1
|
Liu F, Bai Q, Tang W, Zhang S, Guo Y, Pan S, Ma X, Yang Y, Fan H. Antioxidants in neuropsychiatric disorder prevention: neuroprotection, synaptic regulation, microglia modulation, and neurotrophic effects. Front Neurosci 2024; 18:1505153. [PMID: 39703344 PMCID: PMC11655488 DOI: 10.3389/fnins.2024.1505153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024] Open
Abstract
Oxidative stress, caused by an imbalance between the generation of reactive oxygen species (ROS) and the body's intrinsic antioxidant defenses, plays a critical role in neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's. Beyond these conditions, recent evidence indicates that dysregulated redox balance is implicated in neuropsychiatric disorders, including schizophrenia, major depressive disorder, and anxiety disorders. Preclinical and clinical studies have demonstrated the potential of antioxidants, such as N-acetylcysteine, sulforaphane, alpha-lipoic acid, L-carnitine, ascorbic acid, selenocompounds, flavones and zinc, in alleviating neuropsychiatric symptoms by mitigating excitotoxicity, enhancing synaptic plasticity, reducing microglial overactivation and promoting synaptogenesis. This review explores the role of oxidative stress in the pathogenesis of neuropsychiatric disorders. It provides an overview of the current evidence on antioxidant therapy's pharmacological effects, as demonstrated in animal models and clinical studies. It also discusses the underlying mechanisms and future directions for developing antioxidant-based adjuvant therapies. Given the limitations and side effects of existing treatments for neuropsychiatric disorders, antioxidant therapy presents a promising, safer alternative. Further research is essential to deepen our understanding and investigate the clinical efficacy and mechanisms underlying these therapies.
Collapse
Affiliation(s)
- Fangfei Liu
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Qianqian Bai
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Wenchao Tang
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Shumin Zhang
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Yan Guo
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Shunji Pan
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Xiaoyu Ma
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Yanhui Yang
- Department of Trauma Center, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Hua Fan
- Office of Research and Innovation, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
2
|
Ou Z, Yang L, Wu J, Xu M, Weng X, Xu G. Metabolic characteristics of ischaemic preconditioning induced performance improvement in Taekwondo athletes using LC‒MS/MS-based plasma metabolomics. Sci Rep 2024; 14:24609. [PMID: 39427043 PMCID: PMC11490506 DOI: 10.1038/s41598-024-76045-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024] Open
Abstract
In recent years, ischemic preconditioning (IPC) has garnered significant attention in sports research. While IPC has demonstrated positive effects in high-intensity sports such as judo and swimming, its potential benefits for enhancing the performance of Taekwondo athletes have not been extensively studied. This study aimed to investigate the effects of IPC on taekwondo performance and to observe the metabolic characteristics associated with enhancing sports performance via LC‒MS/MS-based plasma metabolomics. Seventeen participants underwent the repeated frequency speed of kick test (FSKT) after IPC, along with pre- and post-exercise plasma metabolite analysis. Differential abundance metabolite analysis, enriched pathway analysis, and weighted gene coexpression network analysis (WGNCA) were employed to delve into metabolic characteristics. The findings highlighted a significant enhancement in FSKT performance in the experimental group. Metabolomic analysis revealed 109 differentially abundant metabolites, including Dl-lactate, hypoxanthine, acetylcarnitine, and acetylsalicylic acid. Enriched pathway analysis revealed pathways such as pentose and glucuronic acid interconversion, ascorbic acid and aldonic acid metabolism, the pentose phosphate pathway (PPP), and the Warburg effect. In conclusion, IPC can significantly increase the specific athletic abilities of Taekwondo athletes, with enhancements linked to anaerobic metabolism, PPP utilization, the Warburg effect for energy production, redox system stability, reduced muscle fatigue, and pain alleviation.
Collapse
Affiliation(s)
- Ziyue Ou
- College of Martial Arts, Guangzhou Sport University, Guangzhou, 510500, China
| | - Liang Yang
- College of Martial Arts, Guangzhou Sport University, Guangzhou, 510500, China
| | - Jingyun Wu
- Department of Physical Education, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Mingxin Xu
- The Fifth College of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xiquan Weng
- College of Exercise and Health, Guangzhou Sport University, Guangzhou, 510500, China
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, Guangzhou, China
| | - Guoqin Xu
- College of Exercise and Health, Guangzhou Sport University, Guangzhou, 510500, China.
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, Guangzhou, China.
| |
Collapse
|
3
|
Suzuki K, Okamatsu Y, Uchida R, Sasahara I, Takeshita M, Sato W, Kitahara Y, Murakami H. Effect of whey protein-derived decapeptide on mood status and blood variables in healthy adults: a randomized, double-blind, placebo-controlled cross-over trial. Eur J Nutr 2024; 63:2789-2799. [PMID: 39085724 PMCID: PMC11490520 DOI: 10.1007/s00394-024-03464-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 07/01/2024] [Indexed: 08/02/2024]
Abstract
PURPOSE The importance of maintaining good mental health with overall well-being has recently drawn attention from various fields. Functional peptides found from various protein sources reportedly reduce mental health problems. We found a new decapeptide (AJI-801) from whey proteins, which can possibly improve mood status and increase blood acetyl-L-carnitine (ALC) and fibroblast growth factor 21 (FGF21) levels. In this study, we assessed the effects of a single intake of whey protein hydrolysate containing a high amount of AJI-801 (WPH) on blood variables and mood status. METHODS A randomized, double-blind, placebo-controlled cross-over trial of two doses of WPH (100 and 500 mg) was conducted. Participants, aged between 20 and 59 years with fatigue were allocated to two groups based on the WPH doses received, and set first test food in each study. The blood ALC and FGF21 levels at baseline and after 60, 120, and 180 min of test food intake were analyzed and the responses to the questionnaire items for mood status were obtained at baseline and after 60 and 180 min of test food intake. RESULTS There were no significant differences in the blood ALC and FGF21 levels between the two groups. As mood status, intake of 500-mg WPH (including 2.5-mg AJI-801) showed significant improvement in Depression/Dejection of the Profile of Mood States Questionnaire second edition and visual analog scale score for depression, as compared to the placebo. CONCLUSIONS Intake of AJI-801 500-mg WPH (including 2.5-mg AJI-801) contributes to the improvement of feeling down in healthy persons with fatigue. TRIAL REGISTRATION University Hospital Medical Information Network Clinical Trial Registry (UMIN 000046829).
Collapse
Affiliation(s)
- Katsuya Suzuki
- Institute of Food Sciences and Technologies, Ajinomoto Co., Inc, Kanagawa, 210-8681, Japan.
| | - Yoriko Okamatsu
- Institute of Food Sciences and Technologies, Ajinomoto Co., Inc, Kanagawa, 210-8681, Japan
| | - Ryo Uchida
- Institute of Food Sciences and Technologies, Ajinomoto Co., Inc, Kanagawa, 210-8681, Japan
| | - Ikuko Sasahara
- Institute of Food Sciences and Technologies, Ajinomoto Co., Inc, Kanagawa, 210-8681, Japan
| | - Masamichi Takeshita
- Research Institute for Bioscience Products and Fine Chemicals, Ajinomoto Co., Inc, Kanagawa, 210-8681, Japan
| | - Wataru Sato
- Research Institute for Bioscience Products and Fine Chemicals, Ajinomoto Co., Inc, Kanagawa, 210-8681, Japan
| | - Yoshiro Kitahara
- Institute of Food Sciences and Technologies, Ajinomoto Co., Inc, Kanagawa, 210-8681, Japan
| | - Hitoshi Murakami
- Institute of Food Sciences and Technologies, Ajinomoto Co., Inc, Kanagawa, 210-8681, Japan
| |
Collapse
|
4
|
Qureshi T, Ali S, Fahad T. Synergistic Effect of Coenzyme Q10 and L-Carnitine on Gliosis and Anhedonia, in a Rat Model of Multiple Sclerosis: An Immunohistochemical Study. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2024; 22:484-492. [PMID: 39069688 PMCID: PMC11289612 DOI: 10.9758/cpn.23.1150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/04/2024] [Accepted: 06/11/2024] [Indexed: 07/30/2024]
Abstract
Objective This study provides histological evidence of the combined effects of L-Carnitine, and Coenzyme Q10 on gliosis and anhedonia in a rat model of multiple sclerosis (MS). Methods Fifty male Sprague Dawley rats were randomly divided into 5 groups of 10 rats each. Group 1 was the control group. The rest of the groups were disease models and were given 0.2% cuprizone w/w to induce MS. After 4 weeks, Group 3 started receiving L-Carnitine, Group 4 was given Coenzyme Q10, and Group 5 received both, while cuprizone poisoning continued. After 12 weeks sucrose preference test and tail suspension test were performed for anhedonia. Rats were euthanized and brains were dissected, and assessed for astrocytes, oligodendrocytes, and microglial count. Results A significant increase in oligodendrocyte count, while a reduction in astrocyte and microglial count was seen in the synergistic group (p < 0.05). Synergism could not be proved in anhedonia. Conclusion The combination of Coenzyme Q10 and L-Carnitine has a synergistic effect in controlling gliosis in a rat model of MS, but synergism could not be demonstrated on anhedonia.
Collapse
Affiliation(s)
- Tayyaba Qureshi
- Department of Anatomy, Islamic International Medical College, Al-Mizan Campus, Rawalpindi, Pakistan
| | - Shabana Ali
- Department of Anatomy, Islamic International Medical College, Al-Mizan Campus, Rawalpindi, Pakistan
| | - Tayyaba Fahad
- Department of Anatomy, Islamic International Medical College, Al-Mizan Campus, Rawalpindi, Pakistan
| |
Collapse
|
5
|
Palacios N, Bhupathiraju SN, Kelly RS, Lee JS, Ordovas JM, Tucker KL. Acylcarnitines are associated with lower depressive symptomatology in a mainland puerto rican cohort. Metabolomics 2024; 20:85. [PMID: 39066829 DOI: 10.1007/s11306-024-02116-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 04/20/2024] [Indexed: 07/30/2024]
Abstract
INTRODUCTION Recent studies have implicated acetyl-L-carnitine as well as other acylcarnitines in depression. To our knowledge, no untargeted metabolomics studies have been conducted among US mainland Puerto Ricans. OBJECTIVES We conducted untargeted metabolomic profiling on plasma from 736 participants of the Boston Puerto Rican Health Study. METHODS Using Weighted Gene Co-expression Network Analysis, we identified metabolite modules associated with depressive symptomatology, assessed via the Center for Epidemiologic Studies Depression scale. We identified metabolites contributing to these modules and assessed the relationship between these metabolites and depressive symptomatology. RESULTS 621 annotated metabolites clustered into eight metabolite modules, of which one, the acylcarnitine module, was significantly inversely associated with depressive symptomatology (β = - 27.7 (95% CI (- 54.5-0.8); p = 0.043). Several metabolite hub features in the acylcarnitine module were significantly associated with depressive symptomatology, after correction for multiple comparisons. CONCLUSIONS In this untargeted plasma metabolomics study among mainland Puerto Rican older adults, acylcarnitines, as a metabolite module were inversely associated with depressive symptomatology.
Collapse
Affiliation(s)
- Natalia Palacios
- Department of Public Health, University of Massachusetts Lowell, 61 Wilder Street, Suite 540-K, Lowell, MA, 01854, USA.
- Department of Nutrition, Harvard School of Public Health, Boston, MA, USA.
- Geriatric Research Education Clinical Center, Edith Nourse Rogers Memorial Veterans Hospital, Bedford, MA, USA.
- Center for Population Health, University of Massachusetts Lowell, Lowell, MA, USA.
| | - Shilpa N Bhupathiraju
- Department of Nutrition, Harvard School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Rachel S Kelly
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jong Soo Lee
- Center for Population Health, University of Massachusetts Lowell, Lowell, MA, USA
- Department of Mathematical Sciences, University of Massachusetts Lowell, Lowell, USA
| | - Jose M Ordovas
- Jean Mayer USDA Human Research Center On Aging, Tufts University, Boston, MA, USA
| | - Katherine L Tucker
- Center for Population Health, University of Massachusetts Lowell, Lowell, MA, USA
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA, USA
| |
Collapse
|
6
|
Varma RS, Kumar BGP, Krishna CSM. Serum Acetylcarnitine as a Diagnostic Marker in Depression Episodes. BIOMEDICAL AND BIOTECHNOLOGY RESEARCH JOURNAL 2024; 8:194-199. [DOI: 10.4103/bbrj.bbrj_132_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/27/2024] [Indexed: 01/03/2025]
Abstract
AbstractBackground:Depression is a serious public health concern due to its prevalence and associated discomfort, dysfunction, morbidity, and economic impact. Depression is more prevalent in women than in males. There is a need to investigate the course of depressive disorders in India to identify the necessity and duration of ongoing treatment. Studies should also assess cost-effective treatment strategies that can be easily implemented in primary care settings to successfully treat depression.Methods:This study aimed to estimate the Serum L-Acetyl Carnitine (LAC) levels in depressive episodes, mainly to find a correlation between the levels and depression and also to correlate the values to the severity of depression with a depression rating scale like Montgomery–Åsberg Depression Rating Scale (MADRS). LAC levels were estimated using an enzyme-linked immunosorbent assay kit.Results:A cross-sectional study was conducted with 60 individuals after obtaining their informed consent. This included 30 cases of diagnosed depression and 30 age and sex-matched normal controls. The diagnosed depressive episodes were rated in MADRS, and a score was assigned based on the same. The results were tabulated and statistically analyzed. The mean age of the case group was 41.37 ± 11.32 and control group was 41.50 ± 14.37. The incidence of depressive symptoms was higher in females (53%) than males (47%). The incidence of depressive symptoms was higher in the 41–50-year age group than in any other group. The acetyl carnitine-LAC levels were significantly decreased in patients with depressive episodes (950.7 ± 902.7) compared to the control (1799.6 ± 67.1), respectively. The Pearson’s correlation shows there is a strong negative correlation between the MADRS score and the levels of acetylcarnitine in the cases which was statistically significant,P< 0.001.Conclusions:LAC may have an important role in the pathophysiology of depression by its epigenetic action on metabotropic glutamate receptors and the decrease in the brain tissue may induce depressive symptoms, and consequently, their supplementation causes a rapid antidepressant effect. Hence, it could be a useful biochemical marker for the diagnosis of depression and also an effective for the treatment of depression.
Collapse
Affiliation(s)
- R. Sandeep Varma
- Department of Biochemistry, Adichunchanagiri Institute of Medical Sciences, B.G Nagara, Mandya, Karnataka, India
| | - B. G. Prashanth Kumar
- Department of Biochemistry, Bangalore Medical College and Research Institute, Bengaluru, Karnataka, India
| | - C. S. Muralidhar Krishna
- Department of Biochemistry, Bangalore Medical College and Research Institute, Bengaluru, Karnataka, India
| |
Collapse
|
7
|
Chernonosov AA, Mednova IA, Levchuk LA, Mazurenko EO, Roschina OV, Simutkin GG, Bokhan NA, Koval VV, Ivanova SA. Untargeted Plasma Metabolomic Profiling in Patients with Depressive Disorders: A Preliminary Study. Metabolites 2024; 14:110. [PMID: 38393002 PMCID: PMC10890195 DOI: 10.3390/metabo14020110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Depressive disorder is a multifactorial disease that is based on dysfunctions in mental and biological processes. The search for biomarkers can improve its diagnosis, personalize therapy, and lead to a deep understanding of the biochemical processes underlying depression. The purpose of this work was a metabolomic analysis of blood serum to classify patients with depressive disorders and healthy individuals using Compound Discoverer software. Using high-resolution mass spectrometry, blood plasma samples from 60 people were analyzed, of which 30 were included in a comparison group (healthy donors), and 30 were patients with a depressive episode (F32.11) and recurrent depressive disorder (F33.11). Differences between patient and control groups were identified using the built-in utilities in Compound Discoverer software. Compounds were identified by their accurate mass and fragment patterns using the mzCloud database and tentatively identified by their exact mass using the ChemSpider search engine and the KEGG, ChEBI, FDA UNII-NLM, Human Metabolome and LipidMAPS databases. We identified 18 metabolites that could divide patients with depressive disorders from healthy donors. Of these, only two compounds were tentatively identified using the mzCloud database (betaine and piperine) based on their fragmentation spectra. For three compounds ((4S,5S,8S,10R)-4,5,8-trihydroxy-10-methyl-3,4,5,8,9,10-hexahydro-2H-oxecin-2-one, (2E,4E)-N-(2-hydroxy-2-methylpropyl)-2,4-tetradecadienamide and 17α-methyl-androstan-3-hydroxyimine-17β-ol), matches were found in the mzCloud database but with low score, which could not serve as reliable evidence of their structure. Another 13 compounds were identified by their exact mass in the ChemSpider database, 9 (g-butyrobetaine, 6-diazonio-5-oxo-L-norleucine, 11-aminoundecanoic acid, methyl N-acetyl-2-diazonionorleucinate, glycyl-glycyl-argininal, dilaurylmethylamine, 12-ketodeoxycholic acid, dicetylamine, 1-linoleoyl-2-hydroxy-sn-glycero-3-PC) had only molecular formulas proposed, and 4 were unidentified. Thus, the use of Compound Discoverer software alone was not sufficient to identify all revealed metabolites. Nevertheless, the combination of the found metabolites made it possible to divide patients with depressive disorders from healthy donors.
Collapse
Affiliation(s)
- Alexander A Chernonosov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Lavrentyev Avenue 8, Novosibirsk 630090, Russia
| | - Irina A Mednova
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Aleutskaya Str. 4, Tomsk 634014, Russia
| | - Lyudmila A Levchuk
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Aleutskaya Str. 4, Tomsk 634014, Russia
| | - Ekaterina O Mazurenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Lavrentyev Avenue 8, Novosibirsk 630090, Russia
| | - Olga V Roschina
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Aleutskaya Str. 4, Tomsk 634014, Russia
| | - German G Simutkin
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Aleutskaya Str. 4, Tomsk 634014, Russia
| | - Nikolay A Bokhan
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Aleutskaya Str. 4, Tomsk 634014, Russia
- Department of Psychiatry, Addictology and Psychotherapy, Siberian State Medical University, Moskovsky Trakt 2, Tomsk 634050, Russia
| | - Vladimir V Koval
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Lavrentyev Avenue 8, Novosibirsk 630090, Russia
| | - Svetlana A Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Aleutskaya Str. 4, Tomsk 634014, Russia
- Department of Psychiatry, Addictology and Psychotherapy, Siberian State Medical University, Moskovsky Trakt 2, Tomsk 634050, Russia
| |
Collapse
|
8
|
Akter S, Emon FA, Nahar Z, Shalahuddin Qusar M, Islam SMA, Shahriar M, Bhuiyan MA, Islam MR. Altered IL-3 and lipocalin-2 levels are associated with the pathophysiology of major depressive disorder: a case-control study. BMC Psychiatry 2023; 23:830. [PMID: 37957650 PMCID: PMC10644478 DOI: 10.1186/s12888-023-05354-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 11/06/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Major Depressive Disorder (MDD) is a common mental ailment and is the primary reason for disability. It manifests a severe impact on moods, thoughts, and physical health. At present, this disorder has become a concern in the field of public health. Alteration of neurochemicals is thought to be involved in the pathogenesis of many psychiatric disorders. Therefore, we aimed to evaluate serum IL-3 and lipocalin-2 in MDD patients and healthy controls (HCs). METHOD We included a total of 376 participants in this study. Among them, 196 were MDD patients, and 180 were age-sex-matched HCs. MDD patients were recruited from the Psychiatry Department of Bangabandhu Sheikh Mujib Medical University (BSMMU), but the controls were from different parts of Dhaka. All study participants were evaluated by a psychiatrist using the DSM-5 criteria. To assess the severity of the depression, we used the Hamilton depression (Ham-D) rating scale. Serum IL-3 and lipocalin-2 levels were measured using commercially available enzyme-linked immune-sorbent assay kits (ELISA kits). RESULTS According to this study, we observed elevated serum levels of IL-3 (1,024.73 ± 29.84 pg/mL) and reduced levels of serum lipocalin-2 (29.019 ± 2.073 ng/mL) in MDD patients compared to HCs (911.11 ± 20.55 pg/mL and 48.065 ± 3.583 ng/mL, respectively). No associations between serum levels of IL-3 and lipocalin-2 and depression severity were observed in patients. CONCLUSIONS According to the present findings, alterations of serum IL-3 and lipocalin might be associated with the pathogenesis of MDD. These results support that altered serum neurochemicals can serve as early risk assessment markers for depression. Further interventional studies are recommended for a better understanding of the role of IL-3 and lipocalin-2 in the pathophysiology of depression.
Collapse
Affiliation(s)
- Sarmin Akter
- Department of Pharmacy, University of Asia Pacific, 74/A Green Road, Farmgate, Dhaka, 1205, Bangladesh
| | - Faisal Abdullah Emon
- Department of Pharmacy, University of Asia Pacific, 74/A Green Road, Farmgate, Dhaka, 1205, Bangladesh
| | - Zabun Nahar
- Department of Pharmacy, University of Asia Pacific, 74/A Green Road, Farmgate, Dhaka, 1205, Bangladesh
| | - Mma Shalahuddin Qusar
- Department of Psychiatry, Bangabandhu Sheikh Mujib Medical University, Shahabagh, Dhaka, 1000, Bangladesh
| | | | - Mohammad Shahriar
- Department of Pharmacy, University of Asia Pacific, 74/A Green Road, Farmgate, Dhaka, 1205, Bangladesh
| | - Mohiuddin Ahmed Bhuiyan
- Department of Pharmacy, University of Asia Pacific, 74/A Green Road, Farmgate, Dhaka, 1205, Bangladesh
| | - Md Rabiul Islam
- School of Pharmacy, BRAC University, 66 Mohakhali, Dhaka, 1212, Bangladesh.
| |
Collapse
|
9
|
Filipović D, Inderhees J, Korda A, Tadić P, Schwaninger M, Inta D, Borgwardt S. Metabolic Fingerprints of Effective Fluoxetine Treatment in the Prefrontal Cortex of Chronically Socially Isolated Rats: Marker Candidates and Predictive Metabolites. Int J Mol Sci 2023; 24:10957. [PMID: 37446133 PMCID: PMC10341512 DOI: 10.3390/ijms241310957] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/20/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
The increasing prevalence of depression requires more effective therapy and the understanding of antidepressants' mode of action. We carried out untargeted metabolomics of the prefrontal cortex of rats exposed to chronic social isolation (CSIS), a rat model of depression, and/or fluoxetine treatment using liquid chromatography-high resolution mass spectrometry. The behavioral phenotype was assessed by the forced swim test. To analyze the metabolomics data, we employed univariate and multivariate analysis and biomarker capacity assessment using the receiver operating characteristic (ROC) curve. We also identified the most predictive biomarkers using a support vector machine with linear kernel (SVM-LK). Upregulated myo-inositol following CSIS may represent a potential marker of depressive phenotype. Effective fluoxetine treatment reversed depressive-like behavior and increased sedoheptulose 7-phosphate, hypotaurine, and acetyl-L-carnitine contents, which were identified as marker candidates for fluoxetine efficacy. ROC analysis revealed 4 significant marker candidates for CSIS group discrimination, and 10 for fluoxetine efficacy. SVM-LK with accuracies of 61.50% or 93.30% identified a panel of 7 or 25 predictive metabolites for depressive-like behavior or fluoxetine effectiveness, respectively. Overall, metabolic fingerprints combined with the ROC curve and SVM-LK may represent a new approach to identifying marker candidates or predictive metabolites for ongoing disease or disease risk and treatment outcome.
Collapse
Affiliation(s)
- Dragana Filipović
- Department of Molecular Biology and Endocrinology, “VINČA” Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Julica Inderhees
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany; (J.I.); (M.S.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg-Kiel-Lübeck, 20251 Hamburg, Germany
- Center of Brain Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Alexandra Korda
- Department of Psychiatry and Psychotherapy, Center of Brain Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany;
| | - Predrag Tadić
- School of Electrical Engineering, University of Belgrade, 11000 Belgrade, Serbia;
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany; (J.I.); (M.S.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg-Kiel-Lübeck, 20251 Hamburg, Germany
| | - Dragoš Inta
- Department for Community Health, Faculty of Natural Sciences, Medicine, University of Fribourg, 1700 Fribourg, Switzerland; (D.I.); (S.B.)
- Department of Biomedicine, University of Basel, 4001 Basel, Switzerland
| | - Stefan Borgwardt
- Department for Community Health, Faculty of Natural Sciences, Medicine, University of Fribourg, 1700 Fribourg, Switzerland; (D.I.); (S.B.)
| |
Collapse
|
10
|
Burgess Robinson L. Exchanges between the gastrointestinal system and the brain. INTRODUCTION TO QUANTITATIVE EEG AND NEUROFEEDBACK 2023:413-425. [DOI: 10.1016/b978-0-323-89827-0.00003-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
Liu T, Deng K, Xue Y, Yang R, Yang R, Gong Z, Tang M. Carnitine and Depression. Front Nutr 2022; 9:853058. [PMID: 35369081 PMCID: PMC8964433 DOI: 10.3389/fnut.2022.853058] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/11/2022] [Indexed: 11/13/2022] Open
Abstract
Depression has become one of the most common mental diseases in the world, but the understanding of its pathogenesis, diagnosis and treatments remains insufficient. Carnitine is a natural substance that exists in organisms, which can be synthesized in vivo or supplemented by intake. Relationships of carnitine with depression, bipolar disorder and other mental diseases have been reported in different studies. Several studies show that the level of acylcarnitines (ACs) changes significantly in patients with depression compared with healthy controls while the supplementation of acetyl-L-carnitine is beneficial to the treatment of depression. In this review, we aimed to clarify the effects of ACs in depressive patients and to explore whether ACs might be the biomarkers for the diagnosis of depression and provide new ideas to treat depression.
Collapse
Affiliation(s)
- Ting Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Institute for Rational and Safe Medication Practices, Central South University, Changsha, China
| | - Kunhong Deng
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ying Xue
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Institute for Rational and Safe Medication Practices, Central South University, Changsha, China
| | - Rui Yang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Institute for Rational and Safe Medication Practices, Central South University, Changsha, China
| | - Rong Yang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Institute for Rational and Safe Medication Practices, Central South University, Changsha, China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Institute for Rational and Safe Medication Practices, Central South University, Changsha, China
| | - Mimi Tang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Institute for Rational and Safe Medication Practices, Central South University, Changsha, China
| |
Collapse
|
12
|
Lee S, Mun S, Lee YR, Choi H, Joo EJ, Kang HG, Lee J. Discovery and validation of acetyl-L-carnitine in serum for diagnosis of major depressive disorder and remission status through metabolomic approach. Front Psychiatry 2022; 13:1002828. [PMID: 36458116 PMCID: PMC9707625 DOI: 10.3389/fpsyt.2022.1002828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
Major depressive disorder (MDD) is one of the most common psychiatric disorders that accompany psychophysiological and mood changes. However, the pathophysiology-based disease mechanism of MDD is not yet fully understood, and diagnosis is also conducted through interviews with clinicians and patients. Diagnosis and treatment of MDD are limited due to the absence of biomarkers underlying the pathophysiological mechanisms of MDD. Although various attempts have been made to discover metabolite biomarkers for the diagnosis and treatment response of MDD, problems with sample size and consistency of results have limited clinical application. In addition, it was reported that future biomarker studies must consider exposure to antidepressants, which is the main cause of heterogeneity in depression subgroups. Therefore, the purpose of this study is to discover and validate biomarkers for the diagnosis of depression in consideration of exposure to drug treatment including antidepressants that contribute to the heterogeneity of the MDD subgroup. In the biomarker discovery and validation set, the disease group consisted of a mixture of patients exposed and unexposed to drug treatment including antidepressants for the treatment of MDD. The serum metabolites that differed between the MDD patients and the control group were profiled using mass spectrometry. The validation set including the remission group was used to verify the effectiveness as a biomarker for the diagnosis of depression and determination of remission status. The presence of different metabolites between the two groups was confirmed through serum metabolite profiling between the MDD patient group and the control group. Finally, Acetylcarnitine was selected as a biomarker. In validation, acetylcarnitine was significantly decreased in MDD and was distinguished from remission status. This study confirmed that the discovered acetylcarnitine has potential as a biomarker for diagnosing depression and determining remission status, regardless of exposure to drug treatment including antidepressants.
Collapse
Affiliation(s)
- Seungyeon Lee
- Department of Senior Healthcare, Graduate School, Eulji University, Gyeonggi, South Korea
| | - Sora Mun
- Department of Biomedical Laboratory Science, College of Health Sciences, Eulji University, Gyeonggi, South Korea
| | - You-Rim Lee
- Department of Senior Healthcare, Graduate School, Eulji University, Gyeonggi, South Korea
| | - Hyebin Choi
- Department of Laboratory Medicine, Korea University Anam Hospital, Seoul, South Korea
| | - Eun-Jeong Joo
- Department of Neuropsychiatry, School of Medicine, Eulji University, Daejeon, South Korea.,Department of Psychiatry, Uijeongbu Eulji Medical Center, Eulji University, Gyeonggi, South Korea
| | - Hee-Gyoo Kang
- Department of Senior Healthcare, Graduate School, Eulji University, Gyeonggi, South Korea.,Department of Biomedical Laboratory Science, College of Health Sciences, Eulji University, Gyeonggi, South Korea
| | - Jiyeong Lee
- Department of Biomedical Laboratory Science, College of Health Sciences, Eulji University, Gyeonggi, South Korea
| |
Collapse
|