1
|
Kulig H, Polasik D, Drozd R, Grzesiak W, Hukowska-Szematowicz B, Yu YH, Cheng YH, Dybus A. Structural impact of GSR and LRP8 gene polymorphisms on protein function and their role in racing performance of homing pigeons. Int J Biol Macromol 2025; 310:143181. [PMID: 40246119 DOI: 10.1016/j.ijbiomac.2025.143181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 04/07/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
Glutathione reductase (GSR) plays a critical role in the prevention of oxidative damage within the cell. Apolipoprotein E receptor 2 (LRP8) participates in a pathway that modulates synaptic plasticity events crucial for learning and memory. The above aspects are very important when homing pigeons participate in sports competitions. The aim of the study was to analyze single nucleotide polymorphisms (SNPs) in the GSR and LRP8 genes in homing pigeons and to evaluate the potential impact of these genotypes on racing performance, as well as their structural consequences for the encoded proteins. The research included a total of 311 young individuals. DNA was extracted from the blood. Genotypes were determined by the ACRS-PCR test designed. Statistical analysis revealed that the c.606G > T polymorphism in LRP8 gene significantly influenced racing performance, was associated with race performance heterozygous GT pigeons achieving higher mean values of ace points (AP) than homozygous individuals. Therefore, the GT genotype may serve as a selection criterion in pigeon breeding. Further research is necessary to confirm the functionality of the GSR KB376299.1:62398C > T SNP in shaping the racing phenotype of pigeons.
Collapse
Affiliation(s)
- Hanna Kulig
- Department of Genetics, West Pomeranian University of Technology, Aleja Piastów 45, 70-311 Szczecin, Poland
| | - Daniel Polasik
- Department of Genetics, West Pomeranian University of Technology, Aleja Piastów 45, 70-311 Szczecin, Poland
| | - Radosław Drozd
- Department of Microbiology and Biotechnology, West Pomeranian University of Technology, Aleja Piastów 45, 70-311 Szczecin, Poland.
| | - Wilhelm Grzesiak
- Biostatistics, Bioinformatics and Animal Research Methods Research Team, West Pomeranian University of Technology, Klemensa Janickiego 29, 71-270 Szczecin, Poland
| | - Beata Hukowska-Szematowicz
- Institute of Biology, University of Szczecin, Wąska 13, 71-412 Szczecin, Poland; Molecular Biology and Biotechnology Center, University of Szczecin, Wąska 13, 71-412 Szczecin, Poland
| | - Yu-Hsiang Yu
- Department of Biotechnology and Animal Science, National Ilan University, No. 1, Sec. 1, Shennong Rd., Yilan City 26047, Taiwan
| | - Yeong-Hsiang Cheng
- Department of Biotechnology and Animal Science, National Ilan University, No. 1, Sec. 1, Shennong Rd., Yilan City 26047, Taiwan
| | - Andrzej Dybus
- Department of Genetics, West Pomeranian University of Technology, Aleja Piastów 45, 70-311 Szczecin, Poland
| |
Collapse
|
2
|
Basu J, Nagel K. Neural circuits for goal-directed navigation across species. Trends Neurosci 2024; 47:904-917. [PMID: 39393938 PMCID: PMC11563880 DOI: 10.1016/j.tins.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/26/2024] [Accepted: 09/17/2024] [Indexed: 10/13/2024]
Abstract
Across species, navigation is crucial for finding both resources and shelter. In vertebrates, the hippocampus supports memory-guided goal-directed navigation, whereas in arthropods the central complex supports similar functions. A growing literature is revealing similarities and differences in the organization and function of these brain regions. We review current knowledge about how each structure supports goal-directed navigation by building internal representations of the position or orientation of an animal in space, and of the location or direction of potential goals. We describe input pathways to each structure - medial and lateral entorhinal cortex in vertebrates, and columnar and tangential neurons in insects - that primarily encode spatial and non-spatial information, respectively. Finally, we highlight similarities and differences in spatial encoding across clades and suggest experimental approaches to compare coding principles and behavioral capabilities across species. Such a comparative approach can provide new insights into the neural basis of spatial navigation and neural computation.
Collapse
Affiliation(s)
- Jayeeta Basu
- Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA; Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
| | - Katherine Nagel
- Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA; Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
3
|
刘 新, 刘 凯, 彭 缓, 秦 月, 齐 小, 王 东, 温 盛. [Three-dimensional positioning and trajectory tracking of pigeons in large indoor spaces]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2024; 41:715-723. [PMID: 39218597 PMCID: PMC11366465 DOI: 10.7507/1001-5515.202401064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/28/2024] [Indexed: 09/04/2024]
Abstract
Animal localization and trajectory tracking are of great value for the study of brain spatial cognition and navigation neural mechanisms. However, traditional optical lens video positioning techniques are limited in their scope due to factors such as camera perspective. For pigeons with excellent spatial cognition and navigation abilities, based on the beacon positioning technology, a three-dimensional (3D) trajectory positioning and tracking method suitable for large indoor spaces was proposed, and the corresponding positioning principle and hardware structure were provided. The results of in vitro and in vivo experiments showed that the system could achieve centimeter-level positioning and trajectory tracking of pigeons in a space of 360 cm × 200 cm × 245 cm. Compared with traditional optical lens video positioning techniques, this system has the advantages of large space, high precision, and high response speed. It not only helps to study the neural mechanisms of pigeon 3D spatial cognition and navigation, but also has high reference value for trajectory tracking of other animals.
Collapse
Affiliation(s)
- 新玉 刘
- 黄淮学院 智能制造学院(河南驻马店 463000)School of Intelligent Manufacturing, Huanghuai University, Zhumadian, Henan 463000, P. R. China
| | - 凯歌 刘
- 黄淮学院 智能制造学院(河南驻马店 463000)School of Intelligent Manufacturing, Huanghuai University, Zhumadian, Henan 463000, P. R. China
- 中原工学院 电子信息学院(郑州 450007)School of Electronic and Information Engineering, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| | - 缓缓 彭
- 黄淮学院 智能制造学院(河南驻马店 463000)School of Intelligent Manufacturing, Huanghuai University, Zhumadian, Henan 463000, P. R. China
| | - 月 秦
- 黄淮学院 智能制造学院(河南驻马店 463000)School of Intelligent Manufacturing, Huanghuai University, Zhumadian, Henan 463000, P. R. China
- 中原工学院 电子信息学院(郑州 450007)School of Electronic and Information Engineering, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| | - 小敏 齐
- 黄淮学院 智能制造学院(河南驻马店 463000)School of Intelligent Manufacturing, Huanghuai University, Zhumadian, Henan 463000, P. R. China
| | - 东云 王
- 黄淮学院 智能制造学院(河南驻马店 463000)School of Intelligent Manufacturing, Huanghuai University, Zhumadian, Henan 463000, P. R. China
| | - 盛军 温
- 黄淮学院 智能制造学院(河南驻马店 463000)School of Intelligent Manufacturing, Huanghuai University, Zhumadian, Henan 463000, P. R. China
| |
Collapse
|
4
|
Shirdhankar RN, Malkemper EP. Cognitive maps and the magnetic sense in vertebrates. Curr Opin Neurobiol 2024; 86:102880. [PMID: 38657284 DOI: 10.1016/j.conb.2024.102880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/04/2024] [Accepted: 04/02/2024] [Indexed: 04/26/2024]
Abstract
Navigation requires a network of neurons processing inputs from internally generated cues and external landmarks. Most studies on the neuronal basis of navigation in vertebrates have focused on rats and mice and the canonical senses vision, hearing, olfaction, and somatosensation. Some animals have evolved the ability to sense the Earth's magnetic field and use it for orientation. It can be expected that in these animals magnetic cues are integrated with other sensory cues in the cognitive map. We provide an overview of the behavioral evidence and brain regions involved in magnetic sensing in support of this idea, hoping that this will guide future experiments.
Collapse
Affiliation(s)
- Runita N Shirdhankar
- Research Group Neurobiology of Magnetoreception, Max Planck Institute for Neurobiology of Behavior - Caesar, Ludwig-Erhard-Allee 2, Bonn 53175, Germany; International Max Planck Research School for Brain and Behavior, Bonn, Germany
| | - E Pascal Malkemper
- Research Group Neurobiology of Magnetoreception, Max Planck Institute for Neurobiology of Behavior - Caesar, Ludwig-Erhard-Allee 2, Bonn 53175, Germany.
| |
Collapse
|
5
|
Stefaniuk-Szmukier M, Szmatoła T, Pustelnik A, Ropka-Molik K. First transcriptomic insight into the working muscles of racing pigeons during a competition flight. Mol Biol Rep 2024; 51:625. [PMID: 38717527 PMCID: PMC11078782 DOI: 10.1007/s11033-024-09566-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/18/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND The currently known homing pigeon is a result of a sharp one-sided selection for flight characteristics focused on speed, endurance, and spatial orientation. This has led to extremely well-adapted athletic phenotypes in racing birds. METHODS Here, we identify genes and pathways contributing to exercise adaptation in sport pigeons by applying next-generation transcriptome sequencing of m.pectoralis muscle samples, collected before and after a 300 km competition flight. RESULTS The analysis of differentially expressed genes pictured the central role of pathways involved in fuel selection and muscle maintenance during flight, with a set of genes, in which variations may therefore be exploited for genetic improvement of the racing pigeon population towards specific categories of competition flights. CONCLUSIONS The presented results are a background to understanding the genetic processes in the muscles of birds during flight and also are the starting point of further selection of genetic markers associated with racing performance in carrier pigeons.
Collapse
Affiliation(s)
- Monika Stefaniuk-Szmukier
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1, Balice, 32-083, Poland.
- Department of Animal Reproduction, Anatomy and Genomics, The University of Agriculture in Kraków, Al. Mickiewicza 24/28, Kraków, 30-059, Poland.
| | - Tomasz Szmatoła
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1, Balice, 32-083, Poland
- Center for Experimental and Innovative Medicine, The University of Agriculture in Krakow, Rędzina 1C, Kraków, 30-248, Poland
| | - Agnieszka Pustelnik
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1, Balice, 32-083, Poland
| | - Katarzyna Ropka-Molik
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1, Balice, 32-083, Poland
| |
Collapse
|
6
|
Rudolf J, Philipello N, Fleihan T, Dickman JD, Delmore KE. Night-time neuronal activation of Cluster N in a North American songbird. PLoS One 2024; 19:e0300479. [PMID: 38512887 PMCID: PMC10956746 DOI: 10.1371/journal.pone.0300479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 02/13/2024] [Indexed: 03/23/2024] Open
Abstract
Night-migrating songbirds utilize the Earth's magnetic field to help navigate to and from their breeding sites each year. A region of the avian forebrain called Cluster N has been shown to be activated during night migratory behavior and it has been implicated in processing geomagnetic information. Previous studies with night-migratory European songbirds have shown that neuronal activity at Cluster N is higher at night than during the day. Comparable work in North American migrants has only been performed in one species of swallows, so extension of examination for Cluster N in other migratory birds is needed. In addition, it is unclear if Cluster N activation is lateralized and the full extent of its boundaries in the forebrain have yet to be described. We used sensory-driven gene expression based on ZENK and the Swainson's thrush, a night-migratory North American songbird, to fill these knowledge gaps. We found elevated levels of gene expression in night- vs. day-active thrushes and no evidence for lateralization in this region. We further examined the anatomical extent of neural activation in the forebrain using 3D reconstruction topology. Our findings demonstrate that Swainson's thrushes possess an extensive bilateral night-activated Cluster N region in the forebrain similar to other European avian species, suggesting that Cluster N is highly conserved in nocturnal migrants.
Collapse
Affiliation(s)
- Jennifer Rudolf
- Biology Department, Texas A&M University, College Station, Texas, United States of America
| | - Natalie Philipello
- Biology Department, Texas A&M University, College Station, Texas, United States of America
| | - Tamara Fleihan
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
| | - J. David Dickman
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
| | - Kira E. Delmore
- Biology Department, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
7
|
Morandi-Raikova A, Mayer U. Spatial cognition and the avian hippocampus: Research in domestic chicks. Front Psychol 2022; 13:1005726. [PMID: 36211859 PMCID: PMC9539314 DOI: 10.3389/fpsyg.2022.1005726] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
In this review, we discuss the functional equivalence of the avian and mammalian hippocampus, based mostly on our own research in domestic chicks, which provide an important developmental model (most research on spatial cognition in other birds relies on adult animals). In birds, like in mammals, the hippocampus plays a central role in processing spatial information. However, the structure of this homolog area shows remarkable differences between birds and mammals. To understand the evolutionary origin of the neural mechanisms for spatial navigation, it is important to test how far theories developed for the mammalian hippocampus can also be applied to the avian hippocampal formation. To address this issue, we present a brief overview of studies carried out in domestic chicks, investigating the direct involvement of chicks' hippocampus homolog in spatial navigation.
Collapse
Affiliation(s)
| | - Uwe Mayer
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| |
Collapse
|