1
|
Liu N, Yang L, Yao X, Luo Y. From light to insight: Functional near-infrared spectroscopy for unravelling cognitive impairment during task performance. Biosci Trends 2025; 19:53-71. [PMID: 39864831 DOI: 10.5582/bst.2024.01362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Cognitive impairment refers to the impairment of higher brain functions such as perception, thinking or memory that affects the individual's ability to perform daily or social activities. Studies have found that changes in neuronal activity during tasks in patients with cognitive impairment are closely related to changes in cerebral cortical hemodynamics. Functional near-infrared spectroscopy is an indirect method to measure neural activity based on changes in blood oxygen concentration in the cerebral cortex. Due to its strong anti-motion interference, high compatibility, and almost no restriction on participants and environment, it has shown great potential in the research field of cognitive impairment. Recognizing these benefits, this comprehensive review systematically elucidates the rationale, historical development, advantages and disadvantages of functional near-infrared spectroscopy, and also discusses the applications of combining functional near-infrared spectroscopy with other detection techniques. Additionally, this review summarized how functional near-infrared spectroscopy can be applied to cognitive impairment caused by different diseases, ultimately aiding the study of neural mechanisms of cognitive activities, which is crucial for the diagnosis, differentiation and treatment of cognitive impairment.
Collapse
Affiliation(s)
- Na Liu
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lingling Yang
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiuqing Yao
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Municipality Clinical Research Center for Geriatric Medicine, Chongqing, China
- Department of Rehabilitation Therapy, Chongqing Medical University, Chongqing, China
| | - Yaxi Luo
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Kelsey C, Kamenetskiy A, Mulligan K, Tiras C, Kent M, Bayet L, Richards J, Enlow MB, Nelson CA. Forming Connections: Functional Brain Connectivity is Associated With Executive Functioning Abilities in Early Childhood. Dev Sci 2025; 28:e13604. [PMID: 39740229 PMCID: PMC11753531 DOI: 10.1111/desc.13604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 12/03/2024] [Accepted: 12/07/2024] [Indexed: 01/02/2025]
Abstract
Functional magnetic resonance imaging (fMRI) studies with adults provide evidence that functional brain networks, including the default mode network and frontoparietal network, underlie executive functioning (EF). However, given the challenges of using fMRI with infants and young children, little work has assessed the developmental trajectories of these networks or their associations with EF at key developmental stages. More recently, functional near-infrared spectroscopy (fNIRS) has emerged as a promising neuroimaging tool which can provide information on cortical functional networks and can be more easily implemented with young children. Children (N = 207; n = 116 male; n = 167 White) had fNIRS data recorded at infancy, 3, 5, and 7 years of age while watching a 2-min nonsocial video. At 3, 5, and 7 years, children completed behavioral assessments and parents completed questionnaires to assess child EF abilities. Results showed that, although early functional brain network connectivity was not associated with later functional brain connectivity, EF was concurrently and longitudinally associated with functional connectivity levels in both networks. Overall, these results inform the understanding of early emerging neural underpinnings of regulatory abilities and point to considerable change in the composition of functional brain networks and a conservation of function across development.
Collapse
Affiliation(s)
- Caroline Kelsey
- Department of Pediatrics, Division of Developmental Medicine, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Adelia Kamenetskiy
- Department of Psychiatry and Behavioral Sciences, Boston Children’s Hospital, Boston, MA, United States
| | - Kaitlin Mulligan
- Department of Psychiatry and Behavioral Sciences, Boston Children’s Hospital, Boston, MA, United States
| | - Carly Tiras
- Department of Pediatrics, Division of Developmental Medicine, Boston Children’s Hospital, Boston, MA, United States
| | - Michaela Kent
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Laurie Bayet
- Department of Neuroscience, American University, Washington, DC, United States
| | - John Richards
- Department of Psychology, University of South Carolina, Columbia, SC, United States
| | - Michelle Bosquet Enlow
- Department of Psychiatry and Behavioral Sciences, Boston Children’s Hospital, Boston, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Charles A. Nelson
- Department of Pediatrics, Division of Developmental Medicine, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Harvard Graduate School of Education, Cambridge, MA, United States
| |
Collapse
|
3
|
Grossmann T. The social self in the developing brain. Neurosci Biobehav Rev 2025; 169:106023. [PMID: 39855406 DOI: 10.1016/j.neubiorev.2025.106023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/24/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
The notion that the self is fundamentally social in nature and develops through social interactions has a long tradition in philosophy, sociology, and psychology. However, to date, the early development of the social self and its brain bases in infancy has received relatively little attention. This presents a review and synthesis of existing neuroimaging research, showing that infants recruit brain systems, involved in self-processing and social cognition in adults, when responding to self-relevant cues during social interactions. Moreover, this review draws on recent research, demonstrating the early developmental emergence and social embeddedness/dependency of the default-mode network in infancy, a brain network considered of critical importance to the sense of self and social cognition. This stands in contrast to research pointing to the relatively late ontogenetic emergence of the conceptual self, by about 18-24 months of age, as seen in the mirror-self recognition test. Based on this review and synthesis, the social self first hypothesis (SSFH) is formulated, presenting an integrated view, arguing for the early ontogenetic emergence of the social self and its brain basis. This developmental account informs and extends existing evolutionary thinking, emphasizing the primary role that social interdependence has played in the evolution of the human mind.
Collapse
|
4
|
Vahidi H, Kowalczyk A, Stubbs K, Musabi M, Roychaudhuri S, Kent M, Bhattacharya S, de Ribaupierre S, Lawrence KS, Mohsenzadeh Y, Duerden EG. Investigating Task-Free Functional Connectivity Patterns in Newborns Using Functional Near-Infrared Spectroscopy. Brain Behav 2024; 14:e70180. [PMID: 39690863 DOI: 10.1002/brb3.70180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 12/19/2024] Open
Abstract
BACKGROUND Resting-state networks (RSNs), particularly the sensorimotor network, begin to strengthe in the third trimester of pregnancy and mature extensively by term age. The integrity and structure of these networks have been repeatedly linked to neurological health outcomes in neonates, highlighting the importance of understanding the normative variations in RSNs in healthy development. Specifically, robust bilateral functional connectivity in the sensorimotor RSN has been linked to optimal neurodevelopmental outcomes in neonates. AIM In the current study, we aimed to map the developmental trajectory of the sensorimotor RSN in awake neonates using functional near-infrared spectroscopy (fNIRS). MATERIALS & METHODS We acquired fNIRS resting-state data from 41 healthy newborns (17 females, gestational age ranging from 36 + 0 to 42 + 1 weeks) within the first week after birth. We performed both single channel and hemispheric analyses to investigate the relationship between functional connectivity and both gestational and postnatal age. RESULTS We observed robust positive connectivity in numerous channel-pairs across the sensorimotor network, especially in the left hemisphere. Next, we examined the relationship between functional connectivity, gestational age, and postnatal age, while controlling for sex and subject effects. We found both gestational and postnatal age to be significantly associated with changes in functional connectivity in the sensorimotor RSN. In our hemispheric analysis (Ninterhemispheric = 10, Nleft intrahemispheric = 15, and Nright intrahemispheric = 9), we observed a significant positive relationship between interhemispheric connectivity and postnatal age. DISCUSSION AND CONCLUSION In summary, our findings demonstrate the utility of fNIRS for monitoring early developmental changes in functional networks in awake newborns.
Collapse
Affiliation(s)
- Homa Vahidi
- Department of Neuroscience, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Alexandra Kowalczyk
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, London Health Sciences Centre, London, Ontario, Canada
| | - Kevin Stubbs
- Brain and Mind Centre, Western University, London, Ontario, Canada
| | - Melab Musabi
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, London Health Sciences Centre, London, Ontario, Canada
| | - Sriya Roychaudhuri
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, London Health Sciences Centre, London, Ontario, Canada
| | - Michaela Kent
- Department of Neuroscience, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Soume Bhattacharya
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, London Health Sciences Centre, London, Ontario, Canada
| | - Sandrine de Ribaupierre
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Keith St Lawrence
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Yalda Mohsenzadeh
- Brain and Mind Centre, Western University, London, Ontario, Canada
- Department of Computer Science, Western University, London, Ontario, Canada
- Vector Institute for Artificial Intelligence, Toronto, Ontario, Canada
| | - Emma G Duerden
- Brain and Mind Centre, Western University, London, Ontario, Canada
- Applied Psychology, Faculty of Education, Western University, London, Ontario, Canada
| |
Collapse
|
5
|
Stern JA, Kelsey CM, Yancey H, Grossmann T. Love on the developing brain: Maternal sensitivity and infants' neural responses to emotion in the dorsolateral prefrontal cortex. Dev Sci 2024; 27:e13497. [PMID: 38511516 PMCID: PMC11415551 DOI: 10.1111/desc.13497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024]
Abstract
Infancy is a sensitive period of development, during which experiences of parental care are particularly important for shaping the developing brain. In a longitudinal study of N = 95 mothers and infants, we examined links between caregiving behavior (maternal sensitivity observed during a mother-infant free-play) and infants' neural response to emotion (happy, angry, and fearful faces) at 5 and 7 months of age. Neural activity was assessed using functional Near-Infrared Spectroscopy (fNIRS) in the dorsolateral prefrontal cortex (dlPFC), a region involved in cognitive control and emotion regulation. Maternal sensitivity was positively correlated with infants' neural responses to happy faces in the bilateral dlPFC and was associated with relative increases in such responses from 5 to 7 months. Multilevel analyses revealed caregiving-related individual differences in infants' neural responses to happy compared to fearful faces in the bilateral dlPFC, as well as other brain regions. We suggest that variability in dlPFC responses to emotion in the developing brain may be one correlate of early experiences of caregiving, with implications for social-emotional functioning and self-regulation. RESEARCH HIGHLIGHTS: Infancy is a sensitive period of brain development, during which experiences with caregivers are especially important. This study examined links between sensitive maternal care and infants' neural responses to emotion at 5-7 months of age, using functional near-infrared spectroscopy (fNIRS). Experiences of sensitive care were associated with infants' neural responses to emotion-particularly happy faces-in the dorsolateral prefrontal cortex.
Collapse
Affiliation(s)
- Jessica A Stern
- Psychology, University of Virginia, Charlottesville, Virginia, USA
| | - Caroline M Kelsey
- Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Heath Yancey
- Psychology, University of Virginia, Charlottesville, Virginia, USA
| | - Tobias Grossmann
- Psychology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
6
|
Gao L, Lin Q, Tian D, Zhu S, Tai X. Advances and trends in the application of functional near-infrared spectroscopy for pediatric assessments: a bibliometric analysis. Front Neurol 2024; 15:1459214. [PMID: 39309263 PMCID: PMC11412835 DOI: 10.3389/fneur.2024.1459214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
Objective The objective is to elucidate the collaboration and current research status in the pediatric field of fNIRS using bibliometric analysis, and to discuss future directions. Method Bibliometric analysis was conducted on publications related to pediatric fNIRS research published before June 2024 in the Web of Science Core Collection using VOSviewer software and R language. Results A total of 761 documents were retrieved, published by 2,686 authors from 893 institutions across 44 countries in 239 journals. The number of publications has significantly increased since 2012. The United States is the country with the highest number of publications, University College London is the institution with the most publications, Lloyd-Fox Sarah is the author with the most publications and significant influence, and "Neurophotonics" is the journal with the most publications. The current hotspots mainly involve using fNIRS to study executive functions and autism spectrum disorders in children. Conclusion The study provides useful reference information for researchers by analyzing publication numbers, collaborative networks, publishing journals, and research hotspots. In the future, there should be an emphasis on enhancing interdisciplinary and international collaboration to collectively dedicate efforts toward the advancement of fNIRS technology and the standardization of research.
Collapse
Affiliation(s)
- Lin Gao
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | | | - Dong Tian
- Second Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Siying Zhu
- Second Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Xiantao Tai
- Second Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
7
|
Tang L, Kebaya LMN, Altamimi T, Kowalczyk A, Musabi M, Roychaudhuri S, Vahidi H, Meyerink P, de Ribaupierre S, Bhattacharya S, de Moraes LTAR, St Lawrence K, Duerden EG. Altered resting-state functional connectivity in newborns with hypoxic ischemic encephalopathy assessed using high-density functional near-infrared spectroscopy. Sci Rep 2024; 14:3176. [PMID: 38326455 PMCID: PMC10850364 DOI: 10.1038/s41598-024-53256-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/30/2024] [Indexed: 02/09/2024] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) results from a lack of oxygen to the brain during the perinatal period. HIE can lead to mortality and various acute and long-term morbidities. Improved bedside monitoring methods are needed to identify biomarkers of brain health. Functional near-infrared spectroscopy (fNIRS) can assess resting-state functional connectivity (RSFC) at the bedside. We acquired resting-state fNIRS data from 21 neonates with HIE (postmenstrual age [PMA] = 39.96), in 19 neonates the scans were acquired post-therapeutic hypothermia (TH), and from 20 term-born healthy newborns (PMA = 39.93). Twelve HIE neonates also underwent resting-state functional magnetic resonance imaging (fMRI) post-TH. RSFC was calculated as correlation coefficients amongst the time courses for fNIRS and fMRI data, respectively. The fNIRS and fMRI RSFC maps were comparable. RSFC patterns were then measured with graph theory metrics and compared between HIE infants and healthy controls. HIE newborns showed significantly increased clustering coefficients, network efficiency and modularity compared to controls. Using a support vector machine algorithm, RSFC features demonstrated good performance in classifying the HIE and healthy newborns in separate groups. Our results indicate the utility of fNIRS-connectivity patterns as potential biomarkers for HIE and fNIRS as a new bedside tool for newborns with HIE.
Collapse
Affiliation(s)
- Lingkai Tang
- Biomedical Engineering, Faculty of Engineering, Western University, London, ON, Canada
| | - Lilian M N Kebaya
- Neuroscience, Schulich Faculty of Medicine and Dentistry, Western University, London, ON, Canada
- Neonatal-Perinatal Medicine, Schulich Faculty of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Paediatrics, Division of Neonatal-Perinatal Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Talal Altamimi
- Neonatal-Perinatal Medicine, Schulich Faculty of Medicine and Dentistry, Western University, London, ON, Canada
| | - Alexandra Kowalczyk
- Neonatal-Perinatal Medicine, Schulich Faculty of Medicine and Dentistry, Western University, London, ON, Canada
| | - Melab Musabi
- Neonatal-Perinatal Medicine, Schulich Faculty of Medicine and Dentistry, Western University, London, ON, Canada
| | - Sriya Roychaudhuri
- Neonatal-Perinatal Medicine, Schulich Faculty of Medicine and Dentistry, Western University, London, ON, Canada
| | - Homa Vahidi
- Neuroscience, Schulich Faculty of Medicine and Dentistry, Western University, London, ON, Canada
| | - Paige Meyerink
- Neonatal-Perinatal Medicine, Schulich Faculty of Medicine and Dentistry, Western University, London, ON, Canada
| | - Sandrine de Ribaupierre
- Neuroscience, Schulich Faculty of Medicine and Dentistry, Western University, London, ON, Canada
- Clinical Neurological Sciences, Schulich Faculty of Medicine and Dentistry, Western University, London, ON, Canada
| | - Soume Bhattacharya
- Neonatal-Perinatal Medicine, Schulich Faculty of Medicine and Dentistry, Western University, London, ON, Canada
| | | | - Keith St Lawrence
- Biomedical Engineering, Faculty of Engineering, Western University, London, ON, Canada
- Medical Biophysics, Schulich Faculty of Medicine and Dentistry, Western University, London, ON, Canada
| | - Emma G Duerden
- Biomedical Engineering, Faculty of Engineering, Western University, London, ON, Canada.
- Neuroscience, Schulich Faculty of Medicine and Dentistry, Western University, London, ON, Canada.
- Applied Psychology, Faculty of Education, Western University, 1137 Western Rd, London, ON, N6G 1G7, Canada.
| |
Collapse
|
8
|
杨 骞, 刘 云. [Research progress on brain functional near-infrared spectroscopy technology in the field of neonates]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2024; 26:86-91. [PMID: 38269465 PMCID: PMC10817743 DOI: 10.7499/j.issn.1008-8830.2309002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/24/2023] [Indexed: 01/26/2024]
Abstract
Functional near infrared spectroscopy (fNIRS) is an emerging neuroimaging tool that reflects the activity and function of brain neurons by monitoring changes in brain oxygen metabolism based on the neurovascular coupling mechanism. It is non-invasive and convenient, especially suitable for monitoring neonatal brain function. This article provides a comprehensive review of research related to the developmental patterns of brain networks concerning language, music, and emotions in neonates using fNIRS. It also covers brain network imaging in neonatal care, resting-state brain network connectivity patterns, and characteristics of brain functional imaging in disease states of neonates using fNIRS.
Collapse
|
9
|
Tuulari JJ, Rajasilta O, Cabral J, Kringelbach ML, Karlsson L, Karlsson H. Maternal prenatal distress exposure negatively associates with the stability of neonatal frontoparietal network. Stress 2024; 27:2275207. [PMID: 37877207 DOI: 10.1080/10253890.2023.2275207] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 10/26/2023] Open
Abstract
Maternal prenatal distress (PD), frequently defined as in utero prenatal stress exposure (PSE) to the developing fetus, influences the developing brain and numerous associations between PSE and brain structure have been described both in neonates and in older children. Previous studies addressing PSE-linked alterations in neonates' brain activity have focused on connectivity analyses from predefined seed regions, but the effects of PSE at the level of distributed functional networks remains unclear. In this study, we investigated the impact of prenatal distress on the spatial and temporal properties of functional networks detected in functional MRI data from 20 naturally sleeping, term-born (age 25.85 ± 7.72 days, 11 males), healthy neonates. First, we performed group level independent component analysis (GICA) to evaluate an association between PD and the identified functional networks. Second, we searched for an association with PD at the level of the stability of functional networks over time using leading eigenvector dynamics analysis (LEiDA). No statistically significant associations were detected at the spatial level for the GICA-derived networks. However, at the dynamic level, LEiDA revealed that maternal PD negatively associated with the stability of a frontoparietal network. These results imply that maternal PD may influence the stability of frontoparietal connections in neonatal brain network dynamics and adds to the cumulating evidence that frontal areas are especially sensitive to PSE. We advocate for early preventive intervention strategies regarding pregnant mothers. Nevertheless, future research venues are required to assess optimal intervention timing and methods for maximum benefit.
Collapse
Affiliation(s)
- Jetro J Tuulari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Clinical Medicine, Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
- Turku Collegium for Science, Medicine and Technology (TCSMT), University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku Finland
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Olli Rajasilta
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
| | - Joana Cabral
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Morten L Kringelbach
- Department of Psychiatry, University of Oxford, Oxford, UK
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK
- Centre for Music in the Brain, Aarhus University, Aarhus, Denmark
| | - Linnea Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku Finland
- Department of Clinical Medicine, Paediatrics and Adolescent Medicine, University of Turku and Turku University Hospital, Turku, Finland
| | - Hasse Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Clinical Medicine, Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku Finland
| |
Collapse
|
10
|
Stern JA, Kelsey CM, Krol KM, Grossmann T. Maternal recognition of positive emotion predicts sensitive parenting in infancy. Emotion 2023; 23:1506-1512. [PMID: 36201795 PMCID: PMC10076440 DOI: 10.1037/emo0001125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Research on parent-child relationships demonstrates the importance of maternal sensitivity for the development of children's emotion regulation, social competence, and health; thus, it is important to understand the emotional-cognitive capacities underlying maternal sensitivity. We followed 120 mothers and their full-term infants from the newborn period to 5 months postpartum. Mothers' emotion recognition during the newborn period was measured using a validated facial emotion recognition task assessing discrimination (d') of six facial expressions of emotion: happiness, fear, anger, sadness, disgust, and neutrality. Maternal behavior at 5 months postpartum was coded from a mother-infant free-play session using Ainsworth's Sensitivity Scales. Preregistered analyses revealed that mothers' ability to detect happiness specifically (but not other emotions such as fear or sadness) in the neonatal period predicted greater observed sensitivity 4 months later, β = .30, p = .002, ΔR² = .08. Results suggest that maternal recognition of positive emotion may be uniquely predictive of sensitive behavior in low-stress parent-infant interaction contexts. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Collapse
Affiliation(s)
| | - Caroline M Kelsey
- Department of Pediatrics, Division of Developmental Medicine, Boston Children's Hospital
| | | | | |
Collapse
|
11
|
Kelsey CM. A novel(ty) perspective of fear bias. Behav Brain Sci 2023; 46:e66. [PMID: 37154378 DOI: 10.1017/s0140525x22001856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Grossmann presents an exciting and interesting theory on the function of fearfulness. In this commentary it is argued that fearfulness may be a byproduct of a larger executive functioning network and these early regulatory skills considered more broadly may be key building blocks for later cooperative behaviors.
Collapse
Affiliation(s)
- Caroline Malory Kelsey
- Division of Developmental Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
12
|
Posner MI, Rothbart MK. Fifty Years Integrating Neurobiology and Psychology to Study Attention. Biol Psychol 2023; 180:108574. [PMID: 37148960 DOI: 10.1016/j.biopsycho.2023.108574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
At the time of the start of Biological Psychology cognitive studies had developed approaches to measuring cognitive processes. However, linking these to the underlying biology in the typical human brain had hardly begun. A critical step came in 1988 when methods for imaging the human brain in cognitive tasks began. By 1990 it was possible to describe three brain networks that carried out the hypothesized cognitive functions outlined 20 years before. Their development was traced in infancy, first using age-appropriate tasks and later through resting state imaging. Imaging was applied to both voluntary and involuntary cued shifts of visual orienting in humans and primates, and a summary was presented in 2002. By 2008 these new imaging findings were used to test hypotheses about the genes involved in each network. Recently, studies of mice using optogenetics to control populations of neurons have brought us closer to a synthesis of how attention and memory networks operate together in human learning. Perhaps the coming years will bring us to an integrated theory of aspects of attention using data from all the levels that can illuminate these issues, thus fulfilling a key goal of the Journal.
Collapse
|
13
|
Nguyen T, Zimmer L, Hoehl S. Your turn, my turn. Neural synchrony in mother-infant proto-conversation. Philos Trans R Soc Lond B Biol Sci 2023; 378:20210488. [PMID: 36871582 PMCID: PMC9985967 DOI: 10.1098/rstb.2021.0488] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
Even before infants utter their first words, they engage in highly coordinated vocal exchanges with their caregivers. During these so-called proto-conversations, caregiver-infant dyads use a presumably universal communication structure-turn-taking, which has been linked to favourable developmental outcomes. However, little is known about potential mechanisms involved in early turn-taking. Previous research pointed to interpersonal synchronization of brain activity between adults and preschool-aged children during turn-taking. Here, we assessed caregivers and infants at 4-6 months of age (N = 55) during a face-to-face interaction. We used functional-near infrared spectroscopy hyperscanning to measure dyads' brain activity and microcoded their turn-taking. We also measured infants' inter-hemispheric connectivity as an index for brain maturity and later vocabulary size and attachment security as developmental outcomes potentially linked to turn-taking. The results showed that more frequent turn-taking was related to interpersonal neural synchrony, but the strength of the relation decreased over the course of the proto-conversation. Importantly, turn-taking was positively associated with infant brain maturity and later vocabulary size, but not with later attachment security. Taken together, these findings shed light on mechanisms facilitating preverbal turn-taking and stress the importance of emerging turn-taking for child brain and language development. This article is part of a discussion meeting issue 'Face2face: advancing the science of social interaction'.
Collapse
Affiliation(s)
- Trinh Nguyen
- Department of Developmental and Educational Psychology, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria.,Neuroscience of Perception and Action Lab, Italian Institute of Technology (IIT), Center for Life Nano and Neuro Science, Viale Regina Elena 291, 00161 Rome, Italy
| | - Lucie Zimmer
- Department of Psychology, Ludwig-Maximilians University Munich, Leopoldstrasse 13, 80802 Munich, Germany
| | - Stefanie Hoehl
- Department of Developmental and Educational Psychology, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria
| |
Collapse
|
14
|
Kelsey CM, Modico MA, Richards JE, Enlow MB, Nelson CA. Frontal asymmetry assessed in infancy using functional near-infrared spectroscopy is associated with emotional and behavioral problems in early childhood. Child Dev 2023; 94:563-578. [PMID: 36428283 PMCID: PMC9992105 DOI: 10.1111/cdev.13877] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Frontal asymmetry (FA), the difference in brain activity between the left versus right frontal areas, is thought to reflect approach versus avoidance motivation. This study (2012-2021) used functional near-infrared spectroscopy to investigate if infant (Mage = 7.63 months; N = 90; n = 48 male; n = 75 White) FA in the dorsolateral prefrontal cortex relates to psychopathology in later childhood (Mage = 62.05 months). Greater right FA to happy faces was associated with increased internalizing (η2 = .09) and externalizing (η2 = .06) problems at age 5 years. Greater right FA to both happy and fearful faces was associated with an increased likelihood of a lifetime anxiety diagnosis (R2 > .13). FA may be an informative and early-emerging marker for psychopathology.
Collapse
Affiliation(s)
- Caroline M. Kelsey
- Department of Pediatrics, Division of Developmental Medicine, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Margaret A. Modico
- Department of Pediatrics, Division of Developmental Medicine, Boston Children’s Hospital, Boston, MA, United States
| | - John E. Richards
- Department of Psychology, University of South Carolina, Columbia, SC, United States
| | - Michelle Bosquet Enlow
- Department of Psychiatry and Behavioral Sciences, Boston Children’s Hospital, Boston, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Charles A. Nelson
- Department of Pediatrics, Division of Developmental Medicine, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
- Harvard Graduate School of Education, Cambridge, MA, United States
| |
Collapse
|
15
|
Wang S, Ding C, Dou C, Zhu Z, Zhang D, Yi Q, Wu H, Xie L, Zhu Z, Song D, Li H. Associations between maternal prenatal depression and neonatal behavior and brain function - Evidence from the functional near-infrared spectroscopy. Psychoneuroendocrinology 2022; 146:105896. [PMID: 36037574 DOI: 10.1016/j.psyneuen.2022.105896] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/08/2022] [Accepted: 08/19/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Maternal prenatal depression is a significant public health issue associated with mental disorders of offspring. This study aimed to determine if maternal prenatal depressive symptoms are associated with changes in neonatal behaviors and brain function at the resting state. METHODS A total of 204 pregnant women were recruited during the third trimester and were evaluated by Edinburgh Postpartum Depression Scale (EPDS). The mother-infant pairs were divided into the depressed group (n = 75) and control group (n = 129) based on the EPDS, using a cut-off value of 10. Cortisol levels in the cord blood and maternal blood collected on admission for delivery were measured. On day three of life, all study newborns were evaluated by the Neonatal Behavior Assessment Scale (NBAS) and 165 infants were evaluated by resting-state functional near-infrared spectroscopy (rs-fNIRS). To minimize the influences of potential bias on the rs-fNIRS results, we used a binary logistic regression model to carry out propensity score matching between the depressed group and the control group. Rs-fNIRS data from 21 pairs of propensity score-matched newborns were used for analysis. The associations between maternal EPDS scores, neonatal NBAS scores, and cortisol levels were analyzed using linear regressions and the mediation analysis models. RESULTS Compared to the control group, the newborns in the depressed group had lower scores in the social-interaction and autonomic system dimensions of NBAS (P < 0.01). Maternal and umbilical cord plasma cortisol levels in the depressed group were higher (P < 0.01) than in the control group. However, only umbilical cord plasma cortisol played a negative mediating role in the relationship between maternal EPDS and NBAS in the social-interaction and autonomic system (β med = -0.054 [-0.115,-0.018] and -0.052 [-0.105,-0.019]. Proportional mediation was 13.57 % and 12.33 for social-interaction and autonomic systems, respectively. The newborns in the depressed group showed decreases in the strength of rs-fNIRS functional connections, primarily the connectivity of the left frontal-parietal and temporal-parietal regions. However, infants in the depressed and control groups showed no differences in topological characteristics of the brain network, including standardized clustering coefficient, characteristic path length, small-world property, global efficiency, and local efficiency (P > 0.05). The social-interaction Z-scores had positive correlations with functional connectivity strength of left prefrontal cortex-left parietal lobe (r = 0.57, p < 0.01),prefrontal cortex-left parietal lobe - left temporal lobe (r = 0.593, p < 0.01) and left parietal lobe - left temporal lobe (r = 0.498, p < 0.01). Autonomic system Z-scores were also significantly positive correlation with prefrontal cortex-left parietal lobe (r = 0.509, p < 0.01),prefrontal cortex-left parietal lobe - left temporal lobe (r = 0.464, p < 0.01), left parietal lobe - left temporal lobe (r = 0.381, p < 0.05), and right temporal lobe and left temporal lobe (r = 0.310, p < 0.05). CONCLUSION This study shows that maternal prenatal depression may affect the development of neonatal social-interaction and autonomic system and the strength of neonatal brain functional connectivity. The fetal cortisol may play a role in behavioral development in infants exposed to maternal prenatal depression. Our findings highlight the importance of prenatal screening for maternal depression and early postnatal behavioral evaluation that provide the opportunity for early diagnosis and intervention to improve neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Shan Wang
- Department of Neonatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Department of Neonatology, the Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chenxi Ding
- Department of Neonatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chengyin Dou
- Department of Neonatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zeen Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Dan Zhang
- Department of Neonatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qiqi Yi
- Department of Neonatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Haoyue Wu
- Department of Neonatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Longshan Xie
- Department of Functional Neuroscience, The First People's Hospital of Foshan (The Affiliated Foshan Hospital of Sun Yat -sen University), Guangdong, China
| | - Zhongliang Zhu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Maternal and Infant Health Research Institute and Medical College, Northwestern University, Xi'an, China
| | - Dongli Song
- Division of Neonatology, Department of Pediatrics, Santa Clara Valley Medical Center, San Jose, CA, USA.
| | - Hui Li
- Department of Neonatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Department of Neonatology, the Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
16
|
Coupling between prefrontal brain activity and respiratory sinus arrhythmia in infants and adults. Dev Cogn Neurosci 2022; 58:101184. [PMID: 36495790 PMCID: PMC9730144 DOI: 10.1016/j.dcn.2022.101184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
Self-regulation is an essential aspect of healthy child development. Even though infants depend on their caregivers for co-regulation during the first years, they begin to gain regulatory abilities through social interactions as well as their own developing agency and inhibitory control. These early regulatory abilities continue to increase with the development of both the prefrontal cortex and the vagal system. Importantly, theoretical accounts have suggested that the prefrontal cortex and the vagal system are linked through forward and backward feedback loops via the limbic system. Decreased coupling within this link is suggested to be associated with psychopathology. The primary goal of this study was to examine whether intrapersonal coupling of prefrontal brain activity and respiratory sinus arrhythmia is evident in infancy. Using the simultaneous assessment of functional near-infrared spectroscopy and electrocardiography, we used Cross-Recurrence Quantification Analysis to assess the coupling of prefrontal brain activity and respiratory sinus arrhythmia in 69 4- to 6-month-old infants and their mothers during a passive viewing condition. However, we did not find significant coupling between the PFC and RSA in infants and adult caregivers. Future studies could examine social contexts associated with greater emotional reactivity to deepen our understanding of the pathways involved in self-regulation.
Collapse
|
17
|
Sugita K, Muto M, Oshiro K, Kuda M, Kinjyo T, Masuya R, Machigashira S, Kawano T, Nakame K, Torikai M, Ibara S, Kaji T, Ieiri S. Is anemia frequently recognized in gastroschisis compared to omphalocele? A multicenter retrospective study in southern Japan. Pediatr Surg Int 2022; 38:1249-1256. [PMID: 35764762 DOI: 10.1007/s00383-022-05150-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/04/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE We compared cases of anemia in gastroschisis versus omphalocele and investigated this clinical question. METHODS A multicenter study of five pediatric surgery departments in southern Japan was planned. Sixty patients were collected between 2011 and 2020, with 33 (gastroschisis: n = 19, omphalocele: n = 14) who met the selection criteria ultimately being enrolled. Anemia was evaluated before discharge and at the first outpatient visit. RESULTS Despite gastroschisis cases showed more frequent iron administration during hospitalization than omphalocele (p = 0.015), gastroschisis cases tended to show lower hemoglobin values at the first outpatient visit than omphalocele cases (gastroschisis: 9.9 g/dL, omphalocele: 11.2 g/dL). Gastroschisis and the gestational age at birth were significant independent predictors of anemia at the first outpatient visit, (gastroschisis: adjusted odds ratio [OR] 19.00, p = 0.036; gestational age at birth: adjusted OR 0.341, p = 0.028). A subgroup analysis for gastroschisis showed that the ratio of anemia in the 35-36 weeks group (8/10, 80.0%) and the > 37 weeks group (6/6, 100%) was more than in the < 34 weeks group (0/3, 0.0%). CONCLUSIONS Gastroschisis may carry an increased risk of developing anemia compared with omphalocele due to the difference of direct intestinal exposure of amnion fluid in utero.
Collapse
Affiliation(s)
- Koshiro Sugita
- Department of Pediatric Surgery, Research Field in Medical and Health Sciences, Medical and Dental Area, Research and Education Assembly, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Mitsuru Muto
- Department of Pediatric Surgery, Research Field in Medical and Health Sciences, Medical and Dental Area, Research and Education Assembly, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Kiyotetsu Oshiro
- Department of Pediatric Surgery, Nanbu Medical Center and Children's Medical Center, Okinawa, Japan
| | - Masaaki Kuda
- Department of Digestive and General Surgery, Graduate School of Medicine, University of Ryukyu, Okinawa, Japan
| | - Tsukasa Kinjyo
- Department of Pediatric Surgery, Nanbu Medical Center and Children's Medical Center, Okinawa, Japan
| | - Ryuta Masuya
- Division of Gastrointestinal, Endocrine and Pediatric Surgery, Department of Surgery, University of Miyazaki Faculty of Medicine, Miyazaki, Japan
| | - Seiro Machigashira
- Department of Pediatric Surgery, Kagoshima City Hospital, Kagoshima, Japan
| | - Takafumi Kawano
- Department of Pediatric Surgery, Kagoshima City Hospital, Kagoshima, Japan
| | - Kazuhiko Nakame
- Division of Gastrointestinal, Endocrine and Pediatric Surgery, Department of Surgery, University of Miyazaki Faculty of Medicine, Miyazaki, Japan
| | - Motofumi Torikai
- Department of Neonatal Medicine, Kagoshima City Hospital, Kagoshima, Japan
| | - Satoshi Ibara
- Department of Neonatal Medicine, Kagoshima City Hospital, Kagoshima, Japan
| | - Tatsuru Kaji
- Department of Pediatric Surgery, Kurume University School of Medicine, Fukuoka, Japan
| | - Satoshi Ieiri
- Department of Pediatric Surgery, Research Field in Medical and Health Sciences, Medical and Dental Area, Research and Education Assembly, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8520, Japan.
| |
Collapse
|
18
|
Chajes JR, Stern JA, Kelsey CM, Grossmann T. Examining the Role of Socioeconomic Status and Maternal Sensitivity in Predicting Functional Brain Network Connectivity in 5-Month-Old Infants. Front Neurosci 2022; 16:892482. [PMID: 35757535 PMCID: PMC9226752 DOI: 10.3389/fnins.2022.892482] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
Infancy is a sensitive period of human brain development that is plastically shaped by environmental factors. Both proximal factors, such as sensitive parenting, and distal factors, such as socioeconomic status (SES), are known predictors of individual differences in structural and functional brain systems across the lifespan, yet it is unclear how these familial and contextual factors work together to shape functional brain development during infancy, particularly during the first months of life. In the current study, we examined pre-registered hypotheses regarding the interplay between these factors to assess how maternal sensitivity, within the broader context of socioeconomic variation, relates to the development of functional connectivity in long-range cortical brain networks. Specifically, we measured resting-state functional connectivity in three cortical brain networks (fronto-parietal network, default mode network, homologous-interhemispheric connectivity) using functional near-infrared spectroscopy (fNIRS), and examined the associations between maternal sensitivity, SES, and functional connectivity in a sample of 5-month-old infants and their mothers (N = 50 dyads). Results showed that all three networks were detectable during a passive viewing task, and that maternal sensitivity was positively associated with functional connectivity in the default mode network, such that infants with more sensitive mothers exhibited enhanced functional connectivity in this network. Contrary to hypotheses, we did not observe any associations of SES with functional connectivity in the brain networks assessed in this study. This suggests that at 5 months of age, maternal sensitivity is an important proximal environmental factor associated with individual differences in functional connectivity in a long-range cortical brain network implicated in a host of emotional and social-cognitive brain processes.
Collapse
Affiliation(s)
- Johanna R. Chajes
- Department of Psychology, University of Virginia, Charlottesville, VA, United States
| | - Jessica A. Stern
- Department of Psychology, University of Virginia, Charlottesville, VA, United States
| | - Caroline M. Kelsey
- Department of Psychology, University of Virginia, Charlottesville, VA, United States
- Division of Developmental Medicine, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Tobias Grossmann
- Department of Psychology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|