1
|
Maltese M, Stanic J, Tassone A, Sciamanna G, Ponterio G, Vanni V, Martella G, Imbriani P, Bonsi P, Mercuri NB, Gardoni F, Pisani A. Early structural and functional plasticity alterations in a susceptibility period of DYT1 dystonia mouse striatum. eLife 2018; 7:33331. [PMID: 29504938 PMCID: PMC5849413 DOI: 10.7554/elife.33331] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 03/02/2018] [Indexed: 12/30/2022] Open
Abstract
The onset of abnormal movements in DYT1 dystonia is between childhood and adolescence, although it is unclear why clinical manifestations appear during this developmental period. Plasticity at corticostriatal synapses is critically involved in motor memory. In the Tor1a+/Δgag DYT1 dystonia mouse model, long-term potentiation (LTP) appeared prematurely in a critical developmental window in striatal spiny neurons (SPNs), while long-term depression (LTD) was never recorded. Analysis of dendritic spines showed an increase of both spine width and mature mushroom spines in Tor1a+/Δgag neurons, paralleled by an enhanced AMPA receptor (AMPAR) accumulation. BDNF regulates AMPAR expression during development. Accordingly, both proBDNF and BDNF levels were significantly higher in Tor1a+/Δgag mice. Consistently, antagonism of BDNF rescued synaptic plasticity deficits and AMPA currents. Our findings demonstrate that early loss of functional and structural synaptic homeostasis represents a unique endophenotypic trait during striatal maturation, promoting the appearance of clinical manifestations in mutation carriers.
Collapse
Affiliation(s)
- Marta Maltese
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Jennifer Stanic
- Department of Pharmacology, University of Milan, Milan, Italy
| | - Annalisa Tassone
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giuseppe Sciamanna
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giulia Ponterio
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Valentina Vanni
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giuseppina Martella
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Paola Imbriani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | | | - Nicola Biagio Mercuri
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | | | - Antonio Pisani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
2
|
Martínez-Rivera A, Hao J, Tropea TF, Giordano TP, Kosovsky M, Rice RC, Lee A, Huganir RL, Striessnig J, Addy NA, Han S, Rajadhyaksha AM. Enhancing VTA Ca v1.3 L-type Ca 2+ channel activity promotes cocaine and mood-related behaviors via overlapping AMPA receptor mechanisms in the nucleus accumbens. Mol Psychiatry 2017; 22:1735-1745. [PMID: 28194001 PMCID: PMC5555837 DOI: 10.1038/mp.2017.9] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 11/30/2016] [Accepted: 12/23/2016] [Indexed: 02/07/2023]
Abstract
Genetic factors significantly influence susceptibility for substance abuse and mood disorders. Rodent studies have begun to elucidate a role of Cav1.3 L-type Ca2+ channels in neuropsychiatric-related behaviors, such as addictive and depressive-like behaviors. Human studies have also linked the CACNA1D gene, which codes for the Cav1.3 protein, with bipolar disorder. However, the neurocircuitry and the molecular mechanisms underlying the role of Cav1.3 in neuropsychiatric phenotypes are not well established. In the present study, we directly manipulated Cav1.3 channels in Cav1.2 dihydropyridine insensitive mutant mice and found that ventral tegmental area (VTA) Cav1.3 channels mediate cocaine-related and depressive-like behavior through a common nucleus accumbens (NAc) shell calcium-permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (CP-AMPAR) mechanism that requires GluA1 phosphorylation at S831. Selective activation of VTA Cav1.3 with (±)-BayK-8644 (BayK) enhanced cocaine conditioned place preference and cocaine psychomotor activity while inducing depressive-like behavior, an effect not observed in S831A phospho-mutant mice. Infusion of the CP-AMPAR-specific blocker Naspm into the NAc shell reversed the cocaine and depressive-like phenotypes. In addition, activation of VTA Cav1.3 channels resulted in social behavioral deficits. In contrast to the cocaine- and depression-related phenotypes, GluA1/A2 AMPARs in the NAc core mediated social deficits, independent of S831-GluA1 phosphorylation. Using a candidate gene analysis approach, we also identified single-nucleotide polymorphisms in the CACNA1D gene associated with cocaine dependence in human subjects. Together, our findings reveal novel, overlapping mechanisms through which VTA Cav1.3 mediates cocaine-related, depressive-like and social phenotypes, suggesting that Cav1.3 may serve as a target for the treatment of neuropsychiatric symptoms.
Collapse
Affiliation(s)
- Arlene Martínez-Rivera
- Dept. of Pediatrics, Division of Pediatric Neurology, Weill Cornell Medicine, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
| | - Jin Hao
- Dept. of Pediatrics, Division of Pediatric Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Thomas F. Tropea
- Dept. of Pediatrics, Division of Pediatric Neurology, Weill Cornell Medicine, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
| | - Thomas P. Giordano
- Dept. of Pediatrics, Division of Pediatric Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Maria Kosovsky
- Dept. of Pediatrics, Division of Pediatric Neurology, Weill Cornell Medicine, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
| | - Richard C. Rice
- Dept. of Pediatrics, Division of Pediatric Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Amy Lee
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
| | - Richard L. Huganir
- Department of Solomon H. Snyder Department of Neuroscience, Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joerg Striessnig
- Pharmacology and Toxicology, University of Innsbruck, Innsbruck, Austria; Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Nii A. Addy
- Department of Psychiatry and Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA; Interdepartmental Neuroscience Program, Yale Graduate School of Arts and Science, New Haven, CT, USA
| | - Shizhong Han
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Anjali M. Rajadhyaksha
- Dept. of Pediatrics, Division of Pediatric Neurology, Weill Cornell Medicine, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
3
|
Kabir ZD, Lee AS, Burgdorf CE, Fischer DK, Rajadhyaksha AM, Mok E, Rizzo B, Rice RC, Singh K, Ota KT, Gerhard DM, Schierberl KC, Glass MJ, Duman RS, Rajadhyaksha AM. Cacna1c in the Prefrontal Cortex Regulates Depression-Related Behaviors via REDD1. Neuropsychopharmacology 2017; 42:2032-2042. [PMID: 27922594 PMCID: PMC5561335 DOI: 10.1038/npp.2016.271] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 11/01/2016] [Accepted: 11/25/2016] [Indexed: 01/03/2023]
Abstract
The CACNA1C gene that encodes the L-type Ca2+ channel (LTCC) Cav1.2 subunit has emerged as a candidate risk gene for multiple neuropsychiatric disorders including bipolar disorder, major depressive disorder, and schizophrenia, all marked with depression-related symptoms. Although cacna1c heterozygous (HET) mice have been previously reported to exhibit an antidepressant-like phenotype, the molecular and circuit-level dysfunction remains unknown. Here we report that viral vector-mediated deletion of cacna1c in the adult prefrontal cortex (PFC) of mice recapitulates the antidepressant-like effect observed in cacna1c HET mice using the sucrose preference test (SPT), forced swim test (FST), and tail suspension test (TST). Molecular studies identified lower levels of REDD1, a protein previously linked to depression, in the PFC of HET mice, and viral-mediated REDD1 overexpression in the PFC of these HET mice reversed the antidepressant-like effect in SPT and TST. Examination of downstream REDD1 targets found lower levels of active/phosphorylated Akt (S473) with no change in mTORC1 phosphorylation. Examination of the transcription factor FoxO3a, previously linked to depression-related behavior and shown to be regulated in other systems by Akt, revealed higher nuclear levels in the PFC of cacna1c HET mice that was further increased following REDD1-mediated reversal of the antidepressant-like phenotype. Collectively, these findings suggest that REDD1 in cacna1c HET mice may influence depression-related behavior via regulation of the FoxO3a pathway. Cacna1c HET mice thus serve as a useful mouse model to further study cacna1c-associated molecular signaling and depression-related behaviors relevant to human CACNA1C genetic variants.
Collapse
Affiliation(s)
- Zeeba D Kabir
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Anni S Lee
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Caitlin E Burgdorf
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Delaney K Fischer
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Aditi M Rajadhyaksha
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Ethan Mok
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Bryant Rizzo
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Richard C Rice
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Kamalpreet Singh
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Kristie T Ota
- Laboratory of Molecular Psychiatry, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Danielle M Gerhard
- Laboratory of Molecular Psychiatry, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Kathryn C Schierberl
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Michael J Glass
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Ronald S Duman
- Laboratory of Molecular Psychiatry, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Anjali M Rajadhyaksha
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
4
|
Rescue of impaired sociability and anxiety-like behavior in adult cacna1c-deficient mice by pharmacologically targeting eIF2α. Mol Psychiatry 2017; 22:1096-1109. [PMID: 28584287 PMCID: PMC5863913 DOI: 10.1038/mp.2017.124] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 04/12/2017] [Accepted: 05/04/2017] [Indexed: 12/13/2022]
Abstract
CACNA1C, encoding the Cav1.2 subunit of L-type Ca2+ channels, has emerged as one of the most prominent and highly replicable susceptibility genes for several neuropsychiatric disorders. Cav1.2 channels play a crucial role in calcium-mediated processes involved in brain development and neuronal function. Within the CACNA1C gene, disease-associated single-nucleotide polymorphisms have been associated with impaired social and cognitive processing and altered prefrontal cortical (PFC) structure and activity. These findings suggest that aberrant Cav1.2 signaling may contribute to neuropsychiatric-related disease symptoms via impaired PFC function. Here, we show that mice harboring loss of cacna1c in excitatory glutamatergic neurons of the forebrain (fbKO) that we have previously reported to exhibit anxiety-like behavior, displayed a social behavioral deficit and impaired learning and memory. Furthermore, focal knockdown of cacna1c in the adult PFC recapitulated the social deficit and elevated anxiety-like behavior, but not the deficits in learning and memory. Electrophysiological and molecular studies in the PFC of cacna1c fbKO mice revealed higher E/I ratio in layer 5 pyramidal neurons and lower general protein synthesis. This was concurrent with reduced activity of mTORC1 and its downstream mRNA translation initiation factors eIF4B and 4EBP1, as well as elevated phosphorylation of eIF2α, an inhibitor of mRNA translation. Remarkably, systemic treatment with ISRIB, a small molecule inhibitor that suppresses the effects of phosphorylated eIF2α on mRNA translation, was sufficient to reverse the social deficit and elevated anxiety-like behavior in adult cacna1c fbKO mice. ISRIB additionally normalized the lower protein synthesis and higher E/I ratio in the PFC. Thus this study identifies a novel Cav1.2 mechanism in neuropsychiatric-related endophenotypes and a potential future therapeutic target to explore.
Collapse
|
5
|
Martin MM, Graham DL, McCarthy DM, Bhide PG, Stanwood GD. Cocaine-induced neurodevelopmental deficits and underlying mechanisms. BIRTH DEFECTS RESEARCH. PART C, EMBRYO TODAY : REVIEWS 2016; 108:147-73. [PMID: 27345015 PMCID: PMC5538582 DOI: 10.1002/bdrc.21132] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 06/06/2016] [Indexed: 11/06/2022]
Abstract
Exposure to drugs early in life has complex and long-lasting implications for brain structure and function. This review summarizes work to date on the immediate and long-term effects of prenatal exposure to cocaine. In utero cocaine exposure produces disruptions in brain monoamines, particularly dopamine, during sensitive periods of brain development, and leads to permanent changes in specific brain circuits, molecules, and behavior. Here, we integrate clinical studies and significance with mechanistic preclinical studies, to define our current knowledge base and identify gaps for future investigation. Birth Defects Research (Part C) 108:147-173, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Melissa M. Martin
- Department of Biomedical Sciences and Center for Brain Repair, Florida State University College of Medicine, Tallahassee, Florida
| | - Devon L. Graham
- Department of Biomedical Sciences and Center for Brain Repair, Florida State University College of Medicine, Tallahassee, Florida
| | - Deirdre M. McCarthy
- Department of Biomedical Sciences and Center for Brain Repair, Florida State University College of Medicine, Tallahassee, Florida
| | - Pradeep G. Bhide
- Department of Biomedical Sciences and Center for Brain Repair, Florida State University College of Medicine, Tallahassee, Florida
| | - Gregg D. Stanwood
- Department of Biomedical Sciences and Center for Brain Repair, Florida State University College of Medicine, Tallahassee, Florida
| |
Collapse
|
6
|
Santos L, Opris I, Hampson R, Godwin DW, Gerhardt G, Deadwyler S. Functional dynamics of primate cortico-striatal networks during volitional movements. Front Syst Neurosci 2014; 8:27. [PMID: 24653682 PMCID: PMC3947991 DOI: 10.3389/fnsys.2014.00027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 02/06/2014] [Indexed: 01/08/2023] Open
Abstract
The motor cortex and dorsal striatum (caudate nucleus and putamen) are key regions in motor processing but the interface between the cortex and striatum is not well understood. While dorsal striatum integrates information from multiple brain regions to shape motor learning and habit formation, the disruption of cortico-striatal circuits compromises the functionality of these circuits resulting in a multitude of neurologic disorders, including Parkinson's disease. To better understand the modulation of the cortico-striatal circuits we recorded simultaneously single neuron activity from four brain regions, primary motor, and sensory cortices, together with the rostral and caudal segments of the putamen in rhesus monkeys performing a visual motor task. Results show that spatial and temporal-task related firing relationships between these cortico-striatal circuit regions were modified by the independent administration of the two drugs (cocaine and baclofen). Spatial tuning and correlated firing of neurons from motor cortex and putamen were severely disrupted by cocaine and baclofen on correct trials, while the two drugs have dramatically decreased the functional connectivity of the motor cortical-striatal network. These findings provide insight into the modulation of cortical-striatal firing related to movement with implications for therapeutic approaches to Parkinson's disease and related disorders.
Collapse
Affiliation(s)
- Lucas Santos
- Department of Physiology and Pharmacology, Wake Forest University Medical School Winston-Salem, NC, USA
| | - Ioan Opris
- Department of Physiology and Pharmacology, Wake Forest University Medical School Winston-Salem, NC, USA
| | - Robert Hampson
- Department of Physiology and Pharmacology, Wake Forest University Medical School Winston-Salem, NC, USA
| | - Dwayne W Godwin
- Department of Physiology and Pharmacology, Wake Forest University Medical School Winston-Salem, NC, USA ; Department of Neurobiology and Anatomy, Wake Forest University Medical School Winston-Salem, NC, USA
| | - Greg Gerhardt
- Department of Neurobiology and Neurology, University of Kentucky Lexington, KY, USA
| | - Samuel Deadwyler
- Department of Physiology and Pharmacology, Wake Forest University Medical School Winston-Salem, NC, USA
| |
Collapse
|
7
|
Chen CL, Liu H, Guan X. Changes in microRNA expression profile in hippocampus during the acquisition and extinction of cocaine-induced conditioned place preference in rats. J Biomed Sci 2013; 20:96. [PMID: 24359524 PMCID: PMC3878172 DOI: 10.1186/1423-0127-20-96] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 12/16/2013] [Indexed: 11/15/2022] Open
Abstract
Background MicroRNA (miRNA) emerges as important player in drug abuse. Yet, their expression profile in neurological disorder of cocaine abuse has not been well characterized. Here, we explored the changes of miRNA expression in rat hippocampus following repeated cocaine exposure and subsequent abstinence from cocaine treatment. Results Conditioned place preference (CPP) procedure was used to assess the acquisition and extinction of cocaine-seeking behavior in rats. MiRNA microarray was performed to examine miRNAs levels in rat hippocampus. Quantitative RT-PCR was conducted to further confirm results in microarray study. Finally, bioinformatic predictions were made to suggest potential target genes of cocaine-responsive miRNA in this study. MiRNA array found that 34 miRNA levels were changed in rat hippocampus while acquiring cocaine CPP and 42 miRNAs levels were altered after the cocaine-induced CPP were extinguished, as compared to normal controls. The findings from qRT-PCR study support results from microarray analysis. Conclusions The current study demonstrated dynamic changes in miRNA expression in rat hippocampus during the acquisition and extinction of cocaine-induced CPP. Some miRNAs which have been previously reported to be involved in brain disorders and drug abuse, including miR-133b, miR-134, miR-181c, miR-191, miR-22, miR-26b, miR-382, miR-409-3p and miR-504, were found to be changed in their expression following repeated cocaine exposure and subsequent abstinence from cocaine treatment. These findings may extend our understanding of the regulatory network underlying cocaine abuse and may provide new targets for the future treatment of drug abuse.
Collapse
Affiliation(s)
| | | | - Xiaowei Guan
- Department of Human Anatomy, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, China.
| |
Collapse
|
8
|
Mason BL, Lobo MK, Parada LF, Lutter M. Trk B signaling in dopamine 1 receptor neurons regulates food intake and body weight. Obesity (Silver Spring) 2013; 21:2372-6. [PMID: 23512795 PMCID: PMC3742719 DOI: 10.1002/oby.20382] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 12/16/2012] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Loss of BDNF-TrkB signaling results in obesity in both humans and mice; however, the neural circuit that mediates this effect is unknown. The role of TrkB signaling in dopamine-1 receptor expressing neurons in body weight regulation was tested. METHODS Mice with a floxed allele of the TrkB gene were paired with mice expressing Cre-recombinase under control of the D1 promoter to conditionally knock out expression of TrkB receptors from D1-neurons. RESULTS Deletion of TrkB receptors from D1 neurons results in obesity in chow fed mice due to increased feed efficiency. In contrast, loss of Trk B signaling in D1 neurons induced hyperphagia and hyperglycemia in mice maintained on high fat diet. CONCLUSIONS These findings indicate TrkB signaling in D1 neurons regulates body weight by distinct mechanisms for chow and high fat diet and may be important for defending the body against the development of obesity and obesity-related disorders.
Collapse
Affiliation(s)
- Brittany L. Mason
- , Departments of Psychiatrym University of Texas Southwestern Medical Center Dallas, TX. 75390
| | - Mary Kay Lobo
- Developmental Biology. 5323 Harry Hines Blvd. Dallas, TX. 75390
| | - Luis F. Parada
- University of Maryland, Department of Anatomy and Neurobiology, 20 Penn St. HSFII Rm S265 Baltimore, MD 21201
| | - Michael Lutter
- , Departments of Psychiatrym University of Texas Southwestern Medical Center Dallas, TX. 75390
- Corresponding Author: Michael Lutter, University of Iowa, Carver College of Medicine, Department of Psychiatry, 200 Hawkins Dr., B020 ML, Iowa City, IA, 52242, ph: 319-353-5425, f: 319-356-2587.
| |
Collapse
|
9
|
McCarthy DM, Brown AN, Bhide PG. Regulation of BDNF expression by cocaine. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2012; 85:437-46. [PMID: 23239946 PMCID: PMC3516887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family of growth factors. It is expressed throughout the nervous system. A unique feature of the BDNF gene is the existence of multiple mRNA transcripts, all of which are translated into BDNF protein, suggesting a multilevel regulation of expression. In particular, the BDNF exon IV promoter region is a preferential target for epigenetic alterations, as it contains binding sites for CREB and MeCP2, two transcriptional regulators known to mediate epigenetic changes. Exposure to drugs of abuse is known to modulate epigenetic regulation of BDNF gene expression. This review will discuss how exposure to cocaine, one of the most addictive drugs known to mankind, can produce alterations in BDNF gene expression, especially in the mesolimbic dopaminergic system, which lead to alterations in the reward-mediated behaviors involved in addiction.
Collapse
Affiliation(s)
- Deirdre M. McCarthy
- To whom all correspondence should be
addressed: Deirdre M. McCarthy, Department of Biomedical Sciences, Florida State
University College of Medicine, 1115 West Call St., Tallahassee, FL 32306; Tele:
850-645-0263; Fax: 850-644-5781;
| | | | | |
Collapse
|
10
|
Delis F, Mitsacos A, Giompres P. Lesion of the cerebellar paravermis increases dopamine D1 receptor levels in the contralateral striatum. J Chem Neuroanat 2012; 47:35-41. [PMID: 23116569 DOI: 10.1016/j.jchemneu.2012.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 10/21/2012] [Accepted: 10/21/2012] [Indexed: 12/22/2022]
Abstract
Anatomical and biochemical findings have long suggested that a projection from the cerebellum to the basal ganglia exists, and recent findings proposed that the cerebellum influences glutamatergic striatal activity. We have previously shown that a complete, genetic, lack of Purkinje cells induces an upregulation of dopamine D1 receptors (DRD1) in the output of the basal ganglia, the substantia nigra pars reticulata. In this study, we produced a focal unilateral lesion in the cerebellar paravermal cortex and we studied the levels and distribution of dopamine receptors and transporters, with the use of in vitro receptor autoradiography. The lesion produced a statistically significant increase in DRD1 specific binding in the contralateral medial striatum and a bilateral decrease in dopamine transporter (DAT) levels in the dorsolateral striatum. Our finding of a DRD1 increase after disruption of the cerebellar corticonuclear projection suggests that the cerebellar output modulates the basal ganglia DRD1-mediated pathway.
Collapse
Affiliation(s)
- Foteini Delis
- Laboratory of Human and Animal Physiology, Department of Biology, University of Patras, Rio, Greece
| | | | | |
Collapse
|
11
|
Kabir ZD, Lourenco F, Byrne ME, Katzman A, Lee F, Rajadhyaksha AM, Kosofsky BE. Brain-derived neurotrophic factor genotype impacts the prenatal cocaine-induced mouse phenotype. Dev Neurosci 2012; 34:184-97. [PMID: 22572518 DOI: 10.1159/000337712] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 03/05/2012] [Indexed: 11/19/2022] Open
Abstract
Prenatal cocaine exposure leads to persistent alterations in the growth factor brain-derived neurotrophic factor (BDNF), particularly in the medial prefrontal cortex (mPFC) and hippocampus, brain regions important in cognitive functioning. BDNF plays an important role in the strengthening of existing synaptic connections as well as in the formation of new contacts during learning. A single nucleotide polymorphism in the BDNF gene (Val66Met), leading to a Met substitution for Val at codon 66 in the prodomain, is common in human populations, with an allele frequency of 20-30% in Caucasians. To study the interaction between prenatal cocaine exposure and BDNF, we have utilized a line of BDNF Val66Met transgenic mice on a Swiss Webster background in which BDNF(Met) is endogenously expressed. Examination of baseline levels of mature BDNF protein in the mPFC of prenatally cocaine-treated wild-type (Val66Val) and Val66Met mice revealed significantly lower levels compared to prenatally saline-treated mice. In contrast, in the hippocampus of prenatally saline- and cocaine-treated adult Val66Met mice, there were significantly lower levels of mature BDNF protein compared to Val66Val mice. In extinction of a conditioned fear, we found that prenatally cocaine-treated Val66Met mice had a deficit in recall of extinction. Examination of mature BDNF protein levels immediately after the test for extinction recall revealed lower levels in the mPFC of prenatally cocaine-treated Val66Met mice compared to saline-treated mice. However, 2 h after the extinction test, there was increased BDNF exons I, IV, and IX mRNA expression in the prelimbic cortex of the mPFC in the prenatally cocaine-treated BDNF Val66Met mice compared to prenatally saline-treated mice. Taken together, our results suggest the possibility that prenatal cocaine-induced constitutive alterations in BDNF mRNA and protein expression in the mPFC differentially poises animals for alterations in behaviorally induced gene activation, which are interactive with BDNF genotype and differentially impact those behaviors. Such findings in our prenatal cocaine mouse model suggest a gene X environment interaction of potential clinical relevance.
Collapse
Affiliation(s)
- Zeeba D Kabir
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medical College, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|