1
|
Panayi MC, Schoenbaum G. Modeling impaired insight after drug use in rodents. Behav Neurosci 2024; 138:291-300. [PMID: 39250296 PMCID: PMC11874615 DOI: 10.1037/bne0000606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Impaired insight in substance use disorder has been argued to reflect a global deficit in using cognitive models to mentally simulate possible future outcomes. The process of mentally simulating outcomes allows us to understand our beliefs about their causes, that is, to have insight and thereby avoid potentially negative outcomes. However, work in humans cannot address whether impaired insight and its neural/neurochemical sequalae are present prior to the development of a substance use disorder, a consequence of substance use, or a combination of both. This is because baseline measurements prior to drug use are not possible in humans. However, if these changes can be directly caused by drug use, then in animal models, a history of drug use should cause impairments in behavioral tasks designed to assess such inferences. Focusing on cocaine use, here we will review several lines of research from our laboratory that have tested this question using learning-theory tasks designed to isolate insight. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
Collapse
Affiliation(s)
- Marios Chris Panayi
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD
| | - Geoffrey Schoenbaum
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD
| |
Collapse
|
2
|
Halbout B, Hutson C, Agrawal S, Springs ZA, Ostlund SB. Differential effects of acute and prolonged morphine withdrawal on motivational and goal-directed control over reward-seeking behaviour. Addict Biol 2024; 29:e13393. [PMID: 38706098 PMCID: PMC11070494 DOI: 10.1111/adb.13393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/18/2024] [Accepted: 03/14/2024] [Indexed: 05/07/2024]
Abstract
Opioid addiction is a relapsing disorder marked by uncontrolled drug use and reduced interest in normally rewarding activities. The current study investigated the impact of spontaneous withdrawal from chronic morphine exposure on emotional, motivational and cognitive processes involved in regulating the pursuit and consumption of food rewards in male rats. In Experiment 1, rats experiencing acute morphine withdrawal lost weight and displayed somatic signs of drug dependence. However, hedonically driven sucrose consumption was significantly elevated, suggesting intact and potentially heightened reward processing. In Experiment 2, rats undergoing acute morphine withdrawal displayed reduced motivation when performing an effortful response for palatable food reward. Subsequent reward devaluation testing revealed that acute withdrawal disrupted their ability to exert flexible goal-directed control over reward seeking. Specifically, morphine-withdrawn rats were impaired in using current reward value to select actions both when relying on prior action-outcome learning and when given direct feedback about the consequences of their actions. In Experiment 3, rats tested after prolonged morphine withdrawal displayed heightened rather than diminished motivation for food rewards and retained their ability to engage in flexible goal-directed action selection. However, brief re-exposure to morphine was sufficient to impair motivation and disrupt goal-directed action selection, though in this case, rats were only impaired in using reward value to select actions in the presence of morphine-paired context cues and in the absence of response-contingent feedback. We suggest that these opioid-withdrawal induced deficits in motivation and goal-directed control may contribute to addiction by interfering with the pursuit of adaptive alternatives to drug use.
Collapse
Affiliation(s)
- Briac Halbout
- Department of Anesthesiology and Perioperative Care, School of MedicineUniversity of California, IrvineIrvineCaliforniaUSA
| | - Collin Hutson
- Department of Anesthesiology and Perioperative Care, School of MedicineUniversity of California, IrvineIrvineCaliforniaUSA
| | - Stuti Agrawal
- Department of Anesthesiology and Perioperative Care, School of MedicineUniversity of California, IrvineIrvineCaliforniaUSA
| | - Zachary A. Springs
- Department of Anesthesiology and Perioperative Care, School of MedicineUniversity of California, IrvineIrvineCaliforniaUSA
| | - Sean B. Ostlund
- Department of Anesthesiology and Perioperative Care, School of MedicineUniversity of California, IrvineIrvineCaliforniaUSA
- Department of Neurobiology and Behavior, School of Biological SciencesUniversity of California, IrvineIrvineCaliforniaUSA
| |
Collapse
|
3
|
Davis IR, Fisher H, McLean C, Murray J, Pickens CL. Neither Amphetamine nor Sub-Anesthetic Ketamine Treatment during Adolescence Impairs Devaluation in Rats Tested during Adulthood. J Integr Neurosci 2024; 23:83. [PMID: 38682231 PMCID: PMC11068220 DOI: 10.31083/j.jin2304083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND Much of the existing animal literature on the devaluation task suggests that prior repeated exposure to drugs of abuse during adulthood can impair goal-directed action, but the literature on human drug users is mixed. Also, the initiation of drug use often occurs during adolescence, but examinations of the effects of drug exposure during adolescence on behavior in the devaluation task are lacking. METHODS We examined whether repeated exposure during adolescence to amphetamine (3 mg/kg injections every-other day from post-natal day 27-45) or ketamine (twice daily 30 mg/kg injections from post-natal day 35-44) would impair behavior in a devaluation test when tested drug-free in adulthood. Rats were trained to press a left lever with a steady cue-light above it for one reinforcer and a right lever with a flashing cue-light above it for a different reinforcer. We tested whether any impairments in goal-directed action could be overcome by compensation between strategies by giving rats information based on lever-location and cue-lights during the test that was either congruent (allowing compensation) or incongruent (preventing compensation between strategies) with the configurations during training. RESULTS Our results provided no evidence for impairment of goal-directed action during adulthood after adolescent amphetamine or ketamine exposure. CONCLUSIONS We discuss possible reasons for this discrepancy with the prior literature, including (1) the age of exposure and (2) the pattern in the previous literature that most previous demonstrations of drug exposure impairing devaluation in laboratory animals may be attributed to either drug-associated cues present in the testing environment and/or accelerated habit learning in tasks that predispose laboratory animals towards habit formation with extended training (with training procedures that should resist the formation of habits in the current experiment). However, additional research is needed to examine the effects of these factors, as well a potential role for the particular doses and washout periods to determine the cause of our finding of no devaluation impairment after drug exposure.
Collapse
Affiliation(s)
- Ian R. Davis
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Hayley Fisher
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Caitlin McLean
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Jackson Murray
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Charles L. Pickens
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506, USA
| |
Collapse
|
4
|
Halbout B, Hutson C, Agrawal S, Springs ZA, Ostlund SB. Differential effects of acute and prolonged morphine withdrawal on motivational and goal-directed control over reward-seeking behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.14.557822. [PMID: 37745601 PMCID: PMC10515939 DOI: 10.1101/2023.09.14.557822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Opioid addiction is a relapsing disorder marked by uncontrolled drug use and reduced interest in normally rewarding activities. The current study investigated the impact of spontaneous withdrawal from chronic morphine exposure on emotional, motivational, and cognitive processes involved in regulating the pursuit and consumption of natural food rewards in male rats. In Experiment 1, rats experiencing acute morphine withdrawal lost weight and displayed somatic signs of drug dependence. However, hedonically-driven sucrose consumption was significantly elevated, suggesting intact and potentially heightened emotional reward processing. In Experiment 2, rats undergoing acute morphine withdrawal displayed reduced motivation when performing an effortful response for palatable food reward. Subsequent reward devaluation testing revealed that acute withdrawal also disrupted their ability to exert flexible goal-directed control over their reward-seeking behavior. Specifically, morphine-withdrawn rats displayed insensitivity to reward devaluation both when relying on prior action-outcome learning and when given direct feedback about the consequences of their actions. In Experiment 3, rats tested after prolonged morphine withdrawal displayed heightened rather than diminished motivation for food rewards and retained their ability to engage in flexible goal-directed action selection. However, brief re-exposure to morphine was sufficient to impair motivation and disrupt goal-directed action selection, though in this case insensitivity to reward devaluation was only observed in the presence of morphine-paired context cues and in the absence of response-contingent feedback. We suggest that these opioid-withdrawal induced deficits in motivation and goal-directed control may contribute to addiction by interfering with the pursuit of adaptive alternatives to drug use.
Collapse
Affiliation(s)
- Briac Halbout
- Department of Anesthesiology and Perioperative Care, School of Medicine, University of California, Irvine, Irvine, CA, 92697, USA
| | - Collin Hutson
- Department of Anesthesiology and Perioperative Care, School of Medicine, University of California, Irvine, Irvine, CA, 92697, USA
| | - Stuti Agrawal
- Department of Anesthesiology and Perioperative Care, School of Medicine, University of California, Irvine, Irvine, CA, 92697, USA
| | - Zachary A. Springs
- Department of Anesthesiology and Perioperative Care, School of Medicine, University of California, Irvine, Irvine, CA, 92697, USA
| | - Sean B. Ostlund
- Department of Anesthesiology and Perioperative Care, School of Medicine, University of California, Irvine, Irvine, CA, 92697, USA
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
5
|
Gangal H, Xie X, Huang Z, Cheng Y, Wang X, Lu J, Zhuang X, Essoh A, Huang Y, Chen R, Smith LN, Smith RJ, Wang J. Drug reinforcement impairs cognitive flexibility by inhibiting striatal cholinergic neurons. Nat Commun 2023; 14:3886. [PMID: 37391566 PMCID: PMC10313783 DOI: 10.1038/s41467-023-39623-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/20/2023] [Indexed: 07/02/2023] Open
Abstract
Addictive substance use impairs cognitive flexibility, with unclear underlying mechanisms. The reinforcement of substance use is mediated by the striatal direct-pathway medium spiny neurons (dMSNs) that project to the substantia nigra pars reticulata (SNr). Cognitive flexibility is mediated by striatal cholinergic interneurons (CINs), which receive extensive striatal inhibition. Here, we hypothesized that increased dMSN activity induced by substance use inhibits CINs, reducing cognitive flexibility. We found that cocaine administration in rodents caused long-lasting potentiation of local inhibitory dMSN-to-CIN transmission and decreased CIN firing in the dorsomedial striatum (DMS), a brain region critical for cognitive flexibility. Moreover, chemogenetic and time-locked optogenetic inhibition of DMS CINs suppressed flexibility of goal-directed behavior in instrumental reversal learning tasks. Notably, rabies-mediated tracing and physiological studies showed that SNr-projecting dMSNs, which mediate reinforcement, sent axonal collaterals to inhibit DMS CINs, which mediate flexibility. Our findings demonstrate that the local inhibitory dMSN-to-CIN circuit mediates the reinforcement-induced deficits in cognitive flexibility.
Collapse
Affiliation(s)
- Himanshu Gangal
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
- Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
| | - Xueyi Xie
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Zhenbo Huang
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Yifeng Cheng
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Xuehua Wang
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Jiayi Lu
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Xiaowen Zhuang
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Amanda Essoh
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Yufei Huang
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
- Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
| | - Ruifeng Chen
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, 77843, USA
| | - Laura N Smith
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
- Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
| | - Rachel J Smith
- Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Jun Wang
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA.
- Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA.
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
6
|
Halbout B, Hutson C, Hua L, Inshishian V, Mahler SV, Ostlund SB. Long-term effects of THC exposure on reward learning and motivated behavior in adolescent and adult male rats. Psychopharmacology (Berl) 2023; 240:1151-1167. [PMID: 36933028 PMCID: PMC10102061 DOI: 10.1007/s00213-023-06352-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/03/2023] [Indexed: 03/19/2023]
Abstract
RATIONALE The endocannabinoid system makes critical contributions to reward processing, motivation, and behavioral control. Repeated exposure to THC or other cannabinoid drugs can cause persistent adaptions in the endocannabinoid system and associated neural circuitry. It remains unclear how such treatments affect the way rewards are processed and pursued. OBJECTIVE AND METHODS We examined if repeated THC exposure (5 mg/kg/day for 14 days) during adolescence or adulthood led to long-term changes in rats' capacity to flexibly encode and use action-outcome associations for goal-directed decision making. Effects on hedonic feeding and progressive ratio responding were also assessed. RESULTS THC exposure had no effect on rats' ability to flexibly select actions following reward devaluation. However, instrumental contingency degradation learning, which involves avoiding an action that is unnecessary for reward delivery, was augmented in rats with a history of adult but not adolescent THC exposure. THC-exposed rats also displayed more vigorous instrumental behavior in this study, suggesting a motivational enhancement. A separate experiment found that while THC exposure had no effect on hedonic feeding behavior, it increased rats' willingness to work for food on a progressive ratio schedule, an effect that was more pronounced when THC was administered to adults. Adolescent and adult THC exposure had opposing effects on the CB1 receptor dependence of progressive ratio performance, decreasing and increasing sensitivity to rimonabant-induced behavioral suppression, respectively. CONCLUSIONS Our findings reveal that exposure to a translationally relevant THC exposure regimen induces long-lasting, age-dependent alterations in cognitive and motivational processes that regulate the pursuit of rewards.
Collapse
Affiliation(s)
- Briac Halbout
- Department of Anesthesiology and Perioperative Care, School of Medicine, University of California, Irvine, Irvine, CA, 92697, USA.
| | - Collin Hutson
- Department of Anesthesiology and Perioperative Care, School of Medicine, University of California, Irvine, Irvine, CA, 92697, USA
| | - Leann Hua
- Department of Anesthesiology and Perioperative Care, School of Medicine, University of California, Irvine, Irvine, CA, 92697, USA
| | - Victoria Inshishian
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, Irvine, CA, 92697, USA
| | - Stephen V Mahler
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, Irvine, CA, 92697, USA
| | - Sean B Ostlund
- Department of Anesthesiology and Perioperative Care, School of Medicine, University of California, Irvine, Irvine, CA, 92697, USA.
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
7
|
Smeets JAS, Minnaard AM, Ramakers GMJ, Adan RAH, Vanderschuren LJMJ, Lesscher HMB. On the interrelation between alcohol addiction-like behaviors in rats. Psychopharmacology (Berl) 2022; 239:1115-1128. [PMID: 35020046 PMCID: PMC8986720 DOI: 10.1007/s00213-021-06059-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 12/28/2021] [Indexed: 11/30/2022]
Abstract
RATIONALE Alcohol use disorder (AUD) is a complex, heterogeneous disorder that only occurs in a minority of alcohol users. Various behavioral constructs, including excessive intake, habit formation, motivation for alcohol and resistance to punishment have been implicated in AUD, but their interrelatedness is unclear. OBJECTIVE The aim of this study was therefore to explore the relation between these AUD-associated behavioral constructs in rats. We hypothesised that a subpopulation of animals could be identified that, based on these measures, display consistent AUD-like behavior. METHODS Lister Hooded rats (n = 47) were characterised for alcohol consumption, habit formation, motivation for alcohol and quinine-adulterated alcohol consumption. The interrelation between these measures was evaluated through correlation and cluster analyses. In addition, addiction severity scores were computed using different combinations of the behavioral measures, to assess the consistency of the AUD-like subpopulation. RESULTS We found that the data was uniformly distributed, as there was no significant tendency of the behavioral measures to cluster in the dataset. On the basis of multiple ranked addiction severity scores, five animals (~ 11%) were classified as displaying AUD-like behavior. The composition of the remaining subpopulation of animals with the highest addiction severity score (9 rats; ~ 19%) varied, depending on the combination of measures included. CONCLUSION Consistent AUD-like behavior was detected in a small proportion of alcohol drinking rats. Alcohol consumption, habit formation, motivation for alcohol and punishment resistance contribute in varying degrees to the AUD-like phenotype across the population. These findings emphasise the importance of considering the heterogeneity of AUD-like behavior.
Collapse
Affiliation(s)
- Johanna A. S. Smeets
- Department of Population Health Sciences, unit Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM Utrecht, The Netherlands
| | - A. Maryse Minnaard
- Department of Population Health Sciences, unit Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM Utrecht, The Netherlands
| | - Geert M. J. Ramakers
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Roger A. H. Adan
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Louk J. M. J. Vanderschuren
- Department of Population Health Sciences, unit Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM Utrecht, The Netherlands
| | - Heidi M. B. Lesscher
- Department of Population Health Sciences, unit Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM Utrecht, The Netherlands
| |
Collapse
|
8
|
Vandaele Y, Ahmed SH. Habit, choice, and addiction. Neuropsychopharmacology 2021; 46:689-698. [PMID: 33168946 PMCID: PMC8027414 DOI: 10.1038/s41386-020-00899-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/07/2020] [Accepted: 10/19/2020] [Indexed: 12/17/2022]
Abstract
Addiction was suggested to emerge from the progressive dominance of habits over goal-directed behaviors. However, it is generally assumed that habits do not persist in choice settings. Therefore, it is unclear how drug habits may persist in real-world scenarios where this factor predominates. Here, we discuss the poor translational validity of the habit construct, which impedes our ability to determine its role in addiction. New evidence of habitual behavior in a drug choice setting are then described and discussed. Interestingly, habitual preference did not promote drug choice but instead favored abstinence. Here, we propose several clues to reconcile these unexpected results with the habit theory of addiction, and we highlight the need in experimental research to face the complexity of drug addicts' decision-making environments by investigating drug habits in the context of choice and in the presence of cues. On a theoretical level, we need to consider more complex frameworks, taking into account continuous interactions between goal-directed and habitual systems, and alternative decision-making models more representative of real-world conditions.
Collapse
Affiliation(s)
- Y Vandaele
- Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland.
| | - S H Ahmed
- Institut des Maladies Neurodégénératives, Université de Bordeaux, Bordeaux, France
- Institut des Maladies Neurodégénératives, CNRS, Bordeaux, France
| |
Collapse
|
9
|
Mollick JA, Kober H. Computational models of drug use and addiction: A review. JOURNAL OF ABNORMAL PSYCHOLOGY 2020; 129:544-555. [PMID: 32757599 PMCID: PMC7416739 DOI: 10.1037/abn0000503] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this brief review, we describe current computational models of drug-use and addiction that fall into 2 broad categories: mathematically based models that rely on computational theories, and brain-based models that link computations to brain areas or circuits. Across categories, many are models of learning and decision-making, which may be compromised in addiction. Several mathematical models take predictive coding approaches, focusing on Bayesian prediction error. Other models focus on learning processes and (traditional) prediction error. Brain-based models have incorporated prefrontal cortex, basal ganglia, and the dopamine system, based on the effects of drugs on dopamine, motivation, and executive control circuits. Several models specifically describe how behavioral control may transition from habitual to goal-directed systems, consistent with computational accounts of compromised "model-based" control. Some brain-based models have linked this to the transition of behavioral control from ventral to dorsal striatum. Overall, we propose that while computational models capture some aspects of addiction and have advanced our thinking, most have focused on the effects of drug use rather than addiction per se, most have not been tested on and/or supported by human data, and few capture multiple stages and symptoms of addiction. We conclude by suggesting a path forward for computational models of addiction. (PsycInfo Database Record (c) 2020 APA, all rights reserved).
Collapse
Affiliation(s)
- Jessica A Mollick
- Clinical and Affective Neuroscience Lab, Department of Psychiatry, Yale University
| | - Hedy Kober
- Clinical and Affective Neuroscience Lab, Department of Psychiatry, Yale University
| |
Collapse
|
10
|
Kruglanski AW, Szumowska E. Habitual Behavior Is Goal-Driven. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2020; 15:1256-1271. [DOI: 10.1177/1745691620917676] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We address the relation between goal-driven and habitual behaviors. Whereas in recent years the two have been juxtaposed, we suggest that habitual behavior is in fact goal-driven. To support this view, we show that habitual behavior is sensitive to changes in goal properties (reward contingencies), namely goal value and its expectancy of attainment. Whereas adjustment to these properties may be slower for habitual (or overlearned) than for nonhabitual behavior, this is likely due to the routinized (or automatic) nature of such behavior, characterized as it is by reduced attention to its consequences. Furthermore, we show that habitual behavior’s prolonged persistence despite its manifest detachment from the original goal likely stems from its attachment to a different goal. Thus, there is no need to postulate purposeless behavior. The view that habitual behavior is goal-driven offers an integrative account of a considerable body of evidence and is consistent with a functional account of psychological processes.
Collapse
Affiliation(s)
| | - Ewa Szumowska
- Department of Psychology, University of Maryland, College Park
- Department of Philosophy, Institute of Psychology, Jagiellonian University
| |
Collapse
|
11
|
Vandaele Y, Guillem K, Ahmed SH. Habitual Preference for the Nondrug Reward in a Drug Choice Setting. Front Behav Neurosci 2020; 14:78. [PMID: 32523517 PMCID: PMC7261826 DOI: 10.3389/fnbeh.2020.00078] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 04/28/2020] [Indexed: 11/28/2022] Open
Abstract
For adaptive and efficient decision making, it must be possible to select between habitual alternative courses of action. However, research in rodents suggests that, even in the context of simple decision-making, choice behavior remains goal-directed. In contrast, we recently found that during discrete trial choice between cocaine and water, water-restricted rats preferred water and this preference was habitual and inflexible (i.e., resistant to water devaluation by satiation). Here we sought to test the reproducibility and generality of this surprising finding by assessing habitual control of preference for saccharin over cocaine in non-restricted rats. Specifically, after the acquisition of preference for saccharin, saccharin was devalued and concurrent responding for both options was measured under extinction. As expected, rats responded more for saccharin than for cocaine during extinction, but this difference was unaffected by saccharin devaluation. Together with our previous research, this result indicates that preference for nondrug alternatives over cocaine is under habitual control, even under conditions that normally support goal-directed control of choice between nondrug options. The possible reasons for this difference are discussed.
Collapse
Affiliation(s)
- Youna Vandaele
- Department of Psychiatry, Center for Psychiatric Neuroscience, Lausanne University Hospital, Lausanne, Switzerland
| | - Karine Guillem
- Institut des Maladies Neurodégénératives, UMR 5293, Université de Bordeaux, Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Serge H. Ahmed
- Institut des Maladies Neurodégénératives, UMR 5293, Université de Bordeaux, Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| |
Collapse
|
12
|
Cholinergic midbrain afferents modulate striatal circuits and shape encoding of action strategies. Nat Commun 2020; 11:1739. [PMID: 32269213 PMCID: PMC7142106 DOI: 10.1038/s41467-020-15514-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 03/13/2020] [Indexed: 02/06/2023] Open
Abstract
Assimilation of novel strategies into a consolidated action repertoire is a crucial function for behavioral adaptation and cognitive flexibility. Acetylcholine in the striatum plays a pivotal role in such adaptation, and its release has been causally associated with the activity of cholinergic interneurons. Here we show that the midbrain, a previously unknown source of acetylcholine in the striatum, is a major contributor to cholinergic transmission in the striatal complex. Neurons of the pedunculopontine and laterodorsal tegmental nuclei synapse with striatal cholinergic interneurons and give rise to excitatory responses. Furthermore, they produce uniform inhibition of spiny projection neurons. Inhibition of acetylcholine release from midbrain terminals in the striatum impairs the association of contingencies and the formation of habits in an instrumental task, and mimics the effects observed following inhibition of acetylcholine release from striatal cholinergic interneurons. These results suggest the existence of two hierarchically-organized modes of cholinergic transmission in the striatum, where cholinergic interneurons are modulated by cholinergic neurons of the midbrain.
Collapse
|
13
|
Hogarth L. Addiction is driven by excessive goal-directed drug choice under negative affect: translational critique of habit and compulsion theory. Neuropsychopharmacology 2020; 45:720-735. [PMID: 31905368 PMCID: PMC7265389 DOI: 10.1038/s41386-020-0600-8] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 12/09/2019] [Accepted: 12/18/2019] [Indexed: 01/21/2023]
Abstract
Drug addiction may be a goal-directed choice driven by excessive drug value in negative affective states, a habit driven by strong stimulus-response associations, or a compulsion driven by insensitivity to costs imposed on drug seeking. Laboratory animal and human evidence for these three theories is evaluated. Excessive goal theory is supported by dependence severity being associated with greater drug choice/economic demand. Drug choice is demonstrably goal-directed (driven by the expected value of the drug) and can be augmented by stress/negative mood induction and withdrawal-effects amplified in those with psychiatric symptoms and drug use coping motives. Furthermore, psychiatric symptoms confer risk of dependence, and coping motives mediate this risk. Habit theory of addiction has weaker support. Habitual behaviour seen in drug-exposed animals often does not occur in complex decision scenarios, or where responding is rewarded, so habit is unlikely to explain most human addictive behaviour where these conditions apply. Furthermore, most human studies have not found greater propensity to habitual behaviour in drug users or as a function of dependence severity, and the minority that have can be explained by task disengagement producing impaired explicit contingency knowledge. Compulsion theory of addiction also has weak support. The persistence of punished drug seeking in animals is better explained by greater drug value (evinced by the association with economic demand) than by insensitivity to costs. Furthermore, human studies have provided weak evidence that propensity to discount cost imposed on drug seeking is associated with dependence severity. These data suggest that human addiction is primarily driven by excessive goal-directed drug choice under negative affect, and less by habit or compulsion. Addiction is pathological because negative states powerfully increase expected drug value acutely outweighing abstinence goals.
Collapse
Affiliation(s)
- Lee Hogarth
- School of Psychology, University of Exeter, Washington Singer Building, Perry Road, Exeter, EX4 4QG, UK.
| |
Collapse
|
14
|
Schreiner DC, Renteria R, Gremel CM. Fractionating the all-or-nothing definition of goal-directed and habitual decision-making. J Neurosci Res 2019; 98:998-1006. [PMID: 31642551 DOI: 10.1002/jnr.24545] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/30/2019] [Accepted: 10/09/2019] [Indexed: 12/16/2022]
Abstract
Goal-directed and habitual decision-making are fundamental processes that support the ongoing adaptive behavior. There is a growing interest in examining their disruption in psychiatric disease, often with a focus on a disease shifting control from one process to the other, usually a shift from goal-directed to habitual control. However, several different experimental procedures can be used to probe whether decision-making is under goal-directed or habitual control, including outcome devaluation and contingency degradation. These different experimental procedures may recruit diverse behavioral and neural processes. Thus, there are potentially many opportunities for these disease phenotypes to manifest as alterations to both goal-directed and habitual controls. In this review, we highlight the examples of behavioral and neural circuit divergence and similarity, and suggest that interpretation based on behavioral processes recruited during testing may leave more room for goal-directed and habitual decision-making to coexist. Furthermore, this may improve our understanding of precisely what the involved neural mechanisms underlying aspects of goal-directed and habitual behavior are, as well as how disease affects behavior and these circuits.
Collapse
Affiliation(s)
- Drew C Schreiner
- Department of Psychology, University of California, San Diego, La Jolla, CA, USA
| | - Rafael Renteria
- Department of Psychology, University of California, San Diego, La Jolla, CA, USA
| | - Christina M Gremel
- Department of Psychology, University of California, San Diego, La Jolla, CA, USA.,Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
15
|
Inflexible habitual decision-making during choice between cocaine and a nondrug alternative. Transl Psychiatry 2019; 9:109. [PMID: 30842406 PMCID: PMC6403316 DOI: 10.1038/s41398-019-0445-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 02/12/2019] [Accepted: 02/16/2019] [Indexed: 11/09/2022] Open
Abstract
The concept of compulsive cocaine-seeking habits is difficult to reconcile with other evidence showing that humans and even rats remain able to shift their choice away from the drug and toward an alternative nondrug reward, when available. This paradox could dissolve if preference for the nondrug option reflected in fact inflexible habitual decision-making (i.e., fixed in a habitual control mode, with no return to a goal-directed control mode). Previous research in rats has shown that prior drug use can favor habit formation, but whether the resulting habits are inflexible or not is largely unknown. Here we addressed this question by manipulating the value of water in rats that chose between water and cocaine in a discrete-trials procedure. Rats preferred water when thirsty and maintained this preference despite water devaluation by satiation. Only with repeated daily testing under water satiation did they progressively reverse their preference toward cocaine. Additional evidence showed that this progressive reversal of preference reflected in fact new interoceptive discrimination learning. Overall, this study suggests that rats seem to be stuck in a habitual decision-making mode, unable to return to a goal-directed mode upon experiencing a change in options value. It also reveals that inflexible decision-making does not necessarily promote drug choice, but can also under some circumstances favor abstinence.
Collapse
|
16
|
A ketogenic diet diminishes behavioral responses to cocaine in young adult male and female rats. Neuropharmacology 2019; 149:27-34. [PMID: 30731137 DOI: 10.1016/j.neuropharm.2019.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 01/20/2019] [Accepted: 02/01/2019] [Indexed: 01/12/2023]
Abstract
Ketogenic diets (KDs) are high fat, low carbohydrate formulations traditionally used to treat epilepsy; more recently, KDs have shown promise for a wide range of other neurological disorders. Drug addiction studies suggest that repeated exposure to drugs of abuse, including cocaine, results in a suite of neurobiological changes that includes neuroinflammation, decreased glucose metabolism, and disordered neurotransmission. Given that KDs positively regulate these factors, we addressed whether administration of a KD has potential as a novel therapy for drug addiction. In this study, male and female Sprague-Dawley rats were placed on a KD or a control diet (CD), beginning at five weeks of age and continuing through the end of behavioral testing. Three weeks after initiation of dietary treatments, rats received daily i.p. injections of cocaine (15 mg/kg) or saline vehicle for one week, were drug free for a subsequent week, and then all animals received a final challenge injection of 15 mg/kg cocaine. In the absence of cocaine injections, stereotyped locomotor responses were minimal and were unaffected by dietary treatment. In contrast, both males and females fed a KD exhibited decreased cocaine-induced stereotyped responses as compared to CD-fed rats. The sensitization of ambulatory responses was also disrupted in KD-fed rats. These results suggest that KDs directly impact dopamine-mediated behaviors, and hence may hold potential as a therapy for drug addiction.
Collapse
|
17
|
Smith RJ, Laiks LS. Behavioral and neural mechanisms underlying habitual and compulsive drug seeking. Prog Neuropsychopharmacol Biol Psychiatry 2018; 87:11-21. [PMID: 28887182 PMCID: PMC5837910 DOI: 10.1016/j.pnpbp.2017.09.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/24/2017] [Accepted: 09/03/2017] [Indexed: 01/31/2023]
Abstract
Addiction is characterized by compulsive drug use despite negative consequences. Here we review studies that indicate that compulsive drug use, and in particular punishment resistance in animal models of addiction, is related to impaired cortical control over habitual behavior. In humans and animals, instrumental behavior is supported by goal-directed and habitual systems that rely on distinct corticostriatal networks. Chronic exposure to addictive drugs or stress has been shown to bias instrumental response strategies toward habit learning, and impair prefrontal cortical (PFC) control over responding. Moreover, recent work has implicated prelimbic PFC hypofunction in the punishment resistance that has been observed in a subset of animals with an extended history of cocaine self-administration. This may be related to a broader role for prelimbic PFC in mediating adaptive responding and behavioral flexibility, including exerting goal-directed control over behavior. We hypothesize that impaired cortical control and reduced flexibility between habitual and goal-directed systems may be critically involved in the development of maladaptive, compulsive drug use.
Collapse
Affiliation(s)
- Rachel J. Smith
- Corresponding author at: 3474 TAMU, College Station, TX 77843
| | | |
Collapse
|
18
|
Brockett AT, Pribut HJ, Vázquez D, Roesch MR. The impact of drugs of abuse on executive function: characterizing long-term changes in neural correlates following chronic drug exposure and withdrawal in rats. Learn Mem 2018; 25:461-473. [PMID: 30115768 PMCID: PMC6097763 DOI: 10.1101/lm.047001.117] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/25/2018] [Indexed: 12/21/2022]
Abstract
Addiction has long been characterized by diminished executive function, control, and impulsivity management. In particular, these deficits often manifest themselves as impairments in reversal learning, delay discounting, and response inhibition. Understanding the neurobiological substrates of these behavioral deficits is of paramount importance to our understanding of addiction. Within the cycle of addiction, periods during and after withdrawal represent a particularly difficult point of intervention in that the negative physical symptoms associated with drug removal and drug craving increase the likelihood that the patient will relapse and return to drug use in order to abate these symptoms. Moreover, it is often during this time that drug induced deficits in executive function hinder the ability of the patient to refrain from drug use. Thus, it is necessary to understand the physiological and behavioral changes associated with withdrawal and drug craving-largely manifesting as deficits in executive control-to develop more effective treatment strategies. In this review, we address the long-term impact that drugs of abuse have on the behavioral and neural correlates that give rise to executive control as measured by reversal learning, delay discounting, and stop-signal tasks, focusing particularly on our work using rats as a model system.
Collapse
Affiliation(s)
- Adam T Brockett
- Department of Psychology, University of Maryland, College Park, Maryland 20742, USA
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, Maryland 20742, USA
| | - Heather J Pribut
- Department of Psychology, University of Maryland, College Park, Maryland 20742, USA
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, Maryland 20742, USA
| | - Daniela Vázquez
- Department of Psychology, University of Maryland, College Park, Maryland 20742, USA
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, Maryland 20742, USA
| | - Matthew R Roesch
- Department of Psychology, University of Maryland, College Park, Maryland 20742, USA
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
19
|
Hogarth L, Lam‐Cassettari C, Pacitti H, Currah T, Mahlberg J, Hartley L, Moustafa A. Intact goal‐directed control in treatment‐seeking drug users indexed by outcome‐devaluation and Pavlovian to instrumental transfer: critique of habit theory. Eur J Neurosci 2018; 50:2513-2525. [DOI: 10.1111/ejn.13961] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Lee Hogarth
- School of Psychology University of Exeter Exeter UK
- School of Psychology University of New South Wales Sydney NSW Australia
| | - Christa Lam‐Cassettari
- MARCS Institute for Brain, Behaviour and Development Western Sydney University Sydney NSW Australia
| | - Helena Pacitti
- School of Psychology University of New South Wales Sydney NSW Australia
| | - Tara Currah
- School of Psychology University of Exeter Exeter UK
| | - Justin Mahlberg
- School of Social Sciences and Psychology Western Sydney University Sydney NSW Australia
| | | | - Ahmed Moustafa
- MARCS Institute for Brain, Behaviour and Development Western Sydney University Sydney NSW Australia
- School of Social Sciences and Psychology Western Sydney University Sydney NSW Australia
| |
Collapse
|
20
|
|
21
|
Are Cocaine-Seeking "Habits" Necessary for the Development of Addiction-Like Behavior in Rats? J Neurosci 2017; 38:60-73. [PMID: 29158359 DOI: 10.1523/jneurosci.2458-17.2017] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/10/2017] [Accepted: 10/31/2017] [Indexed: 12/21/2022] Open
Abstract
Drug self-administration models of addiction typically require animals to make the same response (e.g., a lever-press or nose-poke) over and over to procure and take drugs. By their design, such procedures often produce behavior controlled by stimulus-response (S-R) habits. This has supported the notion of addiction as a "drug habit," and has led to considerable advances in our understanding of the neurobiological basis of such behavior. However, to procure such drugs as cocaine, addicts often require considerable ingenuity and flexibility in seeking behavior, which, by definition, precludes the development of habits. To better model drug-seeking behavior in addicts, we first developed a novel cocaine self-administration procedure [puzzle self-administration procedure (PSAP)] that required rats to solve a new puzzle every day to gain access to cocaine, which they then self-administered on an intermittent access (IntA) schedule. Such daily problem-solving precluded the development of S-R seeking habits. We then asked whether prolonged PSAP/IntA experience would nevertheless produce "symptoms of addiction." It did, including escalation of intake, sensitized motivation for drug, continued drug use in the face of adverse consequences, and very robust cue-induced reinstatement of drug seeking, especially in a subset of "addiction-prone" rats. Furthermore, drug-seeking behavior continued to require dopamine neurotransmission in the core of the nucleus accumbens (but not the dorsolateral striatum). We conclude that the development of S-R seeking habits is not necessary for the development of cocaine addiction-like behavior in rats.SIGNIFICANCE STATEMENT Substance-use disorders are often characterized as "habitual" behaviors aimed at obtaining and administering drugs. Although the actions involved in consuming drugs may involve a rigid repertoire of habitual behaviors, evidence suggests that addicts must be very creative and flexible when trying to procure drugs, and thus drug seeking cannot be governed by habit alone. We modeled flexible drug-seeking behavior in rats by requiring animals to solve daily puzzles to gain access to cocaine. We find that habitual drug-seeking isn't necessary for the development of addiction-like behavior, and that our procedure doesn't result in transfer of dopaminergic control from the ventral to dorsal striatum. This approach may prove useful in studying changes in neuropsychological function that promote the transition to addiction.
Collapse
|
22
|
Habitual nicotine-seeking in rats following limited training. Psychopharmacology (Berl) 2017; 234:2619-2629. [PMID: 28589264 DOI: 10.1007/s00213-017-4655-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 05/19/2017] [Indexed: 10/19/2022]
Abstract
RATIONALE AND OBJECTIVES A potential reason that cigarette smoking can persist despite multiple quit attempts is that repeated voluntary nicotine intake may facilitate a transition from goal-directed to habitual behavioral control. Although accelerated habit formation for self-administered ethanol or cocaine has been previously demonstrated, this phenomenon has not been extensively studied with nicotine. We therefore examined the liability of nicotine self-administration to become habitual, while also examining that of orally consumed saccharin as an experimental control. METHODS Under fixed ratio 1 (FR-1) schedules, male Sprague-Dawley rats (n = 8-11/group) lever-pressed for intravenous (IV) nicotine (30 μg/kg/infusion) for 10 consecutive days, while also lever-pressing for saccharin solution (0.1% w/v, 0.19 mL/delivery) in separate operant sessions. In experiment 1, either nicotine or saccharin was devalued by pairing with the aversive agent lithium chloride (LiCl; 0.15 M, 14.1 mL/kg) prior to extinction and reacquisition testing. In experiment 2, the contingency between lever pressing and delivery of either nicotine or saccharin was degraded in six sessions, followed by extinction testing. RESULTS LiCl pairings selectively reduced responding for nicotine (-35% from control) and saccharin (-48%) in reacquisition testing, indicating that both rewards were effectively devalued. During extinction testing, saccharin-seeking responses were reduced by both manipulations (devaluation -30%, degradation -79%), suggesting that responding for saccharin was goal-directed. In contrast, nicotine-seeking responses were not significantly affected by either manipulation (devaluation -4%, degradation -21%), suggesting that responding for nicotine was habitually driven. CONCLUSIONS Operant responding for IV nicotine may rapidly come under habitual control, potentially contributing to the tenacity of tobacco use.
Collapse
|
23
|
Burton AC, Bissonette GB, Zhao AC, Patel PK, Roesch MR. Prior Cocaine Self-Administration Increases Response-Outcome Encoding That Is Divorced from Actions Selected in Dorsal Lateral Striatum. J Neurosci 2017; 37:7737-7747. [PMID: 28694335 PMCID: PMC5551065 DOI: 10.1523/jneurosci.0897-17.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/08/2017] [Accepted: 07/04/2017] [Indexed: 01/23/2023] Open
Abstract
Dorsal lateral striatum (DLS) is a highly associative structure that encodes relationships among environmental stimuli, behavioral responses, and predicted outcomes. DLS is known to be disrupted after chronic drug abuse; however, it remains unclear what neural signals in DLS are altered. Current theory suggests that drug use enhances stimulus-response processing at the expense of response-outcome encoding, but this has mostly been tested in simple behavioral tasks. Here, we investigated what neural correlates in DLS are affected by previous cocaine exposure as rats performed a complex reward-guided decision-making task in which predicted reward value was independently manipulated by changing the delay to or size of reward associated with a response direction across a series of trial blocks. After cocaine self-administration, rats exhibited stronger biases toward higher-value reward and firing in DLS more strongly represented action-outcome contingencies independent from actions subsequently taken rather than outcomes predicted by selected actions (chosen-outcome contingencies) and associations between stimuli and actions (stimulus-response contingencies). These results suggest that cocaine self-administration strengthens action-outcome encoding in rats (as opposed to chosen-outcome or stimulus-response encoding), which abnormally biases behavior toward valued reward when there is a choice between two options during reward-guided decision-making.SIGNIFICANCE STATEMENT Current theories suggest that the impaired decision-making observed in individuals who chronically abuse drugs reflects a decrease in goal-directed behaviors and an increase in habitual behaviors governed by neural representations of response-outcome (R-O) and stimulus-response associations, respectively. We examined the impact that prior cocaine self-administration had on firing in dorsal lateral striatum (DLS), a brain area known to be involved in habit formation and affected by drugs of abuse, during performance of a complex reward-guided decision-making task. Surprisingly, we found that previous cocaine exposure enhanced R-O associations in DLS. This suggests that there may be more complex consequences of drug abuse than current theories have explored, especially when examining brain and behavior in the context of a complex two-choice decision-making task.
Collapse
Affiliation(s)
- Amanda C Burton
- Department of Psychology and
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, Maryland 20742
| | | | | | | | - Matthew R Roesch
- Department of Psychology and
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, Maryland 20742
| |
Collapse
|
24
|
Barker JM, Bryant KG, Osborne JI, Chandler LJ. Age and Sex Interact to Mediate the Effects of Intermittent, High-Dose Ethanol Exposure on Behavioral Flexibility. Front Pharmacol 2017; 8:450. [PMID: 28736526 PMCID: PMC5500662 DOI: 10.3389/fphar.2017.00450] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 06/22/2017] [Indexed: 11/18/2022] Open
Abstract
Human alcoholics have been shown to have impaired cognitive control over actions and increased reliance on habitual response strategies. While it is unclear in humans whether these differences predate ethanol exposure or result from chronic drinking, data from animal studies suggest that ethanol acts to promote the development of inflexible behaviors. Here, we investigated how intermittent exposure to high doses of ethanol impacts the ability to flexibly regulate behavior in a habit model. As adolescence, may represent a period of increased drug taking and developmental vulnerability that may impact adult behavior, we compared the effects of high-dose ethanol exposure during adolescence to exposure during adulthood in male and female rats. Our findings indicated that the effects of intermittent, high-dose ethanol exposure on habitual behavior is mediated by age and sex such that ethanol exposure during adolescence promoted the use of habitual response strategies in adult females, but not males, and that the opposite pattern emerged following intermittent, high-dose ethanol exposure in adult rats.
Collapse
Affiliation(s)
- Jacqueline M. Barker
- Department of Neuroscience, Medical University of South Carolina, CharlestonSC, United States
| | | | | | - L. J. Chandler
- Department of Neuroscience, Medical University of South Carolina, CharlestonSC, United States
| |
Collapse
|
25
|
Pathological Overeating: Emerging Evidence for a Compulsivity Construct. Neuropsychopharmacology 2017; 42:1375-1389. [PMID: 27922596 PMCID: PMC5436113 DOI: 10.1038/npp.2016.269] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/18/2016] [Accepted: 11/22/2016] [Indexed: 12/11/2022]
Abstract
Compulsive eating behavior is a transdiagnostic construct that is characteristic of medical and psychiatric conditions such as forms of obesity and eating disorders. Although feeding research is moving toward a better understanding of the proposed addictive properties of food, the components and the mechanisms contributing to compulsive eating are not yet clearly defined or understood. Current understanding highlights three elements of compulsive behavior as it applies to pathological overeating: (1) habitual overeating; (2) overeating to relieve a negative emotional state; and (3) overeating despite aversive consequences. These elements emerge through mechanisms involving pathological habit formation through an aberrant learning process, the emergence of a negative emotional state, and dysfunctions in behavioral control. Dysfunctions in systems within neurocircuitries that comprise the basal ganglia, the extended amygdala, and the prefrontal cortex result in compulsive eating behaviors. Here, we present evidence to relate compulsive eating behavior and addiction and to characterize their underlying neurobiological mechanisms. A major need to improve understanding of compulsive eating through the integration of complex motivational, emotional, and cognitive constructs is warranted.
Collapse
|
26
|
Subchronic anesthetic ketamine injections in rats impair choice reversal learning, but have no effect on reinforcer devaluation. Behav Pharmacol 2017; 28:294-302. [PMID: 28118210 DOI: 10.1097/fbp.0000000000000289] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Previous exposure to a variety of drugs of abuse has been shown to cause long-term impairments in reversal learning and reinforcer devaluation tasks. However, there is mixed evidence in the literature for a long-term effect of ketamine exposure on reversal learning and the long-term effect of ketamine exposure on devaluation is not known. We determined whether repeated injections of an anesthetic dose of ketamine would lead to impairments in choice reversal learning after discrimination learning or impairments in reinforcer devaluation. In two experiments, rats received three injections once-daily of ketamine (100 mg/kg, intraperitoneally) or saline and then began behavioral training 19 days later so that the key reversal learning and devaluation tests would occur about 1 month after the final ketamine injection. This ketamine exposure regimen did not impair learning in our discrimination task, but led to an increase in perseverative errors in reversal learning. However, the same ketamine exposure regimen (or injections of a lower 50 mg/kg dose) had no effect on behavior in the devaluation task. The behavioral patterns observed suggest possible neural mechanisms for the effects of ketamine, but future neurobiological investigations will be needed to isolate these mechanisms.
Collapse
|