1
|
Hughes BW, Huebschman JL, Tsvetkov E, Siemsen BM, Snyder KK, Akiki RM, Wood DJ, Penrod RD, Scofield MD, Berto S, Taniguchi M, Cowan CW. NPAS4 supports cocaine-conditioned cues in rodents by controlling the cell type-specific activation balance in the nucleus accumbens. Nat Commun 2024; 15:5971. [PMID: 39117647 PMCID: PMC11310321 DOI: 10.1038/s41467-024-50099-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 06/28/2024] [Indexed: 08/10/2024] Open
Abstract
Powerful associations that link drugs of abuse with cues in the drug-paired environment often serve as prepotent relapse triggers. Drug-associated contexts and cues activate ensembles of nucleus accumbens (NAc) neurons, including D1-class medium spiny neurons (MSNs) that typically promote, and D2-class MSNs that typically oppose, drug seeking. We found that in mice, cocaine conditioning upregulated transiently the activity-regulated transcription factor, Neuronal PAS Domain Protein 4 (NPAS4), in a small subset of NAc neurons. The NPAS4+ NAc ensemble was required for cocaine conditioned place preference. We also observed that NPAS4 functions within NAc D2-, but not D1-, MSNs to support cocaine-context associations and cue-induced cocaine, but not sucrose, seeking. Together, our data show that the NPAS4+ ensemble of NAc neurons is essential for cocaine-context associations in mice, and that NPAS4 itself functions in NAc D2-MSNs to support cocaine-context associations by suppressing drug-induced counteradaptations that oppose relapse-related behaviour.
Collapse
Affiliation(s)
- Brandon W Hughes
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Jessica L Huebschman
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Evgeny Tsvetkov
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Benjamin M Siemsen
- Department of Anesthesiology, Medical University of South Carolina, Charleston, SC, USA
| | - Kirsten K Snyder
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Rose Marie Akiki
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
- Medical Scientist Training Program, Medical University of South Carolina, Charleston, SC, USA
| | - Daniel J Wood
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
- Medical Scientist Training Program, Medical University of South Carolina, Charleston, SC, USA
| | - Rachel D Penrod
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Michael D Scofield
- Department of Anesthesiology, Medical University of South Carolina, Charleston, SC, USA
| | - Stefano Berto
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Makoto Taniguchi
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
| | - Christopher W Cowan
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
2
|
Mucke HAM. Drug Repurposing Patent Applications January-March 2024. Assay Drug Dev Technol 2024; 22:265-275. [PMID: 39024477 DOI: 10.1089/adt.2024.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024] Open
|
3
|
Gumede NAC, Khathi A. The Role of Pro-Opiomelanocortin Derivatives in the Development of Type 2 Diabetes-Associated Myocardial Infarction: Possible Links with Prediabetes. Biomedicines 2024; 12:314. [PMID: 38397916 PMCID: PMC10887103 DOI: 10.3390/biomedicines12020314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/14/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Myocardial infarction is a major contributor to CVD-related mortality. T2DM is a risk factor for MI. Stress activates the HPA axis, SNS, and endogenous OPS. These POMC derivatives increase the blood glucose and cardiovascular response by inhibiting the PI3K/AkT insulin signaling pathway and increasing cardiac contraction. Opioids regulate the effect of the HPA axis and SNS and they are cardioprotective. The chronic activation of the stress response may lead to insulin resistance, cardiac dysfunction, and MI. Stress and T2DM, therefore, increase the risk of MI. T2DM is preceded by prediabetes. Studies have shown that prediabetes is associated with an increased risk of MI because of inflammation, hyperlipidemia, endothelial dysfunction, and hypertension. The HPA axis is reported to be dysregulated in prediabetes. However, the SNS and the OPS have not been explored during prediabetes. The effect of prediabetes on POMC derivatives has yet to be fully explored and understood. The impact of stress and prediabetes on the cardiovascular response needs to be investigated. This study sought to review the potential impact of prediabetes on the POMC derivatives and pathways that could lead to MI.
Collapse
Affiliation(s)
- Nompumelelo Anna-Cletta Gumede
- Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban X54001, South Africa;
| | | |
Collapse
|
4
|
H Z R, H J S, R C S B, Kr R, R RD, M E B. Physical Exercise Promotes Beneficial Changes on Neurotrophic Factors in Mesolimbic Brain Areas After AMPH Relapse: Involvement of the Endogenous Opioid System. Neurotox Res 2023; 41:741-751. [PMID: 37904065 DOI: 10.1007/s12640-023-00675-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 11/01/2023]
Abstract
Addiction is a serious public health problem, and the current pharmacotherapy is unable to prevent drug use reinstatement. Studies have focused on physical exercise as a promising coadjuvant treatment. Our research group recently showed beneficial neuroadaptations in the dopaminergic system related to amphetamine-relapse prevention involving physical exercise-induced endogenous opioid system activation (EXE-OS activation). In this context, additional mechanisms were explored to understand the exercise benefits on drug addiction. Male rats previously exposed to amphetamine (AMPH, 4.0 mg/kg) for 8 days were submitted to physical exercise for 5 weeks. EXE-OS activation was blocked by naloxone administration (0.3 mg/kg) 5 min before each physical exercise session. After the exercise protocol, the rats were re-exposed to AMPH for 3 days, and in sequence, euthanasia was performed and the VTA and NAc were dissected. In the VTA, our findings showed increased immunocontent of proBDNF, BDNF, and GDNF and decreased levels of AMPH-induced TrkB; therefore, EXE-OS activation increased all these markers and naloxone administration prevented this exercise-induced effect. In the NAc, the same molecular markers were also increased by AMPH and decreased by EXE-OS activation. In this study, we propose a close relation between EXE-OS activation beneficial influence and a consequent neuroadaptation on neurotrophins and dopaminergic system levels in the mesolimbic brain area, preventing the observed AMPH-relapse behavior. Our outcomes bring additional knowledge concerning addiction neurobiology understanding and show that EXE-OS activation may be a potential adjuvant tool in drug addiction therapy.
Collapse
Affiliation(s)
- Rosa H Z
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | - Segat H J
- Departamento de Patologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Barcelos R C S
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Roversi Kr
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Rossato D R
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Burger M E
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil.
- Departamento de Patologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil.
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil.
| |
Collapse
|
5
|
Matsumura K, Nicot A, Choi IB, Asokan M, Le NN, Natividad L, Dobbs LK. Endogenous opioid system modulates conditioned cocaine reward in a sex-dependent manner. Addict Biol 2023; 28:e13328. [PMID: 37753570 PMCID: PMC11974355 DOI: 10.1111/adb.13328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/30/2023] [Accepted: 08/15/2023] [Indexed: 09/28/2023]
Abstract
Cocaine predictive cues and contexts exert powerful control over behaviour and can incite cocaine seeking and taking. This type of conditioned behaviour is encoded within striatal circuits, and these circuits and behaviours are, in part, regulated by opioid peptides and receptors expressed in striatal medium spiny neurons. We previously showed that augmenting levels of the opioid peptide enkephalin in the striatum facilitates acquisition of cocaine conditioned place preference (CPP), while opioid receptor antagonists attenuate expression of cocaine CPP. However, whether striatal enkephalin is necessary for acquisition of cocaine CPP and maintenance during extinction remains unknown. To address this, we generated mice with a targeted deletion of enkephalin from dopamine D2-receptor expressing medium spiny neurons and tested them in a cocaine CPP paradigm. Low striatal enkephalin levels did not attenuate acquisition of CPP. However, expression of preference, assessed after acute administration of the opioid receptor antagonist naloxone, was blocked in females, regardless of genotype. When saline was paired with the cocaine context during extinction sessions, females, regardless of genotype, extinguished preference faster than males, and this was prevented by naloxone when paired with the cocaine context. We conclude that while striatal enkephalin is not necessary for acquisition, expression, or extinction of cocaine CPP, expression and extinction of cocaine preference in females is mediated by an opioid peptide other than striatal enkephalin. The unique sensitivity of females to opioid antagonists suggests sex should be a consideration when using these compounds in the treatment of cocaine use disorder.
Collapse
Affiliation(s)
- Kanako Matsumura
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA
- Waggoner Center for Alcohol & Addiction Research, The University of Texas at Austin, Austin, TX, USA
| | - Amelia Nicot
- Department of Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - In Bae Choi
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Meera Asokan
- College of Pharmacy, Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, TX, USA
| | - Nathan N. Le
- College of Pharmacy, Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, TX, USA
| | - Luis Natividad
- Waggoner Center for Alcohol & Addiction Research, The University of Texas at Austin, Austin, TX, USA
- College of Pharmacy, Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, TX, USA
| | - Lauren K. Dobbs
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA
- Waggoner Center for Alcohol & Addiction Research, The University of Texas at Austin, Austin, TX, USA
- Department of Neuroscience, The University of Texas at Austin, Austin, TX, USA
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
6
|
Alvarez-Perez B, Poras H, Maldonado R. The inhibition of enkephalin catabolism by dual enkephalinase inhibitor: A novel possible therapeutic approach for opioid use disorders. Br J Pharmacol 2023; 180:879-893. [PMID: 34378790 DOI: 10.1111/bph.15656] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 07/14/2021] [Accepted: 07/28/2021] [Indexed: 11/30/2022] Open
Abstract
Despite the increasing impact of opioid use disorders on society, there is a disturbing lack of effective medications for their clinical management. An interesting innovative strategy to treat these disorders consists in the protection of endogenous opioid peptides to activate opioid receptors, avoiding the classical opioid-like side effects. Dual enkephalinase inhibitors (DENKIs) physiologically activate the endogenous opioid system by inhibiting the enzymes responsible for the breakdown of enkephalins, protecting endogenous enkephalins and increasing their half-lives and physiological actions. The activation of opioid receptors by the increased enkephalin levels, and their well-demonstrated safety, suggests that DENKIs could represent a novel analgesic therapy and a possible effective treatment for acute opioid withdrawal, as well as a promising alternative to opioid substitution therapy minimizing side effects. This new pharmacological class of compounds could bring effective and safe medications avoiding the major limitations of exogenous opioids, representing a novel approach to overcome the problem of opioid use disorders. LINKED ARTICLES: This article is part of a themed issue on Advances in Opioid Pharmacology at the Time of the Opioid Epidemic. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.7/issuetoc.
Collapse
Affiliation(s)
- Beltran Alvarez-Perez
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain
| | | | - Rafael Maldonado
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain
| |
Collapse
|
7
|
Rysztak LG, Jutkiewicz EM. The role of enkephalinergic systems in substance use disorders. Front Syst Neurosci 2022; 16:932546. [PMID: 35993087 PMCID: PMC9391026 DOI: 10.3389/fnsys.2022.932546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/29/2022] [Indexed: 12/13/2022] Open
Abstract
Enkephalin, an endogenous opioid peptide, is highly expressed in the reward pathway and may modulate neurotransmission to regulate reward-related behaviors, such as drug-taking and drug-seeking behaviors. Drugs of abuse also directly increase enkephalin in this pathway, yet it is unknown whether or not changes in the enkephalinergic system after drug administration mediate any specific behaviors. The use of animal models of substance use disorders (SUDs) concurrently with pharmacological, genetic, and molecular tools has allowed researchers to directly investigate the role of enkephalin in promoting these behaviors. In this review, we explore neurochemical mechanisms by which enkephalin levels and enkephalin-mediated signaling are altered by drug administration and interrogate the contribution of enkephalin systems to SUDs. Studies manipulating the receptors that enkephalin targets (e.g., mu and delta opioid receptors mainly) implicate the endogenous opioid peptide in drug-induced neuroadaptations and reward-related behaviors; however, further studies will need to confirm the role of enkephalin directly. Overall, these findings suggest that the enkephalinergic system is involved in multiple aspects of SUDs, such as the primary reinforcing properties of drugs, conditioned reinforcing effects, and sensitization. The idea of dopaminergic-opioidergic interactions in these behaviors remains relatively novel and warrants further research. Continuing work to elucidate the role of enkephalin in mediating neurotransmission in reward circuitry driving behaviors related to SUDs remains crucial.
Collapse
Affiliation(s)
- Lauren G. Rysztak
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, United States
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States
| | - Emily M. Jutkiewicz
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Emily M. Jutkiewicz,
| |
Collapse
|
8
|
Davis S, Zhu J. Substance abuse and neurotransmission. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 93:403-441. [PMID: 35341573 PMCID: PMC9759822 DOI: 10.1016/bs.apha.2021.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The number of people who suffer from a substance abuse disorder has continued to rise over the last decade; particularly, the number of drug-related overdose deaths has sharply increased during the COVID-19 pandemic. Converging lines of clinical observations, supported by imaging and neuropsychological performance testing, have demonstrated that substance abuse-induced dysregulation of neurotransmissions in the brain is critical for development and expression of the addictive properties of abused substances. Recent scientific advances have allowed for better understanding of the neurobiological processes that mediates drugs of abuse and addiction. This chapter presents the past classic concepts and the recent advances in our knowledge about how cocaine, amphetamines, opioids, alcohol, and nicotine alter multiple neurotransmitter systems, which contribute to the behaviors associated with each drug. Additionally, we discuss the interactive effects of HIV-1 or COVID-19 and substance abuse on neurotransmission and neurobiological pathways. Finally, we introduce therapeutic strategies for development of pharmacotherapies for substance abuse disorders.
Collapse
Affiliation(s)
- Sarah Davis
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, United States
| | - Jun Zhu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, United States.
| |
Collapse
|
9
|
Borroto-Escuela DO, Wydra K, Fores-Pons R, Vasudevan L, Romero-Fernandez W, Frankowska M, Ferraro L, Beggiato S, Crespo-Ramirez M, Rivera A, Rocha LL, Perez de la Mora M, Stove C, Filip M, Fuxe K. The Balance of MU-Opioid, Dopamine D2 and Adenosine A2A Heteroreceptor Complexes in the Ventral Striatal-Pallidal GABA Antireward Neurons May Have a Significant Role in Morphine and Cocaine Use Disorders. Front Pharmacol 2021; 12:627032. [PMID: 33790790 PMCID: PMC8005530 DOI: 10.3389/fphar.2021.627032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/26/2021] [Indexed: 12/17/2022] Open
Abstract
The widespread distribution of heteroreceptor complexes with allosteric receptor-receptor interactions in the CNS represents a novel integrative molecular mechanism in the plasma membrane of neurons and glial cells. It was proposed that they form the molecular basis for learning and short-and long-term memories. This is also true for drug memories formed during the development of substance use disorders like morphine and cocaine use disorders. In cocaine use disorder it was found that irreversible A2AR-D2R complexes with an allosteric brake on D2R recognition and signaling are formed in increased densities in the ventral enkephalin positive striatal-pallidal GABA antireward neurons. In this perspective article we discuss and propose how an increase in opioid heteroreceptor complexes, containing MOR-DOR, MOR-MOR and MOR-D2R, and their balance with each other and A2AR-D2R complexes in the striatal-pallidal enkephalin positive GABA antireward neurons, may represent markers for development of morphine use disorders. We suggest that increased formation of MOR-DOR complexes takes place in the striatal-pallidal enkephalin positive GABA antireward neurons after chronic morphine treatment in part through recruitment of MOR from the MOR-D2R complexes due to the possibility that MOR upon morphine treatment can develop a higher affinity for DOR. As a result, increased numbers of D2R monomers/homomers in these neurons become free to interact with the A2A receptors found in high densities within such neurons. Increased numbers of A2AR-D2R heteroreceptor complexes are formed and contribute to enhanced firing of these antireward neurons due to loss of inhibitory D2R protomer signaling which finally leads to the development of morphine use disorder. Development of cocaine use disorder may instead be reduced through enkephalin induced activation of the MOR-DOR complex inhibiting the activity of the enkephalin positive GABA antireward neurons. Altogether, we propose that these altered complexes could be pharmacological targets to modulate the reward and the development of substance use disorders.
Collapse
Affiliation(s)
| | - Karolina Wydra
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Ramon Fores-Pons
- Department of Neuroscience, Karolinska Institutet, Biomedicum, Stockholm, Sweden
| | - Lakshmi Vasudevan
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | | | - Małgorzata Frankowska
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Luca Ferraro
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Sarah Beggiato
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Minerva Crespo-Ramirez
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alicia Rivera
- Department of Cell Biology, University of Malaga, Instituto de Investigación Biomédica (IBIMA), Malaga, Spain
| | - Luisa L Rocha
- Pharmacobiology Department, Center for Research and Advanced Studies, Mexico City, Mexico
| | - Miguel Perez de la Mora
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Christophe Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Małgorzata Filip
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, Biomedicum, Stockholm, Sweden
| |
Collapse
|
10
|
Daiwile AP, Jayanthi S, Cadet JL. Sex- and Brain Region-specific Changes in Gene Expression in Male and Female Rats as Consequences of Methamphetamine Self-administration and Abstinence. Neuroscience 2020; 452:265-279. [PMID: 33242543 DOI: 10.1016/j.neuroscience.2020.11.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/04/2020] [Accepted: 11/15/2020] [Indexed: 12/14/2022]
Abstract
Sex differences in METH use exist among human METH users and in animal models of METH addiction. Herein, we tried to identify potential differences in gene expression between female and male rats after Methamphetamine self-administration (METH SA). Rats were trained to self-administer METH using two 3-hours daily sessions for 20 days. Cue-induced drug seeking was measured on withdrawal days 3 (WD3) and 30 (WD30). Rats were euthanized twenty-four hours after WD30. Prefrontal cortex (PFC) and hippocampus (HIP) were dissected to measure mRNA expression. Both female and male rats increased their METH intake and showed increased METH seeking during withdrawal. Female had higher basal level expression of hypocretin receptor 1 (Hcrtr1) and prodynorphin (Pdyn) mRNAs in the PFC and HIP. Basal corticotropin releasing hormone receptor 1 (Crhr1), Crh receptor 2 (Crhr2), hypocretin receptor 2 (Hcrtr2) and opioid receptor kappa 1 (Oprk1) mRNA levels were higher in the PFC of females. Male rats had higher basal levels of Crh and Crhr1 in HIP. METH SA was associated with increased Crh and Crhr1 in the HIP of both sexes and Crhr2 only in female HIP. Importantly, increased Crh and Crhr1 mRNA levels correlated positively with incubation of METH craving in both sexes, supporting their potential involvement, in part, in the regulation of this behavioral phenomenon. When taken together, our results identified sexual dimorphic baseline differences in rats. We also detected dimorphic responses in animals that had self-administered METH. These observations highlight the importance of understanding the molecular neurobiology of sex differences when therapeutic interventions are planned against METH addiction.
Collapse
Affiliation(s)
- Atul P Daiwile
- Molecular Neuropsychiatry Research Branch, NIDA Intramural Research Program, Baltimore, MD 21224, United States
| | - Subramaniam Jayanthi
- Molecular Neuropsychiatry Research Branch, NIDA Intramural Research Program, Baltimore, MD 21224, United States
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIDA Intramural Research Program, Baltimore, MD 21224, United States.
| |
Collapse
|
11
|
Mongi-Bragato B, Avalos MP, Guzmán AS, García-Keller C, Bollati FA, Cancela LM. Endogenous enkephalin is necessary for cocaine-induced alteration in glutamate transmission within the nucleus accumbens. Eur J Neurosci 2020; 53:1441-1449. [PMID: 33159343 DOI: 10.1111/ejn.15035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 11/30/2022]
Abstract
Altered glutamate transmission within the nucleus accumbens (NAc) has been proposed as a central mechanism underlying behavioural sensitisation associated with repeated cocaine exposure. In addition to glutamate, enkephalin, an endogenous opioid peptide derived from proenkephalin, is necessary for the neuroadaptations associated with chronic cocaine. However, the influence of enkephalin on long-term changes in glutamate transmission within the NAc associated with cocaine-induced sensitisation has not been described. This study used knockout proenkephalin mice (KO) to study the influence of endogenous enkephalin on the adaptations in glutamate neurotransmission associated with repeated cocaine treatment. Wild-type (WT) and KO mice were treated with daily cocaine injections for 9 days to induce sensitisation. On days 15 and 21, the animals received a cocaine challenge and locomotor sensitisation was evaluated, and microdialysis was performed to determine accumbens glutamate content on day 21. No expression of behavioural sensitisation to cocaine was evidenced in the KO mice. Consistently, these showed no changes in glutamate transmission in the NAc associated with repeated cocaine. This study reveals the central role of enkephalin in regulating the glutamate mechanisms associated with cocaine sensitisation.
Collapse
Affiliation(s)
- Bethania Mongi-Bragato
- Departamento de Farmacología, Facultad de Ciencias Químicas, Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María Paula Avalos
- Departamento de Farmacología, Facultad de Ciencias Químicas, Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Andrea S Guzmán
- Departamento de Farmacología, Facultad de Ciencias Químicas, Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Constanza García-Keller
- Departamento de Farmacología, Facultad de Ciencias Químicas, Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina.,Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA
| | - Flavia A Bollati
- Departamento de Farmacología, Facultad de Ciencias Químicas, Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Liliana M Cancela
- Departamento de Farmacología, Facultad de Ciencias Químicas, Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
12
|
Rosa HZ, Segat HJ, Barcelos RCS, Roversi K, Rossato DR, de Brum GF, Burger ME. Involvement of the endogenous opioid system in the beneficial influence of physical exercise on amphetamine-induced addiction parameters. Pharmacol Biochem Behav 2020; 197:173000. [PMID: 32702398 DOI: 10.1016/j.pbb.2020.173000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/31/2020] [Accepted: 07/16/2020] [Indexed: 12/21/2022]
Abstract
Psychostimulant drugs addiction is a chronic public health problem and individuals remain susceptible to relapses increasing public expenses even after withdrawal and treatment. Our research group has focused on finding new therapies to be employed in drug addiction treatment, suggesting the physical exercise as a promising tool. This way, it is necessary to know the mechanisms involved in the beneficial influences of physical exercise observing the pathway that could be explored in drug addiction treatment. Male Wistar rats were conditioned with amphetamine (AMPH) following the conditioned place preference (CPP) protocol and subsequently submitted to swimming for 5 weeks (1 h per day, 5 days per week). Half of the animals were injected with Naloxone (0.3 mg/mL/kg body weight, i.p.) 5 min prior each physical exercise day. After AMPH-CPP re-exposure, our outcomes showed that physical exercise, in addition to minimizing the relapse behavior in the CPP, it increased D1R, D2R and DAT in the Ventral Tegmental Area (VTA), but not in the Nucleus accumbens (NAc). Interestingly, while naloxone inhibited the partial beneficial influence of the exercise on drug-relapse behavior, exercise-induced changes in the dopaminergic system were not observed in the group administered with naloxone as well. Based on these evidences, besides reinforcing the beneficial influence of the physical exercise on AMPH-induced drug addiction, we propose the involvement of endogenous opioid system activation, not as a single one, but as a possible mechanism of action resulting from the physical activity practice, thus characterizing an important therapeutic approach, which may contribute to drug withdrawal consequently preventing relapse.
Collapse
Affiliation(s)
- H Z Rosa
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS, Brazil
| | - H J Segat
- Departamento de Patologia, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS, Brazil
| | - R C S Barcelos
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS, Brazil
| | - Kr Roversi
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS, Brazil
| | - D R Rossato
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS, Brazil
| | - G F de Brum
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS, Brazil
| | - M E Burger
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS, Brazil; Departamento de Patologia, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS, Brazil; Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS, Brazil.
| |
Collapse
|
13
|
Emery MA, Akil H. Endogenous Opioids at the Intersection of Opioid Addiction, Pain, and Depression: The Search for a Precision Medicine Approach. Annu Rev Neurosci 2020; 43:355-374. [PMID: 32109184 PMCID: PMC7646290 DOI: 10.1146/annurev-neuro-110719-095912] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Opioid addiction and overdose are at record levels in the United States. This is driven, in part, by their widespread prescription for the treatment of pain, which also increased opportunity for diversion by sensation-seeking users. Despite considerable research on the neurobiology of addiction, treatment options for opioid abuse remain limited. Mood disorders, particularly depression, are often comorbid with both pain disorders and opioid abuse. The endogenous opioid system, a complex neuromodulatory system, sits at the neurobiological convergence point of these three comorbid disease states. We review evidence for dysregulation of the endogenous opioid system as a mechanism for the development of opioid addiction and/or mood disorder. Specifically, individual differences in opioid system function may underlie differences in vulnerability to opioid addiction and mood disorders. We also review novel research, which promises to provide more detailed understanding of individual differences in endogenous opioid neurobiology and its contribution to opioid addiction susceptibility.
Collapse
Affiliation(s)
- Michael A Emery
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Huda Akil
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan 48109, USA;
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
14
|
Moreno-Rius J. Opioid addiction and the cerebellum. Neurosci Biobehav Rev 2019; 107:238-251. [DOI: 10.1016/j.neubiorev.2019.09.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 09/06/2019] [Accepted: 09/10/2019] [Indexed: 01/10/2023]
|