1
|
Jiang J, Brotherhood EV, Core LB, Hardy CJ, Yong KX, Foulkes A, Warren JD. Preserved musical working memory and absolute pitch in posterior cortical atrophy. Cortex 2024; 181:1-11. [PMID: 39442325 DOI: 10.1016/j.cortex.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/09/2024] [Accepted: 09/15/2024] [Indexed: 10/25/2024]
Abstract
Working memory for nonverbal auditory information is essential for everyday functioning but its cognitive organisation is not well understood. Here we addressed this issue in a musician, YA, with absolute pitch (AP, the uncommon ability to categorise and label individual musical pitches without an external reference) who developed posterior cortical atrophy. We assessed YA's AP ability and her working memory for pitch and rhythmic patterns using procedures modelled on a standard test of auditory verbal working memory (digit span), referenced to age-matched, cognitively-normal AP and non-AP possessing musicians. YA had retained AP and performed comparably to healthy older AP and non-AP musicians on all musical working memory tasks, despite impaired auditory verbal working memory. These findings suggest that the cognitive mechanisms for auditory verbal working memory, nonverbal (pitch and rhythm) working memory and AP are at least partly dissociable, and both musical working memory and AP can be spared despite posterior parietal degeneration.
Collapse
Affiliation(s)
- Jessica Jiang
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Emilie V Brotherhood
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Lucy B Core
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Chris Jd Hardy
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Keir Xx Yong
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Alexander Foulkes
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Jason D Warren
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.
| |
Collapse
|
2
|
Hansen NC, Reymore L. Timbral cues underlie instrument-specific absolute pitch in expert oboists. PLoS One 2024; 19:e0306974. [PMID: 39361623 PMCID: PMC11449301 DOI: 10.1371/journal.pone.0306974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 06/26/2024] [Indexed: 10/05/2024] Open
Abstract
While absolute pitch (AP)-the ability to identify musical pitches without external reference-is rare even in professional musicians, anecdotal evidence and case-report data suggest that some musicians without traditional AP can nonetheless better name notes played on their musical instrument of expertise than notes played on instruments less familiar to them. We have called this gain in AP ability "instrument-specific absolute pitch" (ISAP). Here, we report the results of the first two experiments designed to investigate ISAP in professional oboists. In Experiment 1 (n = 40), superiority for identifying the pitch of oboe over piano tones varied along a continuum, with 37.5% of oboists demonstrating significant ISAP. Variance in accuracy across pitches was higher among ISAP-possessors than ISAP-non-possessors, suggestive of internalized timbral idiosyncrasies, and the use of timbral cues was the second-most commonly reported task strategy. For both timbres, both groups performed more accurately for pitches associated with white than black piano keys. In Experiment 2 (n = 12), oboists with ISAP were less accurate in pitch identification when oboe tones were artificially pitch-shifted. The use of timbral idiosyncrasies thus may constitute a widespread mechanism of ISAP. Motor interference, conversely, did not significantly reduce accuracy. This study offers the first evidence of ISAP among highly trained musicians and that reliance on subtle timbral (or intonational) idiosyncrasies may constitute an underlying mechanism of this ability in expert oboists. This provides a path forward for future studies extending the scientific understanding of ISAP to other instrument types, expertise levels, and musical contexts. More generally, this may deepen knowledge of specialized expertise, representing a range of implicit abilities that are not addressed directly in training, but which may develop through practice of a related skill set.
Collapse
Affiliation(s)
- Niels Chr. Hansen
- Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
- Centre of Excellence in Music, Mind, Body, & Brain, Department of Music, Art and Culture Studies, University of Jyväskylä, Jyväskylä, Finland
- Interacting Minds Centre, School of Culture and Society, Aarhus University, Aarhus, Denmark
- Royal Academy of Music, Aarhus/Aalborg, Denmark
| | - Lindsey Reymore
- Schulich School of Music, McGill University, Montreal, Canada
- School of Music, Dance, and Theatre, Arizona State University, Tempe, AZ, United States of America
| |
Collapse
|
3
|
Di Stefano N, Spence C. Should absolute pitch be considered as a unique kind of absolute sensory judgment in humans? A systematic and theoretical review of the literature. Cognition 2024; 249:105805. [PMID: 38761646 DOI: 10.1016/j.cognition.2024.105805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/12/2024] [Accepted: 04/23/2024] [Indexed: 05/20/2024]
Abstract
Absolute pitch is the name given to the rare ability to identify a musical note in an automatic and effortless manner without the need for a reference tone. Those individuals with absolute pitch can, for example, name the note they hear, identify all of the tones of a given chord, and/or name the pitches of everyday sounds, such as car horns or sirens. Hence, absolute pitch can be seen as providing a rare example of absolute sensory judgment in audition. Surprisingly, however, the intriguing question of whether such an ability presents unique features in the domain of sensory perception, or whether instead similar perceptual skills also exist in other sensory domains, has not been explicitly addressed previously. In this paper, this question is addressed by systematically reviewing research on absolute pitch using the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) method. Thereafter, we compare absolute pitch with two rare types of sensory experience, namely synaesthesia and eidetic memory, to understand if and how these phenomena exhibit similar features to absolute pitch. Furthermore, a common absolute perceptual ability that has been often compared to absolute pitch, namely colour perception, is also discussed. Arguments are provided supporting the notion that none of the examined abilities can be considered like absolute pitch. Therefore, we conclude by suggesting that absolute pitch does indeed appear to constitute a unique kind of absolute sensory judgment in humans, and we discuss some open issues and novel directions for future research in absolute pitch.
Collapse
Affiliation(s)
- Nicola Di Stefano
- Institute of Cognitive Sciences and Technologies, National Research Council of Italy (CNR), Via Gian Domenico Romagnosi, 18, 00196 Rome, Italy.
| | - Charles Spence
- Crossmodal Research Laboratory, Department of Experimental Psychology, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Benner J, Reinhardt J, Christiner M, Wengenroth M, Stippich C, Schneider P, Blatow M. Temporal hierarchy of cortical responses reflects core-belt-parabelt organization of auditory cortex in musicians. Cereb Cortex 2023:7030622. [PMID: 36786655 DOI: 10.1093/cercor/bhad020] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 02/15/2023] Open
Abstract
Human auditory cortex (AC) organization resembles the core-belt-parabelt organization in nonhuman primates. Previous studies assessed mostly spatial characteristics; however, temporal aspects were little considered so far. We employed co-registration of functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG) in musicians with and without absolute pitch (AP) to achieve spatial and temporal segregation of human auditory responses. First, individual fMRI activations induced by complex harmonic tones were consistently identified in four distinct regions-of-interest within AC, namely in medial Heschl's gyrus (HG), lateral HG, anterior superior temporal gyrus (STG), and planum temporale (PT). Second, we analyzed the temporal dynamics of individual MEG responses at the location of corresponding fMRI activations. In the AP group, the auditory evoked P2 onset occurred ~25 ms earlier in the right as compared with the left PT and ~15 ms earlier in the right as compared with the left anterior STG. This effect was consistent at the individual level and correlated with AP proficiency. Based on the combined application of MEG and fMRI measurements, we were able for the first time to demonstrate a characteristic temporal hierarchy ("chronotopy") of human auditory regions in relation to specific auditory abilities, reflecting the prediction for serial processing from nonhuman studies.
Collapse
Affiliation(s)
- Jan Benner
- Department of Neuroradiology and Section of Biomagnetism, University of Heidelberg Hospital, Heidelberg, Germany
| | - Julia Reinhardt
- Department of Cardiology and Cardiovascular Research Institute Basel (CRIB), University Hospital Basel, University of Basel, Basel, Switzerland.,Department of Orthopedic Surgery and Traumatology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Markus Christiner
- Centre for Systematic Musicology, University of Graz, Graz, Austria.,Department of Musicology, Vitols Jazeps Latvian Academy of Music, Riga, Latvia
| | - Martina Wengenroth
- Department of Neuroradiology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Christoph Stippich
- Department of Neuroradiology and Radiology, Kliniken Schmieder, Allensbach, Germany
| | - Peter Schneider
- Department of Neuroradiology and Section of Biomagnetism, University of Heidelberg Hospital, Heidelberg, Germany.,Centre for Systematic Musicology, University of Graz, Graz, Austria.,Department of Musicology, Vitols Jazeps Latvian Academy of Music, Riga, Latvia
| | - Maria Blatow
- Section of Neuroradiology, Department of Radiology and Nuclear Medicine, Neurocenter, Cantonal Hospital Lucerne, University of Lucerne, Lucerne, Switzerland
| |
Collapse
|
5
|
Generalizing across tonal context, timbre, and octave in rapid absolute pitch training. Atten Percept Psychophys 2023; 85:525-542. [PMID: 36690914 DOI: 10.3758/s13414-023-02653-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2023] [Indexed: 01/24/2023]
Abstract
Absolute pitch (AP) is the rare ability to name any musical note without the use of a reference note. Given that genuine AP representations are based on the identification of isolated notes by their tone chroma, they are considered to be invariant to (1) surrounding tonal context, (2) changes in instrumental timbre, and (3) changes in octave register. However, there is considerable variability in the literature in terms of how AP is trained and tested along these dimensions, making recent claims about AP learning difficult to assess. Here, we examined the effect of tonal context on participant success with a single-note identification training paradigm, including how learning generalized to an untested instrument and octave. We found that participants were able to rapidly learn to distinguish C from other notes, with and without feedback and regardless of the tonal context in which C was presented. Participants were also able to partly generalize this skill to an untrained instrument. However, participants displayed the weakest generalization in recognizing C in a higher octave. The results indicate that participants were likely attending to pitch height in addition to pitch chroma - a conjecture that was supported by analyzing the pattern of response errors. These findings highlight the complex nature of note representation in AP, which requires note identification across contexts, going beyond the simple storage of a note fundamental. The importance of standardizing testing that spans both timbre and octave in assessing AP and further implications on past literature and future work are discussed.
Collapse
|
6
|
Samiotis IP, Qiu S, Lofi C, Yang J, Gadiraju U, Bozzon A. An Analysis of Music Perception Skills on Crowdsourcing Platforms. Front Artif Intell 2022; 5:828733. [PMID: 35774636 PMCID: PMC9237482 DOI: 10.3389/frai.2022.828733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/09/2022] [Indexed: 11/17/2022] Open
Abstract
Music content annotation campaigns are common on paid crowdsourcing platforms. Crowd workers are expected to annotate complex music artifacts, a task often demanding specialized skills and expertise, thus selecting the right participants is crucial for campaign success. However, there is a general lack of deeper understanding of the distribution of musical skills, and especially auditory perception skills, in the worker population. To address this knowledge gap, we conducted a user study (N = 200) on Prolific and Amazon Mechanical Turk. We asked crowd workers to indicate their musical sophistication through a questionnaire and assessed their music perception skills through an audio-based skill test. The goal of this work is to better understand the extent to which crowd workers possess higher perceptions skills, beyond their own musical education level and self reported abilities. Our study shows that untrained crowd workers can possess high perception skills on the music elements of melody, tuning, accent, and tempo; skills that can be useful in a plethora of annotation tasks in the music domain.
Collapse
Affiliation(s)
- Ioannis Petros Samiotis
- Department of Software Technology, Delft University of Technology, Delft, Netherlands
- *Correspondence: Ioannis Petros Samiotis
| | - Sihang Qiu
- Department of Software Technology, Delft University of Technology, Delft, Netherlands
- Hunan Institute of Advanced Technology, Changsha, China
| | - Christoph Lofi
- Department of Software Technology, Delft University of Technology, Delft, Netherlands
| | - Jie Yang
- Department of Software Technology, Delft University of Technology, Delft, Netherlands
| | - Ujwal Gadiraju
- Department of Software Technology, Delft University of Technology, Delft, Netherlands
| | - Alessandro Bozzon
- Department of Software Technology, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
7
|
Blanco AD, Tassani S, Ramirez R. Effects of Visual and Auditory Feedback in Violin and Singing Voice Pitch Matching Tasks. Front Psychol 2021; 12:684693. [PMID: 34305739 PMCID: PMC8297736 DOI: 10.3389/fpsyg.2021.684693] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/04/2021] [Indexed: 11/13/2022] Open
Abstract
Auditory-guided vocal learning is a mechanism that operates both in humans and other animal species making us capable to imitate arbitrary sounds. Both auditory memories and auditory feedback interact to guide vocal learning. This may explain why it is easier for humans to imitate the pitch of a human voice than the pitch of a synthesized sound. In this study, we compared the effects of two different feedback modalities in learning pitch-matching abilities using a synthesized pure tone in 47 participants with no prior music experience. Participants were divided into three groups: a feedback group (N = 15) receiving real-time visual feedback of their pitch as well as knowledge of results; an equal-timbre group (N = 17) receiving additional auditory feedback of the target note with a similar timbre to the instrument being used (i.e., violin or human voice); and a control group (N = 15) practicing without any feedback or knowledge of results. An additional fourth group of violin experts performed the same task for comparative purposes (N = 15). All groups were posteriorly evaluated in a transfer phase. Both experimental groups (i.e., the feedback and equal-timbre groups) improved their intonation abilities with the synthesized sound after receiving feedback. Participants from the equal-timber group seemed as capable as the feedback group of producing the required pitch with the voice after listening to the human voice, but not with the violin (although they also showed improvement). In addition, only participants receiving real-time visual feedback learned and retained in the transfer phase the mapping between the synthesized pitch and its correspondence with the produced vocal or violin pitch. It is suggested that both the effect of an objective external reward, together with the experience of exploring the pitch space with their instrument in an explicit manner, helped participants to understand how to control their pitch production, strengthening their schemas, and favoring retention.
Collapse
Affiliation(s)
- Angel David Blanco
- Music and Machine Learning Lab, Department of Information and Communications Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Simone Tassani
- Multiscale and Computational Biomechanics and Mechanobiology Team, Department of Information and Communications Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Rafael Ramirez
- Music and Machine Learning Lab, Department of Information and Communications Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
8
|
Hansen NC, Reymore L. Articulatory motor planning and timbral idiosyncrasies as underlying mechanisms of instrument-specific absolute pitch in expert musicians. PLoS One 2021; 16:e0247136. [PMID: 33606800 PMCID: PMC7894932 DOI: 10.1371/journal.pone.0247136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 02/01/2021] [Indexed: 11/19/2022] Open
Abstract
The study of musical expertise illustrates how intense training in a specialized domain may instigate development of implicit skills. While absolute pitch, or the ability to identify musical pitches without external reference, is rare even in professional musicians and is understood to have a genetic component, anecdotal evidence and pilot data suggest that some musicians without traditional absolute pitch are nonetheless better able to name notes played on their musical instrument of expertise than notes played on less familiar instruments. We have previously termed this particular gain in absolute pitch identification ability "instrument-specific absolute pitch" (ISAP) and have proposed that this skill is related to learned instrument type-specific timbral and intonational idiosyncrasies and articulatory motor planning activated by the timbre of the instrument. In this Registered Report Protocol, we describe two experiments designed to investigate ISAP in professional oboists. Experiment 1 tests for ISAP ability by comparing oboists' pitch identification accuracies for notes played on the oboe and on the piano. A subset of the participants from Experiment 1 who demonstrate this ability will be recruited for Experiment 2; the purpose of Experiment 2 is to test hypotheses concerning a mechanistic explanation for ISAP. The outcome of these experiments may provide support for the theory that some individuals have ISAP and that the underlying mechanisms of this ability may rely on the perception of subtle timbral/intonational idiosyncrasies and on articulatory motor planning developed through intensive long-term training. In general, this work will contribute to the understanding of specialized expertise, specifically of implicit abilities and biases that are not addressed directly in training, but that may yet develop through practice of a related skill set.
Collapse
Affiliation(s)
- Niels Chr. Hansen
- Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
- Center for Music in the Brain, Aarhus University & Royal Academy of Music Aarhus-Aalborg, Aarhus, Denmark
| | - Lindsey Reymore
- Schulich School of Music, McGill University, Montreal, Quebec, Canada
| |
Collapse
|