscow, Russia
| | - Vasilii G Kaleda
- Department of Youth Psychiatry, Mental Health Research Center, 115522, 34 Kashirskoye shosse, Moscow, Russia
| | - Roza M Vlasova
- Department of Psychiatry, University of North Carolina, 101 Manning Dr # 1, Chapel Hill, NC 27514, United States of America
| |
Collapse
|
18
|
Abujamea AH, Almosa M, Uzair M, Alabdullatif N, Bashir S. Reduced Cortical Complexity in Children with Developmental Delay in Saudi Arabia. Cureus 2023; 15:e48291. [PMID: 38058330 PMCID: PMC10696479 DOI: 10.7759/cureus.48291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2023] [Indexed: 12/08/2023] Open
Abstract
INTRODUCTION Developmental delay (DD) is a neurodevelopmental disorder characterized by delays in multiple domains. The investigation of brain structure in DD has been enhanced by advanced neuroimaging techniques that can identify regional surface deformities. Neuroimaging studies have identified structural brain abnormalities in individuals with DD, but research specific to the Saudi Arabian population is limited. In this study, we examine the neuroanatomical abnormalities in the cortical and subcortical regions of Saudi Arabian children with DD. METHOD A T1-weighted, 1-mm-thick MRI was used to acquire structural brain images of 29 children with DD and age-matched healthy controls. RESULTS Analysis of the MRI data revealed significant differences in several cortical and subcortical structures of gray matter (GM) and white matter (WM) in several brain regions of the DD group. Specifically, significant deformities were observed in the caudate nucleus, globus pallidus, frontal gyrus, pars opercularis, pars orbitalis, cingulate gyrus, and subcallosal gyrus. These findings suggest disrupted neurodevelopment in these regions, which may contribute to the cognitive, motor, and behavioral impairments commonly observed in individuals with DD. CONCLUSIONS The present study provides valuable insights into the neuroanatomical differences in Saudi Arabian children with DD. Our results provide evidence for cortical and subcortical abnormalities in DD. Deformities in the observed regions may contribute to cognitive impairment, emotional dysregulation, mood disorders, and language deficits commonly observed in DD. The structural analysis may enable the identification of neuroanatomical biomarkers to facilitate the early diagnosis or progression of DD. These results suggest that lower cortical complexity in DD children due to alterations in networks may play a critical role in early brain development.
Collapse
Affiliation(s)
- Abdullah H Abujamea
- Department of Radiology and Medical Imaging, King Saud University Medical City, King Saud University, Riyadh, SAU
| | - Mohammed Almosa
- Department of Radiology and Medical Imaging, King Saud University Medical City, King Saud University, Riyadh 12372, Saudi Arabia, Riyadh, SAU
| | - Mohammad Uzair
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University, Islamabad, PAK
| | | | - Shahid Bashir
- Department of Neuroscience, Neuroscience Center, King Fahad Specialist Hospital, Dammam, SAU
| |
Collapse
|
19
|
Li J, Yu X, Zou Y, Leng Y, Yang F, Liu B, Fan W. Altered static and dynamic intrinsic brain activity in unilateral sudden sensorineural hearing loss. Front Neurosci 2023; 17:1257729. [PMID: 37719156 PMCID: PMC10500124 DOI: 10.3389/fnins.2023.1257729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/09/2023] [Indexed: 09/19/2023] Open
Abstract
Introduction Sudden sensorineural hearing loss (SSHL) is a critical otologic emergency characterized by a rapid decline of at least 30 dB across three consecutive frequencies in the pure-tone audiogram within a 72-hour period. This audiological condition has been associated with alterations in brain cortical and subcortical structures, as well as changes in brain functional activities involving multiple networks. However, the extent of cerebral intrinsic brain activity disruption in SSHL remains poorly understood. The aimed of this study is to investigate intrinsic brain activity alterations in SSHL using static and dynamic fractional amplitude of low-frequency fluctuation (fALFF) analysis. Methods Resting-state functional magnetic resonance imaging (fMRI) data were acquired from a cohort of SSHL patients (unilateral, n = 102) and healthy controls (n = 73). Static and dynamic fALFF methods were employed to analyze the acquired fMRI data, enabling a comprehensive examination of intrinsic brain activity changes in SSHL. Results Our analysis revealed significant differences in static fALFF patterns between SSHL patients and healthy controls. SSHL patients exhibited decreased fALFF in the left fusiform gyrus, left precentral gyrus, and right inferior frontal gyrus, alongside increased fALFF in the left inferior frontal gyrus, left superior frontal gyrus, and right middle temporal gyrus. Additionally, dynamic fALFF analysis demonstrated elevated fALFF in the right superior frontal gyrus and right middle frontal gyrus among SSHL patients. Intriguingly, we observed a positive correlation between static fALFF in the left fusiform gyrus and the duration of hearing loss, shedding light on potential temporal dynamics associated with intrinsic brain activity changes. Discussion The observed disruptions in intrinsic brain activity and temporal dynamics among SSHL patients provide valuable insights into the functional reorganization and potential compensatory mechanisms linked to hearing loss. These findings underscore the importance of understanding the underlying neural alterations in SSHL, which could pave the way for the development of targeted interventions and rehabilitation strategies aimed at optimizing SSHL management.
Collapse
Affiliation(s)
- Jing Li
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Xiaocheng Yu
- Department of Thyroid and Breast Surgery, Wuhan No. 1 Hospital, Wuhan, China
| | - Yan Zou
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yangming Leng
- Department of Otorhinolaryngology Head and Neck Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Yang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Bo Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenliang Fan
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| |
Collapse
|
20
|
Abbasi O, Steingräber N, Chalas N, Kluger DS, Gross J. Spatiotemporal dynamics characterise spectral connectivity profiles of continuous speaking and listening. PLoS Biol 2023; 21:e3002178. [PMID: 37478152 DOI: 10.1371/journal.pbio.3002178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/31/2023] [Indexed: 07/23/2023] Open
Abstract
Speech production and perception are fundamental processes of human cognition that both rely on intricate processing mechanisms that are still poorly understood. Here, we study these processes by using magnetoencephalography (MEG) to comprehensively map connectivity of regional brain activity within the brain and to the speech envelope during continuous speaking and listening. Our results reveal not only a partly shared neural substrate for both processes but also a dissociation in space, delay, and frequency. Neural activity in motor and frontal areas is coupled to succeeding speech in delta band (1 to 3 Hz), whereas coupling in the theta range follows speech in temporal areas during speaking. Neural connectivity results showed a separation of bottom-up and top-down signalling in distinct frequency bands during speaking. Here, we show that frequency-specific connectivity channels for bottom-up and top-down signalling support continuous speaking and listening. These findings further shed light on the complex interplay between different brain regions involved in speech production and perception.
Collapse
Affiliation(s)
- Omid Abbasi
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Münster, Germany
| | - Nadine Steingräber
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Münster, Germany
| | - Nikos Chalas
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Münster, Germany
- Otto-Creutzfeldt-Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Daniel S Kluger
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Münster, Germany
- Otto-Creutzfeldt-Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Joachim Gross
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Münster, Germany
- Otto-Creutzfeldt-Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| |
Collapse
|
21
|
Camargo A, Mauro GD, Wang Z. Task-induced changes in brain entropy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.28.23289255. [PMID: 37205436 PMCID: PMC10187354 DOI: 10.1101/2023.04.28.23289255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Entropy indicates irregularity of a dynamic system with higher entropy indicating higher irregularity and more transit states. In the human brain, regional entropy has been increasingly assessed using resting state fMRI. Response of regional entropy to task has been scarcely studied. The purpose of this study is to characterize task-induced regional brain entropy (BEN) alterations using the large Human Connectome Project (HCP) data. To control the potential modulation by the block-design, BEN of task-fMRI was calculated from the fMRI images acquired during the task conditions only and then compared to BEN of rsfMRI. Compared to resting state, task-performance unanimously induced BEN reduction in the peripheral cortical area including both the task activated regions and task non-specific regions such as the task negative area and BEN increase in the centric part of the sensorimotor and perception networks. Task control condition showed large residual task effects. After controlling the task non-specific effects using the control BEN vs task BEN comparison, regional BEN showed task specific effects in target regions.
Collapse
Affiliation(s)
- Aldo Camargo
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine
| | - Gianpaolo Del Mauro
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine
| | - Ze Wang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine
| |
Collapse
|
22
|
Kulik V, Reyes LD, Sherwood CC. Coevolution of language and tools in the human brain: An ALE meta-analysis of neural activation during syntactic processing and tool use. PROGRESS IN BRAIN RESEARCH 2023; 275:93-115. [PMID: 36841572 DOI: 10.1016/bs.pbr.2022.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Language and complex tool use are often cited as behaviors unique to humans and may be evolutionarily linked owing to the underlying cognitive processes they have in common. We executed a quantitative activation likelihood estimation (ALE) meta-analysis (GingerALE 2.3) on published, whole-brain neuroimaging studies to identify areas associated with syntactic processing and/or tool use in humans. Significant clusters related to syntactic processing were identified in areas known to be related to language production and comprehension, including bilateral Broca's area in the inferior frontal gyrus. Tool use activation clusters were all in the left hemisphere and included the primary motor cortex and premotor cortex, in addition to other areas involved with sensorimotor transformation. Activation shared by syntactic processing and tool use was only significant at one cluster, located in the pars opercularis of the left inferior frontal gyrus. This minimal overlap between syntactic processing and tool use activation from our meta-analysis of neuroimaging studies indicates that there is not a widespread common neural network between the two. Broca's area may serve as an important hub that was initially recruited in early human evolution in the context of simple tool use, but was eventually co-opted for linguistic purposes, including the sequential and hierarchical ordering processes that characterize syntax. In the future, meta-analyses of additional components of language may allow for a more comprehensive examination of the functional networks that underlie the coevolution of human language and complex tool use.
Collapse
Affiliation(s)
- Veronika Kulik
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, United States
| | - Laura D Reyes
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, United States
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, United States.
| |
Collapse
|
23
|
Bayram M, Palluel-Germain R, Lebon F, Durand E, Harquel S, Perrone-Bertolotti M. Motor imagery training to improve language processing: What are the arguments? Front Hum Neurosci 2023; 17:982849. [PMID: 36816506 PMCID: PMC9929469 DOI: 10.3389/fnhum.2023.982849] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 01/09/2023] [Indexed: 02/04/2023] Open
Abstract
Studies showed that motor expertise was found to induce improvement in language processing. Grounded and situated approaches attributed this effect to an underlying automatic simulation of the motor experience elicited by action words, similar to motor imagery (MI), and suggest shared representations of action conceptualization. Interestingly, recent results also suggest that the mental simulation of action by MI training induces motor-system modifications and improves motor performance. Consequently, we hypothesize that, since MI training can induce motor-system modifications, it could be used to reinforce the functional connections between motor and language system, and could thus lead to improved language performance. Here, we explore these potential interactions by reviewing recent fundamental and clinical literature in the action-language and MI domains. We suggested that exploiting the link between action language and MI could open new avenues for complementary language improvement programs. We summarize the current literature to evaluate the rationale behind this novel training and to explore the mechanisms underlying MI and its impact on language performance.
Collapse
Affiliation(s)
- Mariam Bayram
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, 38000 Grenoble, France
| | | | - Florent Lebon
- Laboratoire INSERM U1093 Cognition, Action, et Plasticité Sensorimotrice, Université de Bourgogne, Faculté des Sciences du Sport (UFR STAPS), Dijon, France,Institut Universitaire de France (IUF), Paris, France
| | - Edith Durand
- Département d’Orthophonie, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Sylvain Harquel
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Marcela Perrone-Bertolotti
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, 38000 Grenoble, France,Institut Universitaire de France (IUF), Paris, France,*Correspondence: Marcela Perrone-Bertolotti,
| |
Collapse
|
24
|
Kunimi M. Activity patterns in Broca's area during visual short-term memory tasks. Gerontol Geriatr Med 2023; 9:23337214231160860. [PMID: 36908825 PMCID: PMC9998404 DOI: 10.1177/23337214231160860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 03/11/2023] Open
Abstract
In this study, near infrared spectroscopy (NIRS) was used to measure activity in Broca's area during a visual short-term memory task in young and older adults, comparing brain activity during three types of stimuli (numbers, easy-to-name shapes, and hard-to-name shapes) and examining how additive language functions are involved. We hypothesized that the Broca's area would be activated in both age groups when memorizing numbers, but not when memorizing hard-to-name shapes. The results showed that visual memory capacity is reduced in the elderly, but not when easy-to-name stimuli are used. This indicates that adding a verbal function to the input of visual information by the elderly seemingly suppresses the effects of aging on memory capacity. This result indicates that the addition of verbal functions may complement other types of cognitive functions that have declined.
Collapse
|
25
|
Qu X, Wang Z, Cheng Y, Xue Q, Li Z, Li L, Feng L, Hartwigsen G, Chen L. Neuromodulatory effects of transcranial magnetic stimulation on language performance in healthy participants: Systematic review and meta-analysis. Front Hum Neurosci 2022; 16:1027446. [PMID: 36545349 PMCID: PMC9760723 DOI: 10.3389/fnhum.2022.1027446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Background The causal relationships between neural substrates and human language have been investigated by transcranial magnetic stimulation (TMS). However, the robustness of TMS neuromodulatory effects is still largely unspecified. This study aims to systematically examine the efficacy of TMS on healthy participants' language performance. Methods For this meta-analysis, we searched PubMed, Web of Science, PsycINFO, Scopus, and Google Scholar from database inception until October 15, 2022 for eligible TMS studies on language comprehension and production in healthy adults published in English. The quality of the included studies was assessed with the Cochrane risk of bias tool. Potential publication biases were assessed by funnel plots and the Egger Test. We conducted overall as well as moderator meta-analyses. Effect sizes were estimated using Hedges'g (g) and entered into a three-level random effects model. Results Thirty-seven studies (797 participants) with 77 effect sizes were included. The three-level random effects model revealed significant overall TMS effects on language performance in healthy participants (RT: g = 0.16, 95% CI: 0.04-0.29; ACC: g = 0.14, 95% CI: 0.04-0.24). Further moderator analyses indicated that (a) for language tasks, TMS induced significant neuromodulatory effects on semantic and phonological tasks, but didn't show significance for syntactic tasks; (b) for cortical targets, TMS effects were not significant in left frontal, temporal or parietal regions, but were marginally significant in the inferior frontal gyrus in a finer-scale analysis; (c) for stimulation parameters, stimulation sites extracted from previous studies, rTMS, and intensities calibrated to the individual resting motor threshold are more prone to induce robust TMS effects. As for stimulation frequencies and timing, both high and low frequencies, online and offline stimulation elicited significant effects; (d) for experimental designs, studies adopting sham TMS or no TMS as the control condition and within-subject design obtained more significant effects. Discussion Overall, the results show that TMS may robustly modulate healthy adults' language performance and scrutinize the brain-and-language relation in a profound fashion. However, due to limited sample size and constraints in the current meta-analysis approach, analyses at a more comprehensive level were not conducted and results need to be confirmed by future studies. Systematic review registration [https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=366481], identifier [CRD42022366481].
Collapse
Affiliation(s)
- Xingfang Qu
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Zichao Wang
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Yao Cheng
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Qingwei Xue
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Zimu Li
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Lu Li
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Liping Feng
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Luyao Chen
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| |
Collapse
|
26
|
Yang Y, Wang F, Andrade-Machado R, De Vito A, Wang J, Zhang T, Liu H. Disrupted functional connectivity patterns of the left inferior frontal gyrus subregions in benign childhood epilepsy with centrotemporal spikes. Transl Pediatr 2022; 11:1552-1561. [PMID: 36247884 PMCID: PMC9561512 DOI: 10.21037/tp-22-270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/26/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Benign epilepsy with centrotemporal spikes (BECTS) is one of the most common pediatric epileptic syndromes. Recent studies have shown that BECTS can lead to significant language dysfunction. Although research supports the role of the left inferior frontal gyrus (LIFG) in BECTS, it is unclear whether the subregions of the LIFG show different change patterns in patients with this syndrome. METHODS Using resting-state functional magnetic resonance imaging (fMRI) data in a group of 49 BECTS patients and 49 healthy controls, we investigated whether the BECTS patients show abnormal connectivity patterns of the LIFG subregions. RESULTS Compared with healthy controls, the BECTS patients exhibited higher connectivity between the following: the inferior frontal sulcus (IFS) and the right anterior cingulate cortex (ACC), and the ventral area 44 (A44v) region and the left hippocampus/parahippocampus. Also, a decreased connectivity was found between the IFS and the left inferior temporal gyrus (ITG). No other significant differences in functional connectivity were found in the other 4 functional subregions of the LIFG in the BECTS. CONCLUSIONS These findings provide evidence for BECTS-related functional connectivity patterns of the LIFG subregions and suggest that different subregions may be involved in different neural circuits associated with language function in the BECTS.
Collapse
Affiliation(s)
- Yang Yang
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, China.,Department of Radiology, Suining Central Hospital, Suining, China
| | - Fuqin Wang
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, China
| | - René Andrade-Machado
- Epilepsy Fellow at Children Hospital of Michigan, Detroit Medical Center, Detroit, MI, USA
| | - Andrea De Vito
- Department of Neuroradiology, H. S. Gerardo Monza, Monza, Italy
| | - Jiaojian Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.,Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, China
| | - Tijiang Zhang
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, China
| | - Heng Liu
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, China
| |
Collapse
|
27
|
Kline JE, Yuan W, Harpster K, Altaye M, Parikh NA. Association between brain structural network efficiency at term-equivalent age and early development of cerebral palsy in very preterm infants. Neuroimage 2021; 245:118688. [PMID: 34758381 PMCID: PMC9264481 DOI: 10.1016/j.neuroimage.2021.118688] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/01/2022] Open
Abstract
Very preterm infants (born at less than 32 weeks gestational age) are at high risk for serious motor impairments, including cerebral palsy (CP). The brain network changes that antecede the early development of CP in infants are not well characterized, and a better understanding may suggest new strategies for risk-stratification at term, which could lead to earlier access to therapies. Graph theoretical methods applied to diffusion MRI-derived brain connectomes may help quantify the organization and information transfer capacity of the preterm brain with greater nuance than overt structural or regional microstructural changes. Our aim was to shed light on the pathophysiology of early CP development, before the occurrence of early intervention therapies and other environmental confounders, to help identify the best early biomarkers of CP risk in VPT infants. In a cohort of 395 very preterm infants, we extracted cortical morphometrics and brain volumes from structural MRI and also applied graph theoretical methods to diffusion MRI connectomes, both acquired at term-equivalent age. Metrics from graph network analysis, especially global efficiency, strength values of the major sensorimotor tracts, and local efficiency of the motor nodes and novel non-motor regions were strongly inversely related to early CP diagnosis. These measures remained significantly associated with CP after correction for common risk factors of motor development, suggesting that metrics of brain network efficiency at term may be sensitive biomarkers for early CP detection. We demonstrate for the first time that in VPT infants, early CP diagnosis is anteceded by decreased brain network segregation in numerous nodes, including motor regions commonly-associated with CP and also novel regions that may partially explain the high rate of cognitive impairments concomitant with CP diagnosis. These advanced MRI biomarkers may help identify the highest risk infants by term-equivalent age, facilitating earlier interventions that are informed by early pathophysiological changes.
Collapse
Affiliation(s)
- Julia E Kline
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 7009, Cincinnati, OH 45229, United States
| | - Weihong Yuan
- Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Radiology, Division of Occupational Therapy and Physical Therapy, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Karen Harpster
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Rehabilitation, Exercise, and Nutrition Sciences, College of Allied Health Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Mekibib Altaye
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Nehal A Parikh
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 7009, Cincinnati, OH 45229, United States; Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| |
Collapse
|
28
|
Language Tasks and the Network Control Role of the Left Inferior Frontal Gyrus. eNeuro 2021; 8:ENEURO.0382-20.2021. [PMID: 34244340 PMCID: PMC8431826 DOI: 10.1523/eneuro.0382-20.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 11/21/2022] Open
Abstract
Recent work has combined cognitive neuroscience and control theory to make predictions about cognitive control functions. Here, we test a link between whole-brain theories of semantics and the role of the left inferior frontal gyrus (LIFG) in controlled language performance using network control theory (NCT), a branch of systems engineering. Specifically, we examined whether two properties of node controllability, boundary and modal controllability, were linked to semantic selection and retrieval on sentence completion and verb generation tasks. We tested whether the controllability of the left IFG moderated language selection and retrieval costs and the effects of continuous θ burst stimulation (cTBS), an inhibitory form of transcranial magnetic stimulation (TMS) on behavior in 41 human subjects (25 active, 16 sham). We predicted that boundary controllability, a measure of the theoretical ability of a node to integrate and segregate brain networks, would be linked to word selection in the contextually-rich sentence completion task. In contrast, we expected that modal controllability, a measure of the theoretical ability of a node to drive the brain into specifically hard-to-reach states, would be linked to retrieval on the low-context verb generation task. Boundary controllability was linked to selection and to the ability of TMS to reduce response latencies on the sentence completion task. In contrast, modal controllability was not linked to performance on the tasks or TMS effects. Overall, our results suggest a link between the network integrating role of the LIFG and selection and the overall semantic demands of sentence completion.
Collapse
|
29
|
Rapid computation of TMS-induced E-fields using a dipole-based magnetic stimulation profile approach. Neuroimage 2021; 237:118097. [PMID: 33940151 PMCID: PMC8353625 DOI: 10.1016/j.neuroimage.2021.118097] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/25/2021] [Accepted: 04/23/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND TMS neuronavigation with on-line display of the induced electric field (E-field) has the potential to improve quantitative targeting and dosing of stimulation, but present commercially available solutions are limited by simplified approximations. OBJECTIVE Developing a near real-time method for accurate approximation of TMS induced E-fields with subject-specific high-resolution surface-based head models that can be utilized for TMS navigation. METHODS Magnetic dipoles are placed on a closed surface enclosing an MRI-based head model of the subject to define a set of basis functions for the incident and total E-fields that define the subject's Magnetic Stimulation Profile (MSP). The near real-time speed is achieved by recognizing that the total E-field of the coil only depends on the incident E-field and the conductivity boundary geometry. The total E-field for any coil position can be obtained by matching the incident field of the stationary dipole basis set with the incident E-field of the moving coil and applying the same basis coefficients to the total E-field basis functions. RESULTS Comparison of the MSP-based approximation with an established TMS solver shows great agreement in the E-field amplitude (relative maximum error around 5%) and the spatial distribution patterns (correlation >98%). Computation of the E-field took ~100 ms on a cortical surface mesh with 120k facets. CONCLUSION The numerical accuracy and speed of the MSP approximation method make it well suited for a wide range of computational tasks including interactive planning, targeting, dosing, and visualization of the intracranial E-fields for near real-time guidance of coil positioning.
Collapse
|