1
|
Martín-Luengo B, Vorobiova AN, Feurra M, Myachykov A, Shtyrov Y. Transcranial magnetic stimulation of the left middle frontal gyrus modulates the information people communicate in different social contexts. Sci Rep 2023; 13:9995. [PMID: 37340041 DOI: 10.1038/s41598-023-36192-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/30/2023] [Indexed: 06/22/2023] Open
Abstract
Neocortical structures of the left frontal lobe, middle frontal gyrus (MFG) in particular, have been suggested to be linked to the processing of punishing and unpleasant outcomes in decision tasks. To assess the role of left MFG (lMFG) in communicative decisions, we used repetitive transcranial magnetic stimulation (rTMS) to inhibit its function during communicational exchanges under two types of social contexts: formal and informal. Three groups of participants received an offline 1-Hz inhibitory rTMS of lMFG, right MFG as an active control site, or lMFG sham/placebo TMS as a passive control condition. Participants' task included answering difficult general-knowledge questions, rating their confidence in their answers' correctness, and, finally, deciding if they would report or withhold these answers in formal and informal social contexts. There were significantly more reported than withheld answers in the informal context in all groups. The formal context showed no differences between reported and withheld answers in both control conditions, while, crucially, real rTMS of lMFG produced a different pattern, with more withheld than reported answers. Thus, lMFG inhibition seems to result in more rational decisions made only in formal communication contexts, where there is a perception of a certain pressure or possible negative outcomes. In informal social contexts and in the absence of negative consequences the pattern of answers did not change, regardless of the reporting strategy or the TMS protocol used. These results suggest selective context-dependent involvement of the lMFG in decision-making processes during communicational exchanges taking place under social pressure.
Collapse
Affiliation(s)
- Beatriz Martín-Luengo
- Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, HSE University, Moscow, Russia, 101000.
| | - Alicia Nunez Vorobiova
- Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, HSE University, Moscow, Russia, 101000
| | - Matteo Feurra
- Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, HSE University, Moscow, Russia, 101000
| | - Andriy Myachykov
- Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, HSE University, Moscow, Russia, 101000
- Department of Psychology, Northumbria University, Newcastle upon Tyne, UK
| | - Yury Shtyrov
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
Tics: neurological disorders determined by a deficit in sensorimotor gating processes. Neurol Sci 2022; 43:5839-5850. [PMID: 35781754 PMCID: PMC9474467 DOI: 10.1007/s10072-022-06235-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/20/2022] [Indexed: 11/21/2022]
Abstract
Tic related disorders affect 4–20% of the population, mostly idiopathic, can be grouped in a wide spectrum of severity, where the most severe end is Tourette Syndrome (TS). Tics are arrhythmic hyperkinesias to whom execution the subject is forced by a “premonitory urge” that can be classified as sensory tic, just-right experience or urge without obsession. If an intact volitional inhibition allows patients to temporarily suppress tics, a lack or deficit in automatic inhibition is involved in the genesis of the disorder. Studies have assessed the presence of intrinsic microscopic and macroscopic anomalies in striatal circuits and relative cortical areas in association with a hyperdopaminergic state in the basal forebrain. Prepulse inhibition (PPI) of the startle reflex is a measure of inhibitory functions by which a weak sensory stimulus inhibits the elicitation of a startle response determined by a sudden intense stimulus. It is considered an operation measure of sensorimotor gating, a neural process by which unnecessary stimuli are eliminated from awareness. Evidence points out that the limbic domain of the CSTC loops, dopamine and GABA receptors within the striatum play an important role in PPI modulation. It is conceivable that a sensorimotor gating deficit may be involved in the genesis of premonitory urge and symptoms. Therefore, correcting the sensorimotor gating deficit may be considered a target for tic-related disorders therapies; in such case PPI (as well as other indirect estimators of sensorimotor gating) could represent therapeutic impact predictors.
Collapse
|
3
|
Kokkonen A, Honkanen EA, Corp DT, Joutsa J. Neurobiological effects of deep brain stimulation: A systematic review of molecular brain imaging studies. Neuroimage 2022; 260:119473. [PMID: 35842094 DOI: 10.1016/j.neuroimage.2022.119473] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 05/28/2022] [Accepted: 07/11/2022] [Indexed: 11/29/2022] Open
Abstract
Deep brain stimulation (DBS) is an established treatment for several brain disorders, including Parkinson's disease, essential tremor, dystonia and epilepsy, and an emerging therapeutic tool in many other neurological and psychiatric disorders. The therapeutic efficacy of DBS is dependent on the stimulation target, but its mechanisms of action are still relatively poorly understood. Investigating these mechanisms is challenging, partly because the stimulation devices and electrodes have limited the use of functional MRI in these patients. Molecular brain imaging techniques, such as positron emission tomography (PET) and single photon emission tomography (SPET), offer a unique opportunity to characterize the whole brain effects of DBS. Here, we investigated the direct effects of DBS by systematically reviewing studies performing an `on' vs `off' contrast during PET or SPET imaging. We identified 62 studies (56 PET and 6 SPET studies; 531 subjects). Approximately half of the studies focused on cerebral blood flow or glucose metabolism in patients Parkinson's disease undergoing subthalamic DBS (25 studies, n = 289), therefore Activation Likelihood Estimation analysis was performed on these studies. Across disorders and stimulation targets, DBS was associated with a robust local increase in ligand uptake at the stimulation site and target-specific remote network effects. Subthalamic nucleus stimulation in Parkinson's disease showed a specific pattern of changes in the motor circuit, including increased ligand uptake in the basal ganglia, and decreased ligand uptake in the primary motor cortex, supplementary motor area and cerebellum. However, there was only a handful of studies investigating other brain disorder and stimulation site combinations (1-3 studies each), or specific neurotransmitter systems, preventing definitive conclusions of the detailed molecular effects of the stimulation in these cases.
Collapse
Affiliation(s)
- Aleksi Kokkonen
- Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, Turku, Finland; Turku PET Center, Neurocenter, Turku University Hospital, Turku, Finland.
| | - Emma A Honkanen
- Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, Turku, Finland; Turku PET Center, Neurocenter, Turku University Hospital, Turku, Finland
| | - Daniel T Corp
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia; Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Boston, MA, United States of America
| | - Juho Joutsa
- Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, Turku, Finland; Turku PET Center, Neurocenter, Turku University Hospital, Turku, Finland; Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Boston, MA, United States of America.
| |
Collapse
|
4
|
Paschou P, Jin Y, Müller-Vahl K, Möller HE, Rizzo R, Hoekstra PJ, Roessner V, Mol Debes N, Worbe Y, Hartmann A, Mir P, Cath D, Neuner I, Eichele H, Zhang C, Lewandowska K, Munchau A, Verrel J, Musil R, Silk TJ, Hanlon CA, Bihun ED, Brandt V, Dietrich A, Forde N, Ganos C, Greene DJ, Chu C, Grothe MJ, Hershey T, Janik P, Koller JM, Martin-Rodriguez JF, Müller K, Palmucci S, Prato A, Ramkiran S, Saia F, Szejko N, Torrecuso R, Tumer Z, Uhlmann A, Veselinovic T, Wolańczyk T, Zouki JJ, Jain P, Topaloudi A, Kaka M, Yang Z, Drineas P, Thomopoulos SI, White T, Veltman DJ, Schmaal L, Stein DJ, Buitelaar J, Franke B, van den Heuvel O, Jahanshad N, Thompson PM, Black KJ. Enhancing neuroimaging genetics through meta-analysis for Tourette syndrome (ENIGMA-TS): A worldwide platform for collaboration. Front Psychiatry 2022; 13:958688. [PMID: 36072455 PMCID: PMC9443935 DOI: 10.3389/fpsyt.2022.958688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Tourette syndrome (TS) is characterized by multiple motor and vocal tics, and high-comorbidity rates with other neuropsychiatric disorders. Obsessive compulsive disorder (OCD), attention deficit hyperactivity disorder (ADHD), autism spectrum disorders (ASDs), major depressive disorder (MDD), and anxiety disorders (AXDs) are among the most prevalent TS comorbidities. To date, studies on TS brain structure and function have been limited in size with efforts mostly fragmented. This leads to low-statistical power, discordant results due to differences in approaches, and hinders the ability to stratify patients according to clinical parameters and investigate comorbidity patterns. Here, we present the scientific premise, perspectives, and key goals that have motivated the establishment of the Enhancing Neuroimaging Genetics through Meta-Analysis for TS (ENIGMA-TS) working group. The ENIGMA-TS working group is an international collaborative effort bringing together a large network of investigators who aim to understand brain structure and function in TS and dissect the underlying neurobiology that leads to observed comorbidity patterns and clinical heterogeneity. Previously collected TS neuroimaging data will be analyzed jointly and integrated with TS genomic data, as well as equivalently large and already existing studies of highly comorbid OCD, ADHD, ASD, MDD, and AXD. Our work highlights the power of collaborative efforts and transdiagnostic approaches, and points to the existence of different TS subtypes. ENIGMA-TS will offer large-scale, high-powered studies that will lead to important insights toward understanding brain structure and function and genetic effects in TS and related disorders, and the identification of biomarkers that could help inform improved clinical practice.
Collapse
Affiliation(s)
- Peristera Paschou
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Yin Jin
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Kirsten Müller-Vahl
- Department of Psychiatry, Hannover University Medical School, Hannover, Germany
| | - Harald E Möller
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Renata Rizzo
- Radiology Unit 1, Department of Medical Surgical Sciences and Advanced Technologies, University of Catania, Catania, Italy
| | - Pieter J Hoekstra
- University Medical Center Groningen, Department of Psychiatry, University of Groningen, Groningen, Netherlands
| | - Veit Roessner
- Department of Child and Adolescent Psychiatry, Technische Universität (TU) Dresden, Dresden, Germany
| | - Nanette Mol Debes
- Department of Pediatrics, Herlev University Hospital, Herlev, Denmark
| | - Yulia Worbe
- Department of Neurophysiology, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
| | | | - Pablo Mir
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/University of Seville, Seville, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Danielle Cath
- University Medical Center Groningen, Department of Psychiatry, University of Groningen, Groningen, Netherlands
| | - Irene Neuner
- Department of Psychiatry, Psychotherapy and Psychosomatic, RWTH Aachen University, Aachen, Germany.,Institute of Neuroscience and Medicine 4, Forschungszentrum Jülich GmbH, Jülich, Germany.,JARA BRAIN-Translational Medicine, Aachen, Germany
| | - Heike Eichele
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | - Chencheng Zhang
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, China
| | | | - Alexander Munchau
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Julius Verrel
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Richard Musil
- Department of Psychiatry and Psychotherapy, Ludwig Maximilians University of Munich, Munich, Germany
| | - Tim J Silk
- Deakin University, Geelong, VIC, Australia
| | - Colleen A Hanlon
- Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Emily D Bihun
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States
| | - Valerie Brandt
- Centre for Innovation in Mental Health, School of Psychology, University of Southampton, Southampton, United Kingdom
| | - Andrea Dietrich
- University Medical Center Groningen, Department of Psychiatry, University of Groningen, Groningen, Netherlands
| | - Natalie Forde
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| | - Christos Ganos
- Department of Neurology, Charité-University Medicine Berlin, Berlin, Germany
| | - Deanna J Greene
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA, United States
| | - Chunguang Chu
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, China
| | - Michel J Grothe
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/University of Seville, Seville, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Tamara Hershey
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States
| | - Piotr Janik
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Jonathan M Koller
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States
| | - Juan Francisco Martin-Rodriguez
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/University of Seville, Seville, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Karsten Müller
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Stefano Palmucci
- Radiology Unit 1, Department of Medical Surgical Sciences and Advanced Technologies, University of Catania, Catania, Italy
| | - Adriana Prato
- Child and Adolescent Neurology and Psychiatric Section, Department of Clinical and Experimental Medicine, Catania University, Catania, Italy
| | - Shukti Ramkiran
- Department of Psychiatry, Psychotherapy and Psychosomatic, RWTH Aachen University, Aachen, Germany.,Institute of Neuroscience and Medicine 4, Forschungszentrum Jülich GmbH, Jülich, Germany.,JARA BRAIN-Translational Medicine, Aachen, Germany
| | - Federica Saia
- Child Neuropsychiatry Unit, Department of Clinical and Experimental Medicine, School of Medicine, University of Catania, Catania, Italy
| | - Natalia Szejko
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Renzo Torrecuso
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Zeynep Tumer
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Genetics, Kennedy Center, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark
| | - Anne Uhlmann
- Department of Child and Adolescent Psychiatry, Technische Universität (TU) Dresden, Dresden, Germany
| | - Tanja Veselinovic
- Department of Psychiatry, Psychotherapy and Psychosomatic, RWTH Aachen University, Aachen, Germany
| | - Tomasz Wolańczyk
- Department of Child Psychiatry, Medical University of Warsaw, Warsaw, Poland
| | | | - Pritesh Jain
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Apostolia Topaloudi
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Mary Kaka
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Zhiyu Yang
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Petros Drineas
- Department of Computer Science, Purdue University, West Lafayette, IN, United States
| | - Sophia I Thomopoulos
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Tonya White
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Dick J Veltman
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, Netherlands
| | - Lianne Schmaal
- Centre for Youth Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Dan J Stein
- South African Medical Research Council (SAMRC) Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Jan Buitelaar
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| | - Barbara Franke
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| | - Odile van den Heuvel
- Department Psychiatry, Department Anatomy and Neuroscience, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Neda Jahanshad
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Paul M Thompson
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Kevin J Black
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
5
|
Szejko N, Worbe Y, Hartmann A, Visser-Vandewalle V, Ackermans L, Ganos C, Porta M, Leentjens AFG, Mehrkens JH, Huys D, Baldermann JC, Kuhn J, Karachi C, Delorme C, Foltynie T, Cavanna AE, Cath D, Müller-Vahl K. European clinical guidelines for Tourette syndrome and other tic disorders-version 2.0. Part IV: deep brain stimulation. Eur Child Adolesc Psychiatry 2022; 31:443-461. [PMID: 34605960 PMCID: PMC8940783 DOI: 10.1007/s00787-021-01881-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 09/15/2021] [Indexed: 12/13/2022]
Abstract
In 2011 the European Society for the Study of Tourette Syndrome (ESSTS) published its first European clinical guidelines for the treatment of Tourette Syndrome (TS) with part IV on deep brain stimulation (DBS). Here, we present a revised version of these guidelines with updated recommendations based on the current literature covering the last decade as well as a survey among ESSTS experts. Currently, data from the International Tourette DBS Registry and Database, two meta-analyses, and eight randomized controlled trials (RCTs) are available. Interpretation of outcomes is limited by small sample sizes and short follow-up periods. Compared to open uncontrolled case studies, RCTs report less favorable outcomes with conflicting results. This could be related to several different aspects including methodological issues, but also substantial placebo effects. These guidelines, therefore, not only present currently available data from open and controlled studies, but also include expert knowledge. Although the overall database has increased in size since 2011, definite conclusions regarding the efficacy and tolerability of DBS in TS are still open to debate. Therefore, we continue to consider DBS for TS as an experimental treatment that should be used only in carefully selected, severely affected and otherwise treatment-resistant patients.
Collapse
Affiliation(s)
- Natalia Szejko
- Department of Neurology, Medical University of Warsaw, Banacha 1a, 02-091, Warsaw, Poland.
- Department of Bioethics, Medical University of Warsaw, Banacha 1a, 02-091, Warsaw, Poland.
- Department of Neurology, Yale School of Medicine, Yale University, New Haven, USA.
| | - Yulia Worbe
- Department on Neurophysiology, Saint Antoine Hospital, Sorbonne Université, Paris, France
- National Reference Center for Tourette Disorder, Pitié Salpetiere Hospital, Paris, France
| | - Andreas Hartmann
- Department of Neurosurgery, Pitié-Salpetriere Hospital, Sorbonne Université, Paris, France
| | - Veerle Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Linda Ackermans
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Christos Ganos
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Mauro Porta
- Department of Neurosurgery and Neurology, IRCCS Instituto Ortopedico Galeazzi, Milan, Italy
| | - Albert F G Leentjens
- Department of Psychiatry, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jan-Hinnerk Mehrkens
- Department of Neurosurgery, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Daniel Huys
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | | | - Jens Kuhn
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Johanniter Hospital Oberhausen, Oberhausen, Germany
| | - Carine Karachi
- National Reference Center for Tourette Disorder, Pitié Salpetiere Hospital, Paris, France
- Department of Neurosurgery, Pitié-Salpetriere Hospital, Sorbonne Université, Paris, France
- Department of Neurology, Pitié-Salpetriere Hospital, Sorbonne Université, Paris, France
| | - Cécile Delorme
- Department of Neurosurgery, Pitié-Salpetriere Hospital, Sorbonne Université, Paris, France
| | - Thomas Foltynie
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Andrea E Cavanna
- Institute of Clinical Sciences, University of Birmingham, Birmingham, UK
| | - Danielle Cath
- Department of Specialist Trainings, GGZ Drenthe Mental Health Institution, Assen, The Netherlands
- Department of Psychiatry, University Medical Center Groningen, Rijks University Groningen, Groningen, The Netherlands
| | - Kirsten Müller-Vahl
- Clinic of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| |
Collapse
|
6
|
Georgiev D, Akram H, Jahanshahi M. Deep brain stimulation for psychiatric disorders: role of imaging in identifying/confirming DBS targets, predicting, and optimizing outcome and unravelling mechanisms of action. PSYCHORADIOLOGY 2021; 1:118-151. [PMID: 38665808 PMCID: PMC10917192 DOI: 10.1093/psyrad/kkab012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/31/2021] [Accepted: 09/08/2021] [Indexed: 04/28/2024]
Abstract
Following the established application of deep brain stimulation (DBS) in the treatment of movement disorders, new non-neurological indications have emerged, such as for obsessive-compulsive disorders, major depressive disorder, dementia, Gilles de la Tourette Syndrome, anorexia nervosa, and addictions. As DBS is a network modulation surgical treatment, the development of DBS for both neurological and psychiatric disorders has been partly driven by advances in neuroimaging, which has helped explain the brain networks implicated. Advances in magnetic resonance imaging connectivity and electrophysiology have led to the development of the concept of modulating widely distributed, complex brain networks. Moreover, the increasing number of targets for treating psychiatric disorders have indicated that there may be a convergence of the effect of stimulating different targets for the same disorder, and the effect of stimulating the same target for different disorders. The aim of this paper is to review the imaging studies of DBS for psychiatric disorders. Imaging, and particularly connectivity analysis, offers exceptional opportunities to better understand and even predict the clinical outcomes of DBS, especially where there is a lack of objective biomarkers that are essential to properly guide DBS pre- and post-operatively. In future, imaging might also prove useful to individualize DBS treatment. Finally, one of the most important aspects of imaging in DBS is that it allows us to better understand the brain through observing the changes of the functional connectome under neuromodulation, which may in turn help explain the mechanisms of action of DBS that remain elusive.
Collapse
Affiliation(s)
- Dejan Georgiev
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- Department of Neurology, University Medical Centre Ljubljana, Zaloška cesta 2, 1000 Ljubljana, Slovenia
- Artificial Intelligence Laboratory, Faculty of Computer and Information Science, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Harith Akram
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Marjan Jahanshahi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731, China
| |
Collapse
|
7
|
Randomized double-blind sham-controlled trial of thalamic versus GPi stimulation in patients with severe medically refractory Gilles de la Tourette syndrome. Brain Stimul 2021; 14:662-675. [PMID: 33857664 DOI: 10.1016/j.brs.2021.04.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 01/13/2021] [Accepted: 04/01/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND There are still no sufficient data regarding the use of deep brain stimulation (DBS) in Gilles de la Tourette syndrome (GTS) and no agreement on optimal target. OBJECTIVE To compare efficacy and safety of bilateral DBS of thalamus (centromedian-ventro-oral internus, CM-Voi) versus posteroventral lateral globus pallidus internus (pvl GPi)) versus sham stimulation, and baseline in severe medically refractory GTS. METHODS In this randomized double-blind sham stimulation-controlled trial (RCT), 10 patients (3 women, mean age = 29.4 ± 10.2 SD, range 18-47) underwent three blinded periods each lasting three months including (i) sham, (ii) pvl GPi (on-GPi), and (iii) thalamic stimulation (on-thal) followed by an open uncontrolled long-term follow-up (up to 9 years) with individually determined target and stimulation settings. RESULTS Nine patients completed the RCT. At group level, on-GPi - but not on-thal - resulted in a significant tic reduction compared to baseline, but had no effect on premonitory urges and psychiatric comorbidities. Direct comparisons of targets resulted in inconsistent or negative (compared to sham) findings. During follow-up, we found no improvement of tics, comorbidities, and quality of life at group level, however, single patients benefitted continuously from thalamic DBS. At last follow-up 89.9 months (mean) after surgery, 50% of patients had discontinued DBS. Hardware infections occurred in 3/10 patients. CONCLUSION Our data suggest that the initial effect of pvl GPi DBS is superior to thalamic (CM-Voi) DBS. While half of the patients discontinued treatment, single patients benefitted from thalamic DBS even after years. It is likely that outcome is influenced by various factors beyond the mere change in tic severity.
Collapse
|
8
|
Johnson KA, Duffley G, Anderson DN, Ostrem JL, Welter ML, Baldermann JC, Kuhn J, Huys D, Visser-Vandewalle V, Foltynie T, Zrinzo L, Hariz M, Leentjens AFG, Mogilner AY, Pourfar MH, Almeida L, Gunduz A, Foote KD, Okun MS, Butson CR. Structural connectivity predicts clinical outcomes of deep brain stimulation for Tourette syndrome. Brain 2020; 143:2607-2623. [PMID: 32653920 DOI: 10.1093/brain/awaa188] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/12/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022] Open
Abstract
Deep brain stimulation may be an effective therapy for select cases of severe, treatment-refractory Tourette syndrome; however, patient responses are variable, and there are no reliable methods to predict clinical outcomes. The objectives of this retrospective study were to identify the stimulation-dependent structural networks associated with improvements in tics and comorbid obsessive-compulsive behaviour, compare the networks across surgical targets, and determine if connectivity could be used to predict clinical outcomes. Volumes of tissue activated for a large multisite cohort of patients (n = 66) implanted bilaterally in globus pallidus internus (n = 34) or centromedial thalamus (n = 32) were used to generate probabilistic tractography to form a normative structural connectome. The tractography maps were used to identify networks that were correlated with improvement in tics or comorbid obsessive-compulsive behaviour and to predict clinical outcomes across the cohort. The correlated networks were then used to generate 'reverse' tractography to parcellate the total volume of stimulation across all patients to identify local regions to target or avoid. The results showed that for globus pallidus internus, connectivity to limbic networks, associative networks, caudate, thalamus, and cerebellum was positively correlated with improvement in tics; the model predicted clinical improvement scores (P = 0.003) and was robust to cross-validation. Regions near the anteromedial pallidum exhibited higher connectivity to the positively correlated networks than posteroventral pallidum, and volume of tissue activated overlap with this map was significantly correlated with tic improvement (P < 0.017). For centromedial thalamus, connectivity to sensorimotor networks, parietal-temporal-occipital networks, putamen, and cerebellum was positively correlated with tic improvement; the model predicted clinical improvement scores (P = 0.012) and was robust to cross-validation. Regions in the anterior/lateral centromedial thalamus exhibited higher connectivity to the positively correlated networks, but volume of tissue activated overlap with this map did not predict improvement (P > 0.23). For obsessive-compulsive behaviour, both targets showed that connectivity to the prefrontal cortex, orbitofrontal cortex, and cingulate cortex was positively correlated with improvement; however, only the centromedial thalamus maps predicted clinical outcomes across the cohort (P = 0.034), but the model was not robust to cross-validation. Collectively, the results demonstrate that the structural connectivity of the site of stimulation are likely important for mediating symptom improvement, and the networks involved in tic improvement may differ across surgical targets. These networks provide important insight on potential mechanisms and could be used to guide lead placement and stimulation parameter selection, as well as refine targets for neuromodulation therapies for Tourette syndrome.
Collapse
Affiliation(s)
- Kara A Johnson
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah, USA.,Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Gordon Duffley
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah, USA.,Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Daria Nesterovich Anderson
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah, USA.,Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA.,Department of Neurosurgery, University of Utah, Salt Lake City, Utah, USA
| | - Jill L Ostrem
- Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Marie-Laure Welter
- Institut du Cerveau et de la Moelle Epiniere, Sorbonne Universités, University of Pierre and Marie Curie University of Paris, the French National Institute of Health and Medical Research U 1127, the National Center for Scientific Research 7225, Paris, France
| | - Juan Carlos Baldermann
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany.,Department of Neurology, University of Cologne, Cologne, Germany
| | - Jens Kuhn
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany.,Department of Psychiatry, Psychotherapy, and Psychosomatic Medicine, Johanniter Hospital Oberhausen, EVKLN, Oberhausen, Germany
| | - Daniel Huys
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | - Veerle Visser-Vandewalle
- Department of Stereotaxy and Functional Neurosurgery, University Hospital Cologne, Cologne, Germany
| | - Thomas Foltynie
- Functional Neurosurgery Unit, Department of Clinical and Movement Neurosciences, University College London, Queen Square Institute of Neurology, London, UK
| | - Ludvic Zrinzo
- Functional Neurosurgery Unit, Department of Clinical and Movement Neurosciences, University College London, Queen Square Institute of Neurology, London, UK
| | - Marwan Hariz
- Functional Neurosurgery Unit, Department of Clinical and Movement Neurosciences, University College London, Queen Square Institute of Neurology, London, UK.,Department of Clinical Neuroscience, Umea University, Umea, Sweden
| | - Albert F G Leentjens
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Alon Y Mogilner
- Center for Neuromodulation, New York University Langone Medical Center, New York, New York, USA
| | - Michael H Pourfar
- Center for Neuromodulation, New York University Langone Medical Center, New York, New York, USA
| | - Leonardo Almeida
- Norman Fixel Institute for Neurological Diseases , Program for Movement Disorders and Neurorestoration, Departments of Neurology and Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Aysegul Gunduz
- Norman Fixel Institute for Neurological Diseases , Program for Movement Disorders and Neurorestoration, Departments of Neurology and Neurosurgery, University of Florida, Gainesville, Florida, USA.,J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Kelly D Foote
- Norman Fixel Institute for Neurological Diseases , Program for Movement Disorders and Neurorestoration, Departments of Neurology and Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Michael S Okun
- Norman Fixel Institute for Neurological Diseases , Program for Movement Disorders and Neurorestoration, Departments of Neurology and Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Christopher R Butson
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah, USA.,Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA.,Department of Neurosurgery, University of Utah, Salt Lake City, Utah, USA.,Departments of Neurology and Psychiatry, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
9
|
Johnson KA, Duffley G, Foltynie T, Hariz M, Zrinzo L, Joyce EM, Akram H, Servello D, Galbiati TF, Bona A, Porta M, Meng FG, Leentjens AFG, Gunduz A, Hu W, Foote KD, Okun MS, Butson CR. Basal Ganglia Pathways Associated With Therapeutic Pallidal Deep Brain Stimulation for Tourette Syndrome. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 6:961-972. [PMID: 33536144 DOI: 10.1016/j.bpsc.2020.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/28/2020] [Accepted: 11/14/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Deep brain stimulation (DBS) targeting the globus pallidus internus (GPi) can improve tics and comorbid obsessive-compulsive behavior (OCB) in patients with treatment-refractory Tourette syndrome (TS). However, some patients' symptoms remain unresponsive, the stimulation applied across patients is variable, and the mechanisms underlying improvement are unclear. Identifying the fiber pathways surrounding the GPi that are associated with improvement could provide mechanistic insight and refine targeting strategies to improve outcomes. METHODS Retrospective data were collected for 35 patients who underwent bilateral GPi DBS for TS. Computational models of fiber tract activation were constructed using patient-specific lead locations and stimulation settings to evaluate the effects of DBS on basal ganglia pathways and the internal capsule. We first evaluated the relationship between activation of individual pathways and symptom improvement. Next, linear mixed-effects models with combinations of pathways and clinical variables were compared in order to identify the best-fit predictive models of tic and OCB improvement. RESULTS The best-fit model of tic improvement included baseline severity and the associative pallido-subthalamic pathway. The best-fit model of OCB improvement included baseline severity and the sensorimotor pallido-subthalamic pathway, with substantial evidence also supporting the involvement of the prefrontal, motor, and premotor internal capsule pathways. The best-fit models of tic and OCB improvement predicted outcomes across the cohort and in cross-validation. CONCLUSIONS Differences in fiber pathway activation likely contribute to variable outcomes of DBS for TS. Computational models of pathway activation could be used to develop novel approaches for preoperative targeting and selecting stimulation parameters to improve patient outcomes.
Collapse
Affiliation(s)
- Kara A Johnson
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah; Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah
| | - Gordon Duffley
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah; Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah
| | - Thomas Foltynie
- Functional Neurosurgery Unit, Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Marwan Hariz
- Functional Neurosurgery Unit, Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom; Department of Clinical Neuroscience, Umea University, Umea, Sweden
| | - Ludvic Zrinzo
- Functional Neurosurgery Unit, Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Eileen M Joyce
- Functional Neurosurgery Unit, Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Harith Akram
- Functional Neurosurgery Unit, Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Domenico Servello
- Neurosurgical Department, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Tommaso F Galbiati
- Neurosurgical Department, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Alberto Bona
- Neurosurgical Department, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Mauro Porta
- Tourette's Syndrome and Movement Disorders Center, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Fan-Gang Meng
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Albert F G Leentjens
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Aysegul Gunduz
- Norman Fixel Institute for Neurological Diseases, Program for Movement Disorders and Neurorestoration, Departments of Neurology and Neurosurgery, University of Florida, Gainesville, Florida; J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida
| | - Wei Hu
- Norman Fixel Institute for Neurological Diseases, Program for Movement Disorders and Neurorestoration, Departments of Neurology and Neurosurgery, University of Florida, Gainesville, Florida
| | - Kelly D Foote
- Norman Fixel Institute for Neurological Diseases, Program for Movement Disorders and Neurorestoration, Departments of Neurology and Neurosurgery, University of Florida, Gainesville, Florida
| | - Michael S Okun
- Norman Fixel Institute for Neurological Diseases, Program for Movement Disorders and Neurorestoration, Departments of Neurology and Neurosurgery, University of Florida, Gainesville, Florida
| | - Christopher R Butson
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah; Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah; Department of Neurology, University of Utah, Salt Lake City, Utah; Department of Neurosurgery, University of Utah, Salt Lake City, Utah; Department of Psychiatry, University of Utah, Salt Lake City, Utah.
| |
Collapse
|
10
|
Pandey S, Dash D. Progress in Pharmacological and Surgical Management of Tourette Syndrome and Other Chronic Tic Disorders. Neurologist 2019; 24:93-108. [DOI: 10.1097/nrl.0000000000000218] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Neumann WJ, Huebl J, Brücke C, Lofredi R, Horn A, Saryyeva A, Müller-Vahl K, Krauss JK, Kühn AA. Pallidal and thalamic neural oscillatory patterns in tourette's syndrome. Ann Neurol 2018; 84:505-514. [PMID: 30112767 DOI: 10.1002/ana.25311] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 06/08/2018] [Accepted: 07/08/2018] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Aberrant oscillatory activity has been hypothesized to play a role in the pathophysiology of Tourette's syndrome (TS). Deep brain stimulation (DBS) has recently been established as an effective treatment for severe TS. Modulation of symptom-specific oscillations may underlie the mechanism of action of DBS and could be used for adaptive neuromodulation to improve therapeutic efficacy. The objective of this study was to demonstrate a pathophysiological association of pallidal and thalamic local field potentials (LFPs) with TS. METHODS Nine medication-refractory TS patients were included in the study. Intracerebral LFPs were recorded simultaneously from bilateral pallidal and thalamic DBS electrodes. Spectral and temporal dynamics of pallidal and thalamic oscillations were characterized and correlated with preoperative Yale Global Tic Severity Scale (YGTSS) scores. RESULTS Peaks of activity in the theta (3-12Hz) and beta (13-35Hz) were present in pallidal and thalamic recordings from all patients (3 women/6 men; mean age, 29.8 years) and coupled through coherence across targets. Presence of prolonged theta bursts in both targets was associated with preoperative motor tic severity. Total preoperative YGTSS scores (mean, 38.1) were correlated with pallidal and thalamic LFP activity using multivariable linear regression (R² = 0.96; p = 0.02). INTERPRETATION Our findings suggest that pallidothalamic oscillations may be implicated in the pathophysiology of TS. Furthermore, our results highlight the utility of multisite and -spectral oscillatory features in severely affected patients for future identification and clinical use of oscillatory physiomarkers for adaptive stimulation in TS. Ann Neurol 2018;84:505-514.
Collapse
Affiliation(s)
- Wolf-Julian Neumann
- Department of Neurology, Movement Disorders and Neuromodulation Unit, Campus Charite Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Julius Huebl
- Department of Neurology, Movement Disorders and Neuromodulation Unit, Campus Charite Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Christof Brücke
- Department of Neurology, Movement Disorders and Neuromodulation Unit, Campus Charite Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Roxanne Lofredi
- Department of Neurology, Movement Disorders and Neuromodulation Unit, Campus Charite Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Horn
- Department of Neurology, Movement Disorders and Neuromodulation Unit, Campus Charite Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Assel Saryyeva
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Kirsten Müller-Vahl
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Andrea A Kühn
- Department of Neurology, Movement Disorders and Neuromodulation Unit, Campus Charite Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Charité-Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
12
|
van der Salm SMA, van der Meer JN, Cath DC, Groot PFC, van der Werf YD, Brouwers E, de Wit SJ, Coppens JC, Nederveen AJ, van Rootselaar AF, Tijssen MAJ. Distinctive tics suppression network in Gilles de la Tourette syndrome distinguished from suppression of natural urges using multimodal imaging. NEUROIMAGE-CLINICAL 2018; 20:783-792. [PMID: 30268027 PMCID: PMC6169325 DOI: 10.1016/j.nicl.2018.09.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 08/19/2018] [Accepted: 09/16/2018] [Indexed: 02/07/2023]
Abstract
Background and objectives Gilles de la Tourette syndrome (GTS) is a neuropsychiatric disorder characterized by tics. A hallmark of GTS is the ability to voluntarily suppress tics. Our aim was to distinguish the neural circuits involved in the voluntary suppression of ocular tics in GTS patients from blink suppression in healthy subjects. Methods Fifteen GTS patients and 22 healthy control subjects were included in a multimodal study using eye-tracker recordings during functional MRI (fMRI). The ability to suppress tics/blinks was compared both on subjective (self-rating) and objective (eye-tracker) performance. For fMRI analysis we used a novel designed performance-adapted block design analysis of tic/blink suppression and release based on eye-tracker monitoring. Results We found that the subjective self-reported ability to suppress tics or blinks showed no significant correlation with objective task performance. In GTS during successful suppression of tics, the dorsal anterior cingulate cortex and associated limbic areas showed increased activation. During successful suppression of eye blinks in healthy subjects, the right ventrolateral prefrontal cortex and supplementary and cingulate motor areas showed increased activation. Conclusions These findings demonstrate that GTS patients use a characteristic limbic suppression strategy. In contrast, control subjects use the voluntary sensorimotor circuits and the classical ‘stop’ network to suppress natural urges. The employment of different neural suppression networks provides support for cognitive behavioral therapy in GTS. Neural networks of tic suppression are specific and differ from blink suppression. Tourette patients employ a limbic suppression strategy to suppress tics. Controls use sensorimotor circuits and ‘stop’ networks for blink suppression. Objective task performance is highly recommended during functional MRI of tics.
Collapse
Affiliation(s)
- Sandra M A van der Salm
- Department of Neurology and Clinical Neurophysiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Brain Center Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Center Utrecht, the Netherlands; Stichting Epilepsie Instellingen Nederland (SEIN), Zwolle, the Netherlands
| | - Johan N van der Meer
- Department of Neurology and Clinical Neurophysiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Daniëlle C Cath
- Department of Clinical & Health Psychology, University of Utrecht, GGz Drenthe, Department of Psychiatry, University Medical Center Groningen, the Netherlands
| | - Paul F C Groot
- Department of Radiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Ysbrand D van der Werf
- Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Eelke Brouwers
- Department of Neurology and Clinical Neurophysiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Department of Pediatrics/Child Neurology, Neuroscience Campus Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Stella J de Wit
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit Amsterdam and GGZ inGeest, Amsterdam, the Netherlands
| | - Joris C Coppens
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Aart J Nederveen
- Department of Radiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Anne-Fleur van Rootselaar
- Department of Neurology and Clinical Neurophysiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; BIC: Brain Imaging Center, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Marina A J Tijssen
- Department of Neurology, University Medical Centre Groningen, University of Groningen, the Netherlands.
| |
Collapse
|
13
|
Hoang KB, Cassar IR, Grill WM, Turner DA. Biomarkers and Stimulation Algorithms for Adaptive Brain Stimulation. Front Neurosci 2017; 11:564. [PMID: 29066947 PMCID: PMC5641319 DOI: 10.3389/fnins.2017.00564] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 09/25/2017] [Indexed: 11/29/2022] Open
Abstract
The goal of this review is to describe in what ways feedback or adaptive stimulation may be delivered and adjusted based on relevant biomarkers. Specific treatment mechanisms underlying therapeutic brain stimulation remain unclear, in spite of the demonstrated efficacy in a number of nervous system diseases. Brain stimulation appears to exert widespread influence over specific neural networks that are relevant to specific disease entities. In awake patients, activation or suppression of these neural networks can be assessed by either symptom alleviation (i.e., tremor, rigidity, seizures) or physiological criteria, which may be predictive of expected symptomatic treatment. Secondary verification of network activation through specific biomarkers that are linked to symptomatic disease improvement may be useful for several reasons. For example, these biomarkers could aid optimal intraoperative localization, possibly improve efficacy or efficiency (i.e., reduced power needs), and provide long-term adaptive automatic adjustment of stimulation parameters. Possible biomarkers for use in portable or implanted devices span from ongoing physiological brain activity, evoked local field potentials (LFPs), and intermittent pathological activity, to wearable devices, biochemical, blood flow, optical, or magnetic resonance imaging (MRI) changes, temperature changes, or optogenetic signals. First, however, potential biomarkers must be correlated directly with symptom or disease treatment and network activation. Although numerous biomarkers are under consideration for a variety of stimulation indications the feasibility of these approaches has yet to be fully determined. Particularly, there are critical questions whether the use of adaptive systems can improve efficacy over continuous stimulation, facilitate adjustment of stimulation interventions and improve our understanding of the role of abnormal network function in disease mechanisms.
Collapse
Affiliation(s)
- Kimberly B. Hoang
- Department of Neurosurgery, Duke University, Durham, NC, United States
| | - Isaac R. Cassar
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Warren M. Grill
- Department of Neurosurgery, Duke University, Durham, NC, United States
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
- Department of Neurobiology, Duke University Medical Center, Duke University, Durham, NC, United States
| | - Dennis A. Turner
- Department of Neurosurgery, Duke University, Durham, NC, United States
- Department of Neurobiology, Duke University Medical Center, Duke University, Durham, NC, United States
| |
Collapse
|
14
|
Abstract
This article presents highlights chosen from research that appeared during 2016 on Tourette syndrome and other tic disorders. Selected articles felt to represent meaningful advances in the field are briefly summarized.
Collapse
Affiliation(s)
- Kevin J. Black
- Departments of Psychiatry, Neurology, Radiology, and Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| |
Collapse
|
15
|
Abstract
This article presents highlights chosen from research that appeared during 2016 on Tourette syndrome and other tic disorders. Selected articles felt to represent meaningful advances in the field are briefly summarized.
Collapse
Affiliation(s)
- Kevin J. Black
- Departments of Psychiatry, Neurology, Radiology, and Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| |
Collapse
|