1
|
Kasyanova A, Sobolevskaia P, Limankin O, Petrova N. Comparison of Immune and Systemic Inflammation Parameters in Patients with a Depressive Episode in Bipolar Disorder and Major Depressive Disorder: A Scoping Review. CONSORTIUM PSYCHIATRICUM 2024; 5:64-77. [PMID: 39980624 PMCID: PMC11839217 DOI: 10.17816/cp15543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 11/21/2024] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND Many studies have aimed to investigate and compare immune system and systemic inflammation parameters in patients with bipolar disorder (BD) and major depressive disorder (MDD) suffering from a depressive episode. However, no systematic review of the results has been conducted so far. AIM The aim of this study was to conduct a scoping review of research studies comparing immune and systemic inflammation parameters in patients with BD and MDD during a depressive episode. METHODS The search for studies was conducted in the Medline and eLIBRARY databases for the period from January 1994 to December 2022. Open-access articles written in English and Russian were selected. The review included original studies that compared groups of patients with BD and MDD (diagnosed based on the DSM-IV, DSM-5, or ICD-10 criterion) by immune and systemic inflammation parameters (such as the counts, ratio, and functions of blood cells, erythrocyte sedimentation rate, concentrations of immunoglobulins, cytokines, acute phase proteins, complement components, and autoantibodies). RESULTS The review included 24 studies. Current depressive episodes in patients with BD were associated with higher concentrations of chemokines (C-C motif chemokine ligand 3 (CCL3), CCL4, CCL5, CCL11), platelet-derived growth factor B, and interleukin 9 (IL-9) (two studies in each case), whereas patients with MDD tended to have higher concentrations of soluble tumor necrosis factor receptor 1 and immunoglobulin G to oxidized low-density lipoproteins (two studies each). Patients with BD and MDD had comparable concentrations of IL-8 (five studies); IL-2 and IL-10 (four studies each); IL-13 and gamma interferon (three studies each); IL-17, IL-1Rα, the vascular endothelial growth factor, as well as white blood cells, monocyte, and platelet counts (two studies each). Contradictory results were obtained for the levels of tumor necrosis factor-α (the concentrations did not differ in five studies, were elevated in BD patients in five studies, were elevated in MDD patients in two studies), IL-6 (the concentrations did not differ in eight studies and were elevated in BD patients in four studies), C-reactive protein (the concentrations did not differ in six studies, were elevated in BD patients in two studies), IL-4 (the concentrations did not differ in three studies and were elevated in MDD patients in two studies), IL-1β and the neutrophil count (the levels did not differ in one study each and were elevated in BD patients in two studies). Several studies have demonstrated an association between immune and systemic inflammation parameters and the severity of depressive and anxiety symptoms, melancholic depression, age of mood disorder onset, body mass index, and imipramine equivalent. CONCLUSION Some immune and systemic inflammation parameters are associated with a current depressive episode in patients with MDD or BD. These parameters may be considered as potential biomarkers for a differential diagnosis of these disorders.
Collapse
|
2
|
Ostojic J, Kozic D, Ostojic S, Ilic ADJ, Galic V, Matijasevic J, Dragicevic D, Barak O, Boban J. Decreased Cerebral Creatine and N-Acetyl Aspartate Concentrations after Severe COVID-19 Infection: A Magnetic Resonance Spectroscopy Study. J Clin Med 2024; 13:4128. [PMID: 39064167 PMCID: PMC11277668 DOI: 10.3390/jcm13144128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/30/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Background/Objectives: The aim of this study was to evaluate brain metabolism using MR spectroscopy (MRS) after recovery from Coronavirus disease (COVID-19) and to test the impact of disease severity on brain metabolites. Methods: We performed MRS on 81 individuals (45 males, 36 females, aged 40-60), who had normal MRI findings and had recovered from COVID-19, classifying them into mild (17), moderate (36), and severe (28) groups based on disease severity during the acute phase. The study employed two-dimensional spectroscopic imaging above the corpus callosum, focusing on choline (Cho), creatine (Cr), and N-acetylaspartate (NAA). We analyzed Cho/Cr and NAA/Cr ratios as well as absolute concentrations using water as an internal reference. Results: Results indicated that the Cho/Cr ratio was higher with increasing disease severity, while absolute Cho and NAA/Cr ratios showed no significant differences across the groups. Notably, absolute Cr and NAA levels were significantly lower in patients with severe disease. Conclusions: These findings suggest that the severity of COVID-19 during the acute phase is associated with significant changes in brain metabolism, marked by an increase in Cho/Cr ratios and a reduction in Cr and NAA levels, reflecting substantial metabolic alterations post-recovery.
Collapse
Affiliation(s)
- Jelena Ostojic
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (D.K.); (A.D.I.); (V.G.); (J.M.); (O.B.); (J.B.)
| | - Dusko Kozic
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (D.K.); (A.D.I.); (V.G.); (J.M.); (O.B.); (J.B.)
| | - Sergej Ostojic
- Faculty of Sport and Physical Education, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Aleksandra DJ Ilic
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (D.K.); (A.D.I.); (V.G.); (J.M.); (O.B.); (J.B.)
| | - Vladimir Galic
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (D.K.); (A.D.I.); (V.G.); (J.M.); (O.B.); (J.B.)
| | - Jovan Matijasevic
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (D.K.); (A.D.I.); (V.G.); (J.M.); (O.B.); (J.B.)
| | - Dusan Dragicevic
- Oncology Institute of Vojvodina, Diagnostic Imaging Center, 21204 Sremska Kamenica, Serbia;
| | - Otto Barak
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (D.K.); (A.D.I.); (V.G.); (J.M.); (O.B.); (J.B.)
| | - Jasmina Boban
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (D.K.); (A.D.I.); (V.G.); (J.M.); (O.B.); (J.B.)
| |
Collapse
|
3
|
Dallaspezia S, Cardaci V, Mazza MG, De Lorenzo R, Rovere Querini P, Colombo C, Benedetti F. Higher Seasonal Variation of Systemic Inflammation in Bipolar Disorder. Int J Mol Sci 2024; 25:4310. [PMID: 38673894 PMCID: PMC11049938 DOI: 10.3390/ijms25084310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Seasonal rhythms affect the immune system. Evidence supports the involvement of immuno-inflammatory mechanisms in bipolar disorder (BD), with the neutrophil to lymphocyte ratio (NLR), and the systemic immune-inflammatory index (SII; platelets × neutrophils/lymphocytes) consistently reported to be higher in patients with BD than in HC, but seasonal rhythms of innate and adaptive immunity have never been studied. We retrospectively studied NLR and SII in 824 participants divided into three groups: 321 consecutively admitted inpatients affected by a major depressive episode in course of BD, and 255 consecutively admitted inpatients affected by obsessive-compulsive disorder (OCD; positive psychiatric control), and 248 healthy controls (HC). Patients with BD showed markedly higher markers of systemic inflammation in autumn and winter, but not in spring and summer, in respect to both HC and patients with OCD, thus suggesting a specific effect of season on inflammatory markers in BD, independent of a shared hospital setting and drug treatment. Given that systemic inflammation is emerging as a new marker and as target for treatment in depressive disorders, we suggest that seasonal rhythms should be considered for tailoring antidepressant immuno-modulatory treatments in a precision medicine approach.
Collapse
Affiliation(s)
- Sara Dallaspezia
- Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milano, Italy; (S.D.); (M.G.M.)
| | - Vincenzo Cardaci
- Università Vita-Salute San Raffaele, 20132 Milano, Italy; (V.C.); (P.R.Q.); (C.C.)
| | - Mario Gennaro Mazza
- Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milano, Italy; (S.D.); (M.G.M.)
| | - Rebecca De Lorenzo
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, 20132 Milano, Italy;
| | - Patrizia Rovere Querini
- Università Vita-Salute San Raffaele, 20132 Milano, Italy; (V.C.); (P.R.Q.); (C.C.)
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, 20132 Milano, Italy;
| | - Cristina Colombo
- Università Vita-Salute San Raffaele, 20132 Milano, Italy; (V.C.); (P.R.Q.); (C.C.)
- Mood Disorders Unit, IRCCS Ospedale San Raffaele, 20132 Milano, Italy
| | - Francesco Benedetti
- Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milano, Italy; (S.D.); (M.G.M.)
- Università Vita-Salute San Raffaele, 20132 Milano, Italy; (V.C.); (P.R.Q.); (C.C.)
| |
Collapse
|
4
|
Long JY, Li B, Ding P, Mei H, Li Y. Correlations between multimodal neuroimaging and peripheral inflammation in different subtypes and mood states of bipolar disorder: a systematic review. Int J Bipolar Disord 2024; 12:5. [PMID: 38388844 PMCID: PMC10884387 DOI: 10.1186/s40345-024-00327-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Systemic inflammation-immune dysregulation and brain abnormalities are believed to contribute to the pathogenesis of bipolar disorder (BD). However, the connections between peripheral inflammation and the brain, especially the interactions between different BD subtypes and episodes, remain to be elucidated. Therefore, we conducted the present study to provide a comprehensive understanding of the complex association between peripheral inflammation and neuroimaging findings in patients with bipolar spectrum disorders. METHODS This systematic review was registered in the International Prospective Register of Systematic Reviews (PROSPERO) database (CRD42023447044) and conducted according to the Population, Intervention, Comparison, Outcomes, and Study Design (PICOS) framework. Online literature databases (PubMed, Web of Science, Scopus, EMBASE, MEDLINE, PsycINFO, and the Cochrane Library) were searched for studies that simultaneously investigated both peripheral inflammation-related factors and magnetic resonance neurography of BD patients up to July 01, 2023. Then, we analysed the correlations between peripheral inflammation and neuroimaging, as well as the variation trends and the shared and specific patterns of these correlations according to different clinical dimensions. RESULTS In total, 34 publications ultimately met the inclusion criteria for this systematic review, with 2993 subjects included. Among all patterns of interaction between peripheral inflammation and neuroimaging, the most common pattern was a positive relationship between elevated inflammation levels and decreased neuroimaging measurements. The brain regions most susceptible to inflammatory activation were the anterior cingulate cortex, amygdala, prefrontal cortex, striatum, hippocampus, orbitofrontal cortex, parahippocampal gyrus, postcentral gyrus, and posterior cingulate cortex. LIMITATIONS The small sample size, insufficiently explicit categorization of BD subtypes and episodes, and heterogeneity of the research methods limited further implementation of quantitative data synthesis. CONCLUSIONS Disturbed interactions between peripheral inflammation and the brain play a critical role in BD, and these interactions exhibit certain commonalities and differences across various clinical dimensions of BD. Our study further confirmed that the fronto-limbic-striatal system may be the central neural substrate in BD patients.
Collapse
Affiliation(s)
- Jing-Yi Long
- Wuhan Mental Health Center, No. 89, Gongnongbing Rd., Jiang'an District, Wuhan, 430012, Hubei Province, China
- Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Bo Li
- School of Public Administration, China University of Geosciences, Wuhan, 430074, China
| | - Pei Ding
- Wuhan Mental Health Center, No. 89, Gongnongbing Rd., Jiang'an District, Wuhan, 430012, Hubei Province, China
- Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Hao Mei
- Zhongnan Hospital of Wuhan University, No. 169, East Lake Rd., Wuchang District, Wuhan, 430062, Hubei Province, China.
| | - Yi Li
- Wuhan Mental Health Center, No. 89, Gongnongbing Rd., Jiang'an District, Wuhan, 430012, Hubei Province, China.
- Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
5
|
Aggio V, Fabbella L, Poletti S, Lorenzi C, Finardi A, Colombo C, Zanardi R, Furlan R, Benedetti F. Circulating cytotoxic immune cell composition, activation status and toxins expression associate with white matter microstructure in bipolar disorder. Sci Rep 2023; 13:22209. [PMID: 38097657 PMCID: PMC10721611 DOI: 10.1038/s41598-023-49146-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023] Open
Abstract
Patients with bipolar disorder (BD) show higher immuno-inflammatory setpoints, with in vivo alterations in white matter (WM) microstructure and post-mortem infiltration of T cells in the brain. Cytotoxic CD8+ T cells can enter and damage the brain in inflammatory disorders, but little is known in BD. Our study aimed to investigate the relationship between cytotoxic T cells and WM alterations in BD. In a sample of 83 inpatients with BD in an active phase of illness (68 depressive, 15 manic), we performed flow cytometry immunophenotyping to investigate frequencies, activation status, and expression of cytotoxic markers in CD8+ and tested for their association with diffusion tensor imaging (DTI) measures of WM microstructure. Frequencies of naïve and activated CD8+ cell populations expressing Perforin, or both Perforin and Granzyme, negatively associated with WM microstructure. CD8+ Naïve cells negative for Granzyme and Perforin positively associates with indexes of WM integrity, while the frequency of CD8+ memory cells negatively associates with index of WM microstructure, irrespective of toxins expression. The resulting associations involve measures representative of orientational coherence and myelination of the fibers (FA and RD), suggesting disrupted oligodendrocyte-mediated myelination. These findings seems to support the hypothesis that immunosenescence (less naïve, more memory T cells) can detrimentally influence WM microstructure in BD and that peripheral CD8+ T cells may participate in inducing an immune-related WM damage in BD mediated by killer proteins.
Collapse
Affiliation(s)
- Veronica Aggio
- Psychiatry and Clinical Psychobiology Unit, Division of Neurosciences, IRCCS San Raffaele Scientific Institute, San Raffaele Turro, Via Stamira d'Ancona 20, 20127, Milano, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| | - Lorena Fabbella
- Clinical Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sara Poletti
- Psychiatry and Clinical Psychobiology Unit, Division of Neurosciences, IRCCS San Raffaele Scientific Institute, San Raffaele Turro, Via Stamira d'Ancona 20, 20127, Milano, Italy
| | - Cristina Lorenzi
- Psychiatry and Clinical Psychobiology Unit, Division of Neurosciences, IRCCS San Raffaele Scientific Institute, San Raffaele Turro, Via Stamira d'Ancona 20, 20127, Milano, Italy
| | - Annamaria Finardi
- Clinical Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cristina Colombo
- Vita-Salute San Raffaele University, Milan, Italy
- Mood Disorders Unit, IRCCS Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Raffaella Zanardi
- Mood Disorders Unit, IRCCS Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Roberto Furlan
- Vita-Salute San Raffaele University, Milan, Italy
- Clinical Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Benedetti
- Psychiatry and Clinical Psychobiology Unit, Division of Neurosciences, IRCCS San Raffaele Scientific Institute, San Raffaele Turro, Via Stamira d'Ancona 20, 20127, Milano, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
6
|
Mason NL, Szabo A, Kuypers KPC, Mallaroni PA, de la Torre Fornell R, Reckweg JT, Tse DHY, Hutten NRPW, Feilding A, Ramaekers JG. Psilocybin induces acute and persisting alterations in immune status in healthy volunteers: An experimental, placebo-controlled study. Brain Behav Immun 2023; 114:299-310. [PMID: 37689275 DOI: 10.1016/j.bbi.2023.09.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023] Open
Abstract
Patients characterized by stress-related disorders such as depression display elevated circulating concentrations of pro-inflammatory cytokines and a hyperactive HPA axis. Psychedelics are demonstrating promising results in treatment of such disorders, however the mechanisms of their therapeutic effects are still unknown. To date the evidence of acute and persisting effects of psychedelics on immune functioning, HPA axis activity in response to stress, and associated psychological outcomes is preliminary. To address this, we conducted a placebo-controlled, parallel group design comprising of 60 healthy participants who received either placebo (n = 30) or 0.17 mg/kg psilocybin (n = 30). Blood samples were taken to assess acute and persisting (7 day) changes in immune status. Seven days' post-administration, participants in each treatment group were further subdivided: 15 underwent a stress induction protocol, and 15 underwent a control protocol. Ultra-high field (7-Tesla) magnetic resonance spectroscopy was used to assess whether acute changes in glutamate or glial activity were associated with changes in immune functioning. Finally, questionnaires assessed persisting self-report changes in mood and social behavior. Psilocybin immediately reduced concentrations of the pro-inflammatory cytokine tumor necrosis factor-α (TNF-α), while other inflammatory markers (interleukin (IL)- 1β, IL-6, and C-reactive protein (CRP)) remained unchanged. Seven days later, TNF-α concentrations returned to baseline, while IL-6 and CRP concentrations were persistently reduced in the psilocybin group. Changes in the immune profile were related to acute neurometabolic activity as acute reductions in TNF-α were linked to lower concentrations of glutamate in the hippocampus. Additionally, the more of a reduction in IL-6 and CRP seven days after psilocybin, the more persisting positive mood and social effects participants reported. Regarding the stress response, after a psychosocial stressor, psilocybin did not significantly alter the stress response. Results are discussed in regards to the psychological and therapeutic effects of psilocybin demonstrated in ongoing patient trials.
Collapse
Affiliation(s)
- N L Mason
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - A Szabo
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - K P C Kuypers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - P A Mallaroni
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - R de la Torre Fornell
- Integrative Pharmacology and Systems Neurosciences Research Group. Neurosciences Program. Hospital del Mar Medical Research Institute. Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra. Dr. Aiguader 88, 08003 Barcelona, Spain
| | - J T Reckweg
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - D H Y Tse
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - N R P W Hutten
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - A Feilding
- The Beckley Foundation, Beckley Park, Oxford, OX3 9SY, United Kingdom
| | - J G Ramaekers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
7
|
Karkala A, Tzinas A, Kotoulas S, Zacharias A, Sourla E, Pataka A. Neuropsychiatric Outcomes and Sleep Dysfunction in COVID-19 Patients: Risk Factors and Mechanisms. Neuroimmunomodulation 2023; 30:237-249. [PMID: 37757765 DOI: 10.1159/000533722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
The ongoing global health crisis due to the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has significantly impacted all aspects of life. While the majority of early research following the coronavirus disease caused by SARS-CoV-2 (COVID-19) has focused on the physiological effects of the virus, a substantial body of subsequent studies has shown that the psychological burden of the infection is also considerable. Patients, even without mental illness history, were at increased susceptibility to developing mental health and sleep disturbances during or after the COVID-19 infection. Viral neurotropism and inflammatory storm damaging the blood-brain barrier have been proposed as possible mechanisms for mental health manifestations, along with stressful psychological factors and indirect consequences such as thrombosis and hypoxia. The virus has been found to infect peripheral olfactory neurons and exploit axonal migration pathways, exhibiting metabolic changes in astrocytes that are detrimental to fueling neurons and building neurotransmitters. Patients with COVID-19 present dysregulated and overactive immune responses, resulting in impaired neuronal function and viability, adversely affecting sleep and emotion regulation. Additionally, several risk factors have been associated with the neuropsychiatric sequelae of the infection, such as female sex, age, preexisting neuropathologies, severity of initial disease and sociological status. This review aimed to provide an overview of mental health symptoms and sleep disturbances developed during COVID-19 and to analyze the underlying mechanisms and risk factors of psychological distress and sleep dysfunction.
Collapse
Affiliation(s)
- Aliki Karkala
- Respiratory Failure Unit, G. Papanikolaou Hospital, Thessaloniki and Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Asterios Tzinas
- Respiratory Failure Unit, G. Papanikolaou Hospital, Thessaloniki and Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Athanasios Zacharias
- Respiratory Failure Unit, G. Papanikolaou Hospital, Thessaloniki and Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evdokia Sourla
- Respiratory Failure Unit, G. Papanikolaou Hospital, Thessaloniki and Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athanasia Pataka
- Respiratory Failure Unit, G. Papanikolaou Hospital, Thessaloniki and Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
8
|
Keshtgar Z, Chalabianloo G, Esmaeili N. Probable Neuropsychological and Cognitive Complications Due to Cytokine Storm in Patients With COVID-19. Basic Clin Neurosci 2023; 14:549-564. [PMID: 38628831 PMCID: PMC11016882 DOI: 10.32598/bcn.2022.3202.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 09/28/2021] [Accepted: 06/28/2023] [Indexed: 04/19/2024] Open
Abstract
Introduction COVID-19 (coronavirus disease 2019) was first identified in China in December 2019 and is rapidly spreading worldwide as a pandemic. Since COVID-19 causes mild to severe acute respiratory syndrome, most studies in this context have focused on pathogenesis primarily in the respiratory system. However, evidence shows that the central nervous system (CNS) may also be affected by COVID-19. Since COVID-19 is spreading, it is necessary to study its possible cognitive effects on COVID-19 patients and their recovery. Methods The articles used in this study were searched by keywords, such as cytokine storm and COVID-19, COVID-19 and executive dysfunction, cognitive disorder, and COVID-19, central nervous system (CNS) and COVID-19, coronavirus, neuroinvasion in Science Direct, Scopus, PubMed, Embase, and Web of Science databases based on preferred reporting items for systematic reviews and meta-analysis (PRISMA) checklist. The study evaluates all observational studies published between December 2019 and April 2021 in peer-reviewed journals, including cross-sectional, cohort, case-control studies, case reports, and case series. The search result was 106 articles, of which 73 articles related to COVID-19, the stages of infection by this virus, its effect on the nervous system and neurological symptoms, the cytokine storm caused by this infection, and the possible cognitive consequences caused by this virus in patients, has been reviewed. Other articles were not checked due to their limited relevance to the topic under discussion. Results Studies showed that neurons may be directly affected by severe acute respiratory syndrome coronavirus (SARS-CoV)-1 and SARS-CoV-2. Furthermore, various studies indicated that systemic inflammation (so-called "cytokine storm") is also responsible for brain damage induced by infection with SARS-CoV-1 and SARS-CoV-2. In such a way that these patients showed elevated levels of interleukin (IL-), 6, 8, and 10 and of tumor necrosis factor-alpha (TNF-α) in their blood. Conclusion Various cognitive defects have been observed following an increased level of cytokines, such as tumor necrosis factor-alpha (TNF-α) and interleukin (IL)-6, 8. Therefore, due to the increased level of these pro-inflammatory factors in the brains of these patients, cognitive deficits can be expected, which need further investigation.
Collapse
Affiliation(s)
- Zahra Keshtgar
- Department of Neuroscience, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gholamreza Chalabianloo
- Department of Neuroscience, School of Educational Sciences and Psychology, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Niloofar Esmaeili
- Department of Hematology & Oncology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Gudmundson AT, Koo A, Virovka A, Amirault AL, Soo M, Cho JH, Oeltzschner G, Edden RAE, Stark CEL. Meta-analysis and open-source database for in vivo brain Magnetic Resonance spectroscopy in health and disease. Anal Biochem 2023; 676:115227. [PMID: 37423487 PMCID: PMC10561665 DOI: 10.1016/j.ab.2023.115227] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 07/11/2023]
Abstract
Proton (1H) Magnetic Resonance Spectroscopy (MRS) is a non-invasive tool capable of quantifying brain metabolite concentrations in vivo. Prioritization of standardization and accessibility in the field has led to the development of universal pulse sequences, methodological consensus recommendations, and the development of open-source analysis software packages. One on-going challenge is methodological validation with ground-truth data. As ground-truths are rarely available for in vivo measurements, data simulations have become an important tool. The diverse literature of metabolite measurements has made it challenging to define ranges to be used within simulations. Especially for the development of deep learning and machine learning algorithms, simulations must be able to produce accurate spectra capturing all the nuances of in vivo data. Therefore, we sought to determine the physiological ranges and relaxation rates of brain metabolites which can be used both in data simulations and as reference estimates. Using the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines, we've identified relevant MRS research articles and created an open-source database containing methods, results, and other article information as a resource. Using this database, expectation values and ranges for metabolite concentrations and T2 relaxation times are established based upon a meta-analyses of healthy and diseased brains.
Collapse
Affiliation(s)
- Aaron T Gudmundson
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Annie Koo
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Anna Virovka
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Alyssa L Amirault
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Madelene Soo
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Jocelyn H Cho
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Craig E L Stark
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
10
|
Is depression the missing link between inflammatory mediators and cancer? Pharmacol Ther 2022; 240:108293. [PMID: 36216210 DOI: 10.1016/j.pharmthera.2022.108293] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2022]
Abstract
Patients with cancer are at greater risk of developing depression in comparison to the general population and this is associated with serious adverse effects, such as poorer quality of life, worse prognosis and higher mortality. Although the relationship between depression and cancer is now well established, a common underlying pathophysiological mechanism between the two conditions is yet to be elucidated. Existing theories of depression, based on monoamine neurotransmitter system dysfunction, are insufficient as explanations of the disorder. Recent advances have implicated neuroinflammatory mechanisms in the etiology of depression and it has been demonstrated that inflammation at a peripheral level may be mirrored centrally in astrocytes and microglia serving to promote chronic levels of inflammation in the brain. Three major routes to depression in cancer in which proinflammatory mediators are implicated, seem likely. Activation of the kynurenine pathway involving cytokines, increases tryptophan catabolism, resulting in diminished levels of serotonin which is widely acknowledged as being the hallmark of depression. It also results in neurotoxic effects on brain regions thought to be involved in the evolution of major depression. Proinflammatory mediators also play a crucial role in impairing regulatory glucocorticoid mediated feedback of the hypothalamic-pituitary-adrenal axis, which is activated by stress and considered to be involved in both depression and cancer. The third route is via the glutamatergic pathway, whereby glutamate excitotoxicity may lead to depression associated with cancer. A better understanding of the mechanisms underlying these dysregulated and other newly emerging pathways may provide a rationale for therapeutic targeting, serving to improve the care of cancer patients.
Collapse
|
11
|
Bravi B, Bollettini I, Di Pasquasio C, Falini A, Colombo C, Zanardi R, Poletti S, Benedetti F. Brain spectroscopic measures of glutamatergic and neuronal metabolism and glial activation influence white matter integrity in bipolar depression. Psychiatry Res Neuroimaging 2022; 326:111534. [PMID: 36049317 DOI: 10.1016/j.pscychresns.2022.111534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 07/27/2022] [Accepted: 08/24/2022] [Indexed: 11/25/2022]
Abstract
Bipolar disorder (BD) is associated with alterations in white matter (WM) microstructure, glutamatergic neurotransmission, and glia activity. Previous studies showed higher concentrations of glutamate (Glu), glutamate+glutamine (Glx), and reduced N-acetyl-aspartate (NAA) in BD. We investigated brain concentrations of Glu, Glx, NAA, mI as indirect marker of microglia activation, and Glx/NAA ratio as index of neuronal damage through 1H-MR, and WM integrity with Tract-Based Spatial Statistics in 93 depressed BD patients and 58 healthy controls (HC). We tested for linear effects of cited spectroscopic metabolites on DTI measures of WM integrity with general linear models for each group, then performing a conjunction analysis of Glx/NAA and mI concentration on the same measures. Statistical analyses (whole sample) revealed higher concentration of Glx/NAA, Glx and mI in BD patients compared to HC, and a positive association between mI and the ratio. DTI analyses (87 BD and 35 HC) showed a significant association of Glx/NAA ratio, and mI with WM microstructure. Conjunction analysis revealed a joint negative association between Glx/NAA and mI with fractional anisotropy. This is the first study showing an association between brain metabolites involved in neuronal damage, and glial activation and the alterations in WM consistently reported in BD.
Collapse
Affiliation(s)
- Beatrice Bravi
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Irene Bollettini
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milano, Italy; C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), Vita-Salute San Raffaele University, Milan, Italy
| | - Camilla Di Pasquasio
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Andrea Falini
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milano, Italy; Vita-Salute San Raffaele University, Milan, Italy; C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), Vita-Salute San Raffaele University, Milan, Italy
| | - Cristina Colombo
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milano, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Raffaella Zanardi
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Sara Poletti
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milano, Italy; Vita-Salute San Raffaele University, Milan, Italy; C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), Vita-Salute San Raffaele University, Milan, Italy.
| | - Francesco Benedetti
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milano, Italy; Vita-Salute San Raffaele University, Milan, Italy; C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
12
|
Chabert J, Allauze E, Pereira B, Chassain C, De Chazeron I, Rotgé JY, Fossati P, Llorca PM, Samalin L. Glutamatergic and N-Acetylaspartate Metabolites in Bipolar Disorder: A Systematic Review and Meta-Analysis of Proton Magnetic Resonance Spectroscopy Studies. Int J Mol Sci 2022; 23:ijms23168974. [PMID: 36012234 PMCID: PMC9409038 DOI: 10.3390/ijms23168974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/26/2022] Open
Abstract
The exact neurobiological mechanisms of bipolar disorder (BD) remain unknown. However, some neurometabolites could be implicated, including Glutamate (Glu), Glutamine (Gln), Glx, and N-acetylaspartate (NAA). Proton Magnetic Resonance Spectroscopy (1H-MRS) allows one to quantify these metabolites in the human brain. Thus, we conducted a systematic review and meta-analysis of the literature to compare their levels between BD patients and healthy controls (HC). The main inclusion criteria for inclusion were 1H-MRS studies comparing levels of Glu, Gln, Glx, and NAA in the prefrontal cortex (PFC), anterior cingulate cortex (ACC), and hippocampi between patients with BD in clinical remission or a major depressive episode and HC. Thirty-three studies were included. NAA levels were significantly lower in the left white matter PFC (wmPFC) of depressive and remitted BD patients compared to controls and were also significantly higher in the left dorsolateral PFC (dlPFC) of depressive BD patients compared to HC. Gln levels were significantly higher in the ACC of remitted BD patients compared to in HC. The decreased levels of NAA of BD patients may be related to the alterations in neuroplasticity and synaptic plasticity found in BD patients and may explain the deep white matter hyperintensities frequently observed via magnetic resonance imagery.
Collapse
Affiliation(s)
- Jonathan Chabert
- Service de Psychiatrie Adulte, CHU Clermont-Ferrand, CNRS, Institut Pascal, Université Clermont Auvergne, 58 Rue Montalembert, 63003 Clermont-Ferrand, France
- Correspondence: (J.C.); (L.S.); Tel.: +33-4-73-752-124 (J.C. & L.S.)
| | - Etienne Allauze
- Service de Psychiatrie Adulte, CHU Clermont-Ferrand, CNRS, Institut Pascal, Université Clermont Auvergne, 58 Rue Montalembert, 63003 Clermont-Ferrand, France
| | - Bruno Pereira
- Biostatistics Unit (DRCI), CHU Clermont-Ferrand, Université Clermont Auvergne, 7 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Carine Chassain
- Imaging Department, CHU Clermont-Ferrand, CNRS, Institut Pascal, Université Clermont Auvergne, Clermont Auvergne INP, 58 Rue Montalembert, 63003 Clermont-Ferrand, France
| | - Ingrid De Chazeron
- Service de Psychiatrie Adulte, CHU Clermont-Ferrand, CNRS, Institut Pascal, Université Clermont Auvergne, 58 Rue Montalembert, 63003 Clermont-Ferrand, France
| | - Jean-Yves Rotgé
- Service de Psychiatrie Adulte, Pitié-Salpêtrière Hospital, CNRS UMR 7593, 47-83 Bd de l’Hôpital, 75651 Paris, France
| | - Philippe Fossati
- Service de Psychiatrie Adulte, Pitié-Salpêtrière Hospital, CNRS UMR 7593, 47-83 Bd de l’Hôpital, 75651 Paris, France
| | - Pierre-Michel Llorca
- Service de Psychiatrie Adulte, CHU Clermont-Ferrand, CNRS, Institut Pascal, Université Clermont Auvergne, 58 Rue Montalembert, 63003 Clermont-Ferrand, France
| | - Ludovic Samalin
- Service de Psychiatrie Adulte, CHU Clermont-Ferrand, CNRS, Institut Pascal, Université Clermont Auvergne, 58 Rue Montalembert, 63003 Clermont-Ferrand, France
- Correspondence: (J.C.); (L.S.); Tel.: +33-4-73-752-124 (J.C. & L.S.)
| |
Collapse
|
13
|
Poletti S, Paolini M, Mazza MG, Palladini M, Furlan R, Querini PR, Benedetti F. Lower levels of glutathione in the anterior cingulate cortex associate with depressive symptoms and white matter hyperintensities in COVID-19 survivors. Eur Neuropsychopharmacol 2022; 61:71-77. [PMID: 35810586 PMCID: PMC9239982 DOI: 10.1016/j.euroneuro.2022.06.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/28/2022]
Abstract
SARS-CoV-2 is a novel coronavirus that mainly affects the respiratory system. However, clinical manifestations such as neurological symptoms, psychopathological outcomes and brain alterations suggest brain involvement during SARS-CoV-2 infection. Depressive symptoms and cerebral white matter hypodensities/hyperintensities (WMH) have been widely reported in COVID-19 survivors and have been shown to persist after recovery from infection. At the same time viral Infections, including COVID-19, have been shown to lead to oxidative stress. Glutathione (GSH) is the main antioxidant in the brain and reduced GSH levels have been implicated both in COVID-19 and depression. We therefore hypothesise that reduced GSH levels may be associated with depressive symptoms and WMH in COVID-19 survivors. Forty-nine participants (age 18-70) surviving COVID-19 underwent magnetic resonance imaging to measure WMH and brain GSH levels in the ACC, blood sampling to measure systemic inflammation and psychopathological assessment for depressive symptoms. ACC concentrations of GSH inversely associated with both depression scores and the number and volume of WMH. The volume of WMH also positively associated with depressive symptomatology. Finally, systemic inflammation negatively predicted GSH concentration in ACC. In conclusion, we observed overlapping associations of GSH levels in ACC, WMH and severity of depression in COVID-19 survivors, and confirmed the central role of systemic inflammation, thus warranting interest for further study of oxidative stress and antioxidants in the post-acute COVID-19 syndrome.
Collapse
Affiliation(s)
- Sara Poletti
- Vita-Salute San Raffaele University, Milano, Italy; Psychiatry & Clinical Psychobiology, Division of Neuroscience, Scientific Institute IRCCS Ospedale San Raffaele, Milano.
| | - Marco Paolini
- Vita-Salute San Raffaele University, Milano, Italy; Psychiatry & Clinical Psychobiology, Division of Neuroscience, Scientific Institute IRCCS Ospedale San Raffaele, Milano
| | - Mario Gennaro Mazza
- Vita-Salute San Raffaele University, Milano, Italy; Psychiatry & Clinical Psychobiology, Division of Neuroscience, Scientific Institute IRCCS Ospedale San Raffaele, Milano
| | - Mariagrazia Palladini
- Vita-Salute San Raffaele University, Milano, Italy; Psychiatry & Clinical Psychobiology, Division of Neuroscience, Scientific Institute IRCCS Ospedale San Raffaele, Milano
| | - Roberto Furlan
- Vita-Salute San Raffaele University, Milano, Italy; Psychiatry & Clinical Psychobiology, Division of Neuroscience, Scientific Institute IRCCS Ospedale San Raffaele, Milano
| | - Patrizia Rovere Querini
- Vita-Salute San Raffaele University, Milano, Italy; Psychiatry & Clinical Psychobiology, Division of Neuroscience, Scientific Institute IRCCS Ospedale San Raffaele, Milano
| | -
- Vita-Salute San Raffaele University, Milano, Italy; Psychiatry & Clinical Psychobiology, Division of Neuroscience, Scientific Institute IRCCS Ospedale San Raffaele, Milano
| | - Francesco Benedetti
- Vita-Salute San Raffaele University, Milano, Italy; Psychiatry & Clinical Psychobiology, Division of Neuroscience, Scientific Institute IRCCS Ospedale San Raffaele, Milano
| |
Collapse
|
14
|
Abstract
Raised inflammatory setpoints have been associated with major depression and its detrimental consequences on brain function, as they lead to increased production of cytokines, changes in gene expression and activated brain microglia. Three main lines of evidence support immune-inflammatory mechanisms as targets for the treatment of depression. First, higher inflammation hampers response to antidepressants, and effective antidepressant treatment decreases inflammation. Second, conventional antidepressants share immune-modulatory and anti-inflammatory properties, which could affect inflammation during the depression. Third, anti-inflammatory and immune-modulatory treatments proved superior to placebo in randomized controlled antidepressant trials. New targets and new pharmacologic treatment for immune-mediated inflammatory diseases have been identified and tested in several medical settings and interest is warranted for testing them as antidepressants.
Collapse
Affiliation(s)
- Francesco Benedetti
- Division of Neuroscience, IRCCS Scientific Institute Ospedale San Raffaele
- University Vita-Salute San Raffaele, Milano, Italy
| | - Raffaella Zanardi
- Division of Neuroscience, IRCCS Scientific Institute Ospedale San Raffaele
- University Vita-Salute San Raffaele, Milano, Italy
| | - Mario Gennaro Mazza
- Division of Neuroscience, IRCCS Scientific Institute Ospedale San Raffaele
- University Vita-Salute San Raffaele, Milano, Italy
| |
Collapse
|
15
|
Comai S, Melloni E, Lorenzi C, Bollettini I, Vai B, Zanardi R, Colombo C, Valtorta F, Benedetti F, Poletti S. Selective association of cytokine levels and kynurenine/tryptophan ratio with alterations in white matter microstructure in bipolar but not in unipolar depression. Eur Neuropsychopharmacol 2022; 55:96-109. [PMID: 34847455 DOI: 10.1016/j.euroneuro.2021.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 02/07/2023]
Abstract
Bipolar (BD) and major depression (MDD) disorders are severe mental illnesses characterised by altered levels of immune/inflammatory markers and disrupted white matter (WM) microstructure. A pro-inflammatory state was suggested to activate indoleamine 2,3-dioxygenase which, in turn, increases the amount of tryptophan (Trp) converted into kynurenine (Kyn). We investigated whether plasma levels of Trp, Kyn and Kyn/Trp ratio are associated with peripheral levels of immune/inflammatory markers and whether they are related to WM integrity in 100 MDD and 66 BD patients. Patients also underwent MRI, and fractional anisotropy (FA) was estimated as a measure of WM microstructure. BD patients showed higher Kyn levels and Kyn/Trp ratio than MDD patients, and lower FA in several WM tracts, including the corpus callosum and the inferior fronto-occipital fasciculus (IFO). Lower Trp levels associated with a more severe depressive symptomatology irrespective of diagnosis and with lower FA in the corpus callosum (CC) and external capsule (EC). We found an association of immune/inflammatory markers with Kyn/Trp ratio selectively in BD patients: IL-1β and TNF-α showed a positive relationship and IL-2 and IL-9 a negative relationship; in addition, higher IL-4 correlated with lower Kyn levels; higher Kyn/Trp ratio and IL-1β correlated with lower FA in the CC and IFO. Notably, the detrimental effect of IL-1β on the IFO was moderated by the Kyn/Trp ratio. These data suggest that in BD, cytokines and the conversion of Trp into Kyn may affect WM microstructure and support the idea that distinct mechanisms underlie the pathophysiology of BD and MDD.
Collapse
Affiliation(s)
- Stefano Comai
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy; Department of Biomedical Sciences, University of Padua, Padua, Italy; Department of Psychiatry, McGill University, Montreal, Canada.
| | - Elisa Melloni
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cristina Lorenzi
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Irene Bollettini
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Benedetta Vai
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Raffaella Zanardi
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cristina Colombo
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Flavia Valtorta
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Francesco Benedetti
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Sara Poletti
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
16
|
Mazza MG, Palladini M, De Lorenzo R, Magnaghi C, Poletti S, Furlan R, Ciceri F, Rovere-Querini P, Benedetti F. Persistent psychopathology and neurocognitive impairment in COVID-19 survivors: Effect of inflammatory biomarkers at three-month follow-up. Brain Behav Immun 2021; 94:138-147. [PMID: 33639239 PMCID: PMC7903920 DOI: 10.1016/j.bbi.2021.02.021] [Citation(s) in RCA: 316] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/28/2021] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
COVID-19 outbreak is associated with mental health implications during viral infection and at short-term follow-up. Data on psychiatric and cognitive sequelae at medium-term follow-up are still lacking. During an ongoing prospective cohort study, the psychopathological and cognitive status of 226 COVID-19 pneumonia survivors (149 male, mean age 58) were prospectively evaluated one and three months after hospital discharge. Psychiatric clinical interview, self-report questionnaires, and neuropsychological profiling of verbal memory, working memory, psychomotor coordination, executive functions, attention and information processing, and verbal fluency were performed. Three months after discharge from the hospital, 35.8% still self-rated symptoms in the clinical range in at least one psychopathological dimension. We observed persistent depressive symptomatology, while PTSD, anxiety, and insomnia decreased during follow-up. Sex, previous psychiatric history, and the presence of depression at one month affected the depressive symptomatology at three months. Regardless of clinical physical severity, 78% of the sample showed poor performances in at least one cognitive domain, with executive functions and psychomotor coordination being impaired in 50% and 57% of the sample. Baseline systemic immune-inflammation index (SII), which reflects the immune response and systemic inflammation based on peripheral lymphocyte, neutrophil, and platelet counts, predicted self-rated depressive symptomatology and cognitive impairment at three-months follow-up; and changes of SII predicted changes of depression during follow-up. Neurocognitive impairments associated with severity of depressive psychopathology, and processing speed, verbal memory and fluency, and psychomotor coordination were predicted by baseline SII. We hypothesize that COVID-19 could result in prolonged systemic inflammation that predisposes patients to persistent depression and associated neurocognitive dysfunction. The linkage between inflammation, depression, and neurocognition in patients with COVID-19 should be investigated in long-term longitudinal studies, to better personalize treatment options for COVID-19 survivors.
Collapse
Affiliation(s)
- Mario Gennaro Mazza
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute Ospedale San Raffaele, Milano, Italy; Vita-Salute San Raffaele University, Milano, Italy.
| | - Mariagrazia Palladini
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Rebecca De Lorenzo
- Vita-Salute San Raffaele University, Milano, Italy,Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cristiano Magnaghi
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sara Poletti
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute Ospedale San Raffaele, Milano, Italy,Vita-Salute San Raffaele University, Milano, Italy
| | - Roberto Furlan
- Vita-Salute San Raffaele University, Milano, Italy,Clinical Neuroimmunology, Division of Neuroscience, IRCCS Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Fabio Ciceri
- Vita-Salute San Raffaele University, Milano, Italy,Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Patrizia Rovere-Querini
- Vita-Salute San Raffaele University, Milano, Italy,Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Benedetti
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute Ospedale San Raffaele, Milano, Italy,Vita-Salute San Raffaele University, Milano, Italy
| |
Collapse
|