1
|
Shahabi MS, Shalbaf A, Rostami R, Kazemi R. Brain stimulation outcome prediction in Major Depressive Disorder by deep learning models using EEG representations. Comput Methods Biomech Biomed Engin 2025:1-14. [PMID: 40434017 DOI: 10.1080/10255842.2025.2511222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 03/06/2025] [Accepted: 05/19/2025] [Indexed: 05/29/2025]
Abstract
Major Depressive Disorder (MDD) is known as a widespread illness and needs a timely treatment. The treatment procedure is currently based on the trial and error between various treatments. An individualized treatment selection is crucial for saving time and financial resources and preventing possible side effects. Because of the complex nature of this problem, a Deep Learning (DL) approach, as a promising method for the precision medicine, was utilized to identify the responders to the treatment using pre-treatment EEG signals. Eighty-three patients with MDD participated in this study to receive treatment using Repetitive Transcranial Magnetic Stimulation (rTMS). A deep hybrid neural network was developed based on three pre-trained convolutional neural networks named DenseNet121, EfficientNetB0, and Xception. The training of each model was performed by feeding three types of EEG representations as the inputs into the models including the Wavelet Transform (WT) images, the connectivity matrix between electrode pairs, and the raw EEG signals. The performance of the proposed models were assessed for the three different input types and achieved the highest accuracy of 94.7% in classifying patients as responders or non-responders when utilizing a sequence of raw EEG images. For the WT and connectivity inputs the best accuracy of model was 94.38% and 94.25% respectively. Therefore, the proposed model can be a step forward towards the clinical implementation of an end-to-end treatment selection framework using raw EEG signals.
Collapse
Affiliation(s)
- Mohsen Sadat Shahabi
- Department of Biomedical Engineering and Medical Physics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Shalbaf
- Department of Biomedical Engineering and Medical Physics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Rostami
- Department of Psychology, University of Tehran, Tehran, Iran
| | - Reza Kazemi
- Faculty of Entrepreneurship, University of Tehran, Tehran, Iran
| |
Collapse
|
2
|
Bai D, Fan X, Xiang C, Lei X. Altering Temporal Dynamics of Sleepiness and Mood During Sleep Deprivation: Evidence from Resting-State EEG Microstates. Brain Sci 2025; 15:423. [PMID: 40309897 PMCID: PMC12025901 DOI: 10.3390/brainsci15040423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/12/2025] [Accepted: 04/17/2025] [Indexed: 05/02/2025] Open
Abstract
Objective: Sleep deprivation negatively affects mood and sleepiness across subjective, objective, behavioral, and neuroimaging measures. However, the relationship between abnormal brain dynamics after sleep deprivation and mood or sleepiness impairments, from a temporal perspective, remains underexplored. Electroencephalogram microstate analysis offers a valuable approach for investigating the large-scale dynamics of brain networks. Methods: We implemented a strict sleep deprivation protocol with 71 participants, collecting resting-state electroencephalogram data, subjective sleepiness, objective alertness, and mood assessments after normal sleep and sleep deprivation (SD) conditions. Microstate time parameters were compared between sleep control (SC) and SD conditions. Additionally, we investigated how changes in these parameters correlated with subjective or objective measures of sleepiness and mood changes between SC and SD. Results: SD significantly decreased the mean duration and occurrence of microstate B while increasing those of microstate C. A decrease in microstate B occurrence significantly correlated with a higher Karolinska Sleepiness Scale score, whereas a reduction in microstate B duration indicated an increased response time on the Psychomotor Vigilance Performance. No significant associations were observed between microstate parameters and positive mood decline between SC and SD. Pearson correlation analysis was performed on the positive mood scores in both conditions. The findings demonstrated a significant positive relationship between positive mood scores and the mean duration of microstate B under SD conditions. Conclusions: Using a large SD dataset, this study demonstrated that subjective or objective sleepiness and positive mood were associated with decreased microstate B. These findings suggest that SD disrupts neural dynamics within the visual network.
Collapse
Affiliation(s)
- Duo Bai
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing 400715, China
- Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Xinrui Fan
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing 400715, China
- Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Chuqin Xiang
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing 400715, China
- Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Xu Lei
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing 400715, China
- Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, Chongqing 400715, China
| |
Collapse
|
3
|
Perez TM, Adhia DB, Glue P, Zeng J, Dillingham P, Navid MS, Niazi IK, Young CK, Smith M, De Ridder D. Infraslow Closed-Loop Brain Training for Anxiety and Depression (ISAD): A pilot randomised, sham-controlled trial in adult females with internalizing disorders. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2025:10.3758/s13415-025-01279-z. [PMID: 40102367 DOI: 10.3758/s13415-025-01279-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/06/2025] [Indexed: 03/20/2025]
Abstract
INTRODUCTION The core resting-state networks (RSNs) have been shown to be dysfunctional in individuals with internalizing disorders (IDs; e.g., anxiety, depression). Source-localised, closed-loop brain training of infraslow (≤ 0.1 Hz) EEG signals may have the potential to reduce symptoms associated with IDs and restore normal core RSN function. METHODS We conducted a pilot randomized, double-blind, sham-controlled, parallel-group (3-arm) trial of infraslow neurofeedback (ISF-NFB) in adult females (n = 60) with IDs. Primary endpoints, which included the Hospital Anxiety and Depression Scale (HADS) and resting-state EEG activity and connectivity, were measured at baseline and post 6 sessions. RESULTS This study found credible evidence of strong nonspecific effects as evidenced by clinically important HADS score improvements (i.e., reductions) across groups. An absence of HADS score change differences between the sham and active groups indicated a lack of specific effects. Although there were credible slow (0.2-1.5 Hz) and delta (2-3.5 Hz) band activity reductions in the 1-region ISF-NFB group relative to sham within the targeted region of interest (i.e., posterior cingulate), differences in activity and connectivity modulation in the targeted frequency band of interest (i.e., ISFs = 0.01-0.1 Hz) were lacking between sham and active groups. Credible positive associations between changes in HADS depression scores and anterior cingulate cortex slow and delta activity also were found. CONCLUSIONS Short-term sham and genuine ISF-NFB resulted in rapid, clinically important improvements that were nonspecific in nature and possibly driven by placebo-related mechanisms. Future ISF-NFB trials should consider implementing design modifications that may better induce differential modulation of ISFs between sham and treatment groups, thereby enhancing the potential for specific clinical effects in ID populations. TRIAL REGISTRATION The trial was prospectively registered with the Australia New Zealand Clinical Trials Registry (ANZCTR; Trial ID: ACTRN12619001428156).
Collapse
Affiliation(s)
- Tyson M Perez
- Department of Surgical Sciences, University of Otago, Dunedin, 9016, New Zealand.
- Department of Psychological Medicine, University of Otago, Dunedin, New Zealand.
| | - Divya B Adhia
- Department of Surgical Sciences, University of Otago, Dunedin, 9016, New Zealand
| | - Paul Glue
- Department of Psychological Medicine, University of Otago, Dunedin, New Zealand
| | - Jiaxu Zeng
- Department of Preventative & Social Medicine, Otago Medical School-Dunedin Campus, University of Otago, Dunedin, New Zealand
| | - Peter Dillingham
- Coastal People Southern Skies Centre of Research Excellence, Department of Mathematics & Statistics, University of Otago, Dunedin, New Zealand
| | - Muhammad S Navid
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland, New Zealand
- Donders Institute for Brain, Cognition and Behaviour, Radbout University Medical Center, Nijmegen, The Netherlands
| | - Imran K Niazi
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland, New Zealand
| | - Calvin K Young
- Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Mark Smith
- Neurofeedback Therapy Services of New York, New York, NY, USA
| | - Dirk De Ridder
- Department of Surgical Sciences, University of Otago, Dunedin, 9016, New Zealand
| |
Collapse
|
4
|
Xue S, Shen X, Zhang D, Sang Z, Long Q, Song S, Wu J. Unveiling Frequency-Specific Microstate Correlates of Anxiety and Depression Symptoms. Brain Topogr 2024; 38:12. [PMID: 39499403 DOI: 10.1007/s10548-024-01082-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/25/2024] [Indexed: 11/07/2024]
Abstract
Electroencephalography (EEG) microstates are canonical voltage topographies that reflect the temporal dynamics of brain networks on a millisecond time scale. Abnormalities in broadband microstate parameters have been observed in subjects with psychiatric symptoms, indicating their potential as clinical biomarkers. Considering distinct information provided by specific frequency bands of EEG, we hypothesized that microstates in decomposed frequency bands could provide a more detailed depiction of the underlying neuropathological mechanism. In this study, with a large open access resting-state dataset (n = 203), we examined the properties of frequency-specific microstates and their relationship with anxiety and depression symptoms. We conducted clustering on EEG topographies in decomposed frequency bands (delta, theta, alpha and beta), and determined the number of clusters with a meta-criterion. Microstate parameters, including global explained variance (GEV), duration, coverage, occurrence and transition probability, were calculated for eyes-open and eyes-closed states, respectively. Their ability to predict the severity of depression and anxiety symptoms were systematically identified by correlation, regression and classification analyses. Distinct microstate patterns were observed across different frequency bands. Microstate parameters in the alpha band held the best predictive power for emotional symptoms. Microstates B (GEV, coverage) and parieto-central maximum microstate E (coverage, occurrence, transitions from B to E) in the alpha band exhibited significant correlations with depression and anxiety, respectively. Microstate parameters of the alpha band achieved predictive R-square of 0.100 for anxiety scores, which is much higher than those of broadband (R-square = -0.026, p < 0.01). Similar results were found in classification of participants with high and low anxiety symptom scores (68% accuracy in alpha vs. 52% in broadband). These results suggested the value of frequency-specific microstates in predicting emotional symptoms.
Collapse
Affiliation(s)
- Siyang Xue
- School of Clinical Medicine, Tsinghua University, Beijing, 100084, China
- Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, 100084, China
| | - Xinke Shen
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Dan Zhang
- Department of Psychology, Tsinghua University, Beijing, 100084, China
- Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, 100084, China
| | - Zhenhua Sang
- School of Clinical Medicine, Tsinghua University, Beijing, 100084, China
| | - Qiting Long
- Department of Neurology, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China
| | - Sen Song
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China.
- Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, 100084, China.
| | - Jian Wu
- School of Clinical Medicine, Tsinghua University, Beijing, 100084, China.
- Department of Neurology, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China.
| |
Collapse
|
5
|
Lu HY, Ma ZZ, Zhang JP, Wu JJ, Zheng MX, Hua XY, Xu JG. Altered Resting-State Electroencephalogram Microstate Characteristics in Stroke Patients. J Integr Neurosci 2024; 23:176. [PMID: 39344234 DOI: 10.31083/j.jin2309176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/24/2024] [Accepted: 06/29/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Stroke remains a leading cause of disability globally and movement impairment is the most common complication in stroke patients. Resting-state electroencephalography (EEG) microstate analysis is a non-invasive approach of whole-brain imaging based on the spatiotemporal pattern of the entire cerebral cortex. The present study aims to investigate microstate alterations in stroke patients. METHODS Resting-state EEG data collected from 24 stroke patients and 19 healthy controls matched by age and gender were subjected to microstate analysis. For four classic microstates labeled as class A, B, C and D, their temporal characteristics (duration, occurrence and coverage) and transition probabilities (TP) were extracted and compared between the two groups. Furthermore, we explored their correlations with clinical outcomes including the Fugl-Meyer assessment (FMA) and the action research arm test (ARAT) scores in stroke patients. Finally, we analyzed the relationship between the temporal characteristics and spectral power in frequency bands. False discovery rate (FDR) method was applied for correction of multiple comparisons. RESULTS Microstate analysis revealed that the stroke group had lower occurrence of microstate A which was regarded as the sensorimotor network (SMN) compared with the control group (p = 0.003, adjusted p = 0.036, t = -2.959). The TP from microstate A to microstate D had a significant positive correlation with the Fugl-Meyer assessment of lower extremity (FMA-LE) scores (p = 0.049, r = 0.406), but this finding did not survive FDR adjustment (adjusted p = 0.432). Additionally, the occurrence and the coverage of microstate B were negatively correlated with the power of delta band in the stroke group, which did not pass adjustment (p = 0.033, adjusted p = 0.790, r = -0.436; p = 0.026, adjusted p = 0.790, r = -0.454, respectively). CONCLUSIONS Our results confirm the abnormal temporal dynamics of brain activity in stroke patients. The study provides further electrophysiological evidence for understanding the mechanism of brain motor functional reorganization after stroke.
Collapse
Affiliation(s)
- Hao-Yu Lu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, 201203 Shanghai, China
| | - Zhen-Zhen Ma
- Department of Rehabilitation Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032 Shanghai, China
| | - Jun-Peng Zhang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, 201203 Shanghai, China
| | - Jia-Jia Wu
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 200437 Shanghai, China
| | - Mou-Xiong Zheng
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 200437 Shanghai, China
| | - Xu-Yun Hua
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 200437 Shanghai, China
| | - Jian-Guang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, 201203 Shanghai, China
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 200437 Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, 201203 Shanghai, China
| |
Collapse
|
6
|
Chen J, Jin L, Lin N. Utilization of EEG microstates as a prospective biomarker for assessing the impact of ketogenic diet in GLUT1-DS. Neurol Sci 2024; 45:4539-4547. [PMID: 38589768 DOI: 10.1007/s10072-024-07519-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/02/2024] [Indexed: 04/10/2024]
Abstract
OBJECTIVE The aim of the study is to analyze microstate patterns in GLUT1-DS, both before and after the ketogenic diet (KD). METHODS We conducted microstate analysis of a patient with GLUT-1 DS and 27 healthy controls. A systematic literature review and meta-analysis was done. We compared the parameters of the patients with those of healthy controls and the incorporating findings in literature. RESULTS The durations of the patient were notably shorter, and the occurrence rates were longer than those of healthy controls and incorporating findings from the review. After 10 months of KD, the patient's microstate durations exhibited an increase from 53.05 ms, 57.17 ms, 61.80 ms, and 49.49 ms to 60.53 ms, 63.27 ms, 71.11 ms, and 66.55 ms. The occurrence rates changed from 4.0774 Hz, 4.9462 Hz, 4.8006 Hz, and 4.0579 Hz to 3.3354 Hz, 3.7893 Hz, 3.5956 Hz, and 4.1672 Hz. In healthy controls, the durations of microstate class A, B, C, and D were 61.86 ms, 63.58 ms, 70.57 ms, and 72.00 ms, respectively. CONCLUSIONS Our findings suggest EEG microstates may be a promising biomarker for monitoring the effect of KD. Administration of KD may normalize the dysfunctional patterns of temporal parameters.
Collapse
Affiliation(s)
- Jianhua Chen
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, 100730, China.
| | - Liri Jin
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, 100730, China.
| | - Nan Lin
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, 100730, China
| |
Collapse
|
7
|
Lao J, Zeng Y, Wu Z, Lin G, Wang Q, Yang M, Zhang S, Xu D, Zhang M, Yao K, Liang S, Liu Q, Li J, Zhong X, Ning Y. Abnormalities in Electroencephalographic Microstates in Patients with Late-Life Depression. Neuropsychiatr Dis Treat 2024; 20:1201-1210. [PMID: 38860214 PMCID: PMC11164213 DOI: 10.2147/ndt.s456486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 05/24/2024] [Indexed: 06/12/2024] Open
Abstract
Background Late-life depression (LLD) is characterized by disrupted brain networks. Resting-state networks in the brain are composed of both stable and transient topological structures known as microstates, which reflect the dynamics of the neural activities. However, the specific pattern of EEG microstate in LLD remains unclear. Methods Resting-state EEG were recorded for 31 patients with episodic LLD (eLLD), 20 patients with remitted LLD (rLLD) and 32 healthy controls (HCs) using a 64-channel cap. The clinical data of the patients were collected and the 17-Item Hamilton Rating Scale for Depression (HAMD) was used for symptom assessment. Duration, occurrence, time coverage and syntax of the four microstate classes (A-D) were calculated. Group differences in EEG microstates and the relationship between microstates parameters and clinical features were analyzed. Results Compared with NC and patients with rLLD, patients with eLLD showed increased duration and time coverage of microstate class D. Besides, a decrease in occurrence of microstate C and transition probability between microstate B and C was observed. In addition, the time coverage of microstate D was positively correlated with the total score of HAMD, core symptoms, and miscellaneous items. Conclusion These findings suggest that disrupted EEG microstates may be associated with the pathophysiology of LLD and may serve as potential state markers for the monitoring of the disease.
Collapse
Affiliation(s)
- Jingyi Lao
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Yijie Zeng
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Zhangying Wu
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Gaohong Lin
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Qiang Wang
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Mingfeng Yang
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Si Zhang
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Danyan Xu
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Min Zhang
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Kexin Yao
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Shuang Liang
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Qin Liu
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Jiafu Li
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Xiaomei Zhong
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Yuping Ning
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, People’s Republic of China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, People’s Republic of China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, People’s Republic of China
| |
Collapse
|
8
|
Nazare K, Tomescu MI. Valence-specific EEG microstate modulations during self-generated affective states. Front Psychol 2024; 15:1300416. [PMID: 38855303 PMCID: PMC11160840 DOI: 10.3389/fpsyg.2024.1300416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 04/26/2024] [Indexed: 06/11/2024] Open
Abstract
Introduction This study aims to explore the temporal dynamics of brain networks involved in self-generated affective states, specifically focusing on modulating these states in both positive and negative valences. The overarching goal is to contribute to a deeper understanding of the neurodynamic patterns associated with affective regulation, potentially informing the development of biomarkers for therapeutic interventions in mood and anxiety disorders. Methods Utilizing EEG microstate analysis during self-generated affective states, we investigated the temporal dynamics of five distinct microstates across different conditions, including baseline resting state and self-generated states of positive valence (e.g., awe, contentment) and negative valence (e.g., anger, fear). Results The study revealed noteworthy modulations in microstate dynamics during affective states. Additionally, valence-specific mechanisms of spontaneous affective regulation were identified. Negative valence affective states were characterized by the heightened presence of attention-associated microstates and reduced occurrence of salience-related microstates during negative valence states. In contrast, positive valence affective states manifested a prevalence of microstates related to visual/autobiographical memory and a reduced presence of auditory/language-associated microstates compared to both baseline and negative valence states. Discussion This study contributes to the field by employing EEG microstate analysis to discern the temporal dynamics of brain networks involved in self-generated affective states. Insights from this research carry significant implications for understanding neurodynamic patterns in affective regulation. The identification of valence-specific modulations and mechanisms has potential applications in developing biomarkers for mood and anxiety disorders, offering novel avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Karina Nazare
- CINETic Center, Department of Research and Development, National University of Theatre and Film “I.L. Caragiale”, Bucharest, Romania
- Faculty of Automatic Control and Computers, POLITEHNICA University of Bucharest, Bucharest, Romania
| | - Miralena I. Tomescu
- CINETic Center, Department of Research and Development, National University of Theatre and Film “I.L. Caragiale”, Bucharest, Romania
- Department of Psychology, Faculty of Educational Sciences, University “Stefan cel Mare” of Suceava, Suceava, Romania
| |
Collapse
|
9
|
Cao Q, Wang Y, Ji Y, He Z, Lei X. Resting-State EEG Reveals Abnormal Microstate Characteristics of Depression with Insomnia. Brain Topogr 2024; 37:388-396. [PMID: 36892651 DOI: 10.1007/s10548-023-00949-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/16/2023] [Indexed: 03/10/2023]
Abstract
Previous research revealed various aspects of resting-state EEG for depression and insomnia. However, the EEG characteristics of depressed subjects with insomnia are rarely studied, especially EEG microstates that capture the dynamic activities of the large-scale brain network. To fill these research gaps, the present study collected resting-state EEG data from 32 subclinical depression subjects with insomnia (SDI), 31 subclinical depression subjects without insomnia (SD), and 32 healthy controls (HCs). Four topographic maps were generated from clean EEG data after clustering and rearrangement. Temporal characteristics were obtained for statistical analysis, including cross-group variance analysis (ANOVA) and intra-group correlation analysis. In our study, the global clustering of all individuals in the EEG microstate analysis revealed the four previously discovered categories of microstates (A, B, C, and D). The occurrence of microstate B was lower in SDI than in SD and HC subjects. The correlation analysis showed that the total Pittsburgh Sleep Quality Index (PSQI) score negatively correlated with the occurrence of microstate C in SDI (r = - 0.415, p < 0.05). Conversely, there was a positive correlation between Self-rating Depression Scale (SDS) scores and the duration of microstate C in SD (r = 0.359, p < 0.05). These results indicate that microstates reflect altered large-scale brain network dynamics in subclinical populations. Abnormalities in the visual network corresponding to microstate B are an electrophysiological characteristic of subclinical individuals with symptoms of depressive insomnia. Further investigation is needed for microstate changes related to high arousal and emotional problems in people suffering from depression and insomnia.
Collapse
Affiliation(s)
- Qike Cao
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, 400715, China
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, 400715, China
| | - Yulin Wang
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, 400715, China
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, 400715, China
| | - Yufang Ji
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, 400715, China
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, 400715, China
| | - Zhihui He
- The Ninth People's Hospital of Chongqing, Chongqing, 400700, China
| | - Xu Lei
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, 400715, China.
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, 400715, China.
| |
Collapse
|
10
|
Chivu A, Pascal SA, Damborská A, Tomescu MI. EEG Microstates in Mood and Anxiety Disorders: A Meta-analysis. Brain Topogr 2024; 37:357-368. [PMID: 37615799 PMCID: PMC11026263 DOI: 10.1007/s10548-023-00999-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/06/2023] [Indexed: 08/25/2023]
Abstract
To reduce the psycho-social burden increasing attention has focused on brain abnormalities in the most prevalent and highly co-occurring neuropsychiatric disorders, such as mood and anxiety. However, high inter-study variability in these patients results in inconsistent and contradictory alterations in the fast temporal dynamics of large-scale networks as measured by EEG microstates. Thus, in this meta-analysis, we aim to investigate the consistency of these changes to better understand possible common neuro-dynamical mechanisms of these disorders.In the systematic search, twelve studies investigating EEG microstate changes in participants with mood and anxiety disorders and individuals with subclinical depression were included in this meta-analysis, adding up to 787 participants.The results suggest that EEG microstates consistently discriminate mood and anxiety impairments from the general population in patients and subclinical states. Specifically, we found a small significant effect size for B microstates in patients compared to healthy controls, with larger effect sizes for increased B presence in unmedicated patients with comorbidity. In a subgroup meta-analysis of ten mood disorder studies, microstate D showed a significant effect size for decreased presence. When investigating only the two anxiety disorder studies, we found a significantly small effect size for the increased microstate A and a medium effect size for decreased microstate E (one study). However, more studies are needed to elucidate whether these findings are diagnostic-specific markers.Results are discussed in relation to the functional meaning of microstates and possible contribution to an explanatory mechanism of overlapping symptomatology of mood and anxiety disorders.
Collapse
Affiliation(s)
- Alina Chivu
- CINETic Center, National University of Theatre and Film "I.L. Caragiale" Bucharest, Bucharest, Romania
- Faculty of Psychology and Educational Sciences, Department of Applied Psychology and Psychotherapy, University of Bucharest, Bucharest, Romania
| | - Simona A Pascal
- Faculty of Psychology and Educational Sciences, Department of Applied Psychology and Psychotherapy, University of Bucharest, Bucharest, Romania
| | - Alena Damborská
- Department of Psychiatry, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
- Multimodal and Functional Neuroimaging Research Group, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Miralena I Tomescu
- CINETic Center, National University of Theatre and Film "I.L. Caragiale" Bucharest, Bucharest, Romania.
- Faculty of Educational Sciences, Department of Psychology, University "Stefan cel Mare" of Suceava, Suceava, Romania.
- Faculty of Psychology and Educational Sciences, Department of Cognitive Sciences, University of Bucharest, Bucharest, Romania.
| |
Collapse
|
11
|
Zanesco AP. Normative Temporal Dynamics of Resting EEG Microstates. Brain Topogr 2024; 37:243-264. [PMID: 37702825 DOI: 10.1007/s10548-023-01004-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/23/2023] [Indexed: 09/14/2023]
Abstract
The large-scale electrophysiological events known as electroencephalographic microstates provide an important window into the intrinsic activity of whole-brain neuronal networks. The spontaneous activity of coordinated brain networks, including the ongoing temporal dynamics expressed by microstates, are thought to reflect individuals' neurocognitive functioning, and predict development, disease progression, and psychological differences among varied populations. A comprehensive understanding of human brain function therefore requires characterizing typical and atypical patterns in the temporal dynamics of microstates. But population-level estimates of normative microstate temporal dynamics are still unknown. To address this gap, I conducted a systematic search of the literature and accompanying meta-analysis of the average dynamics of microstates obtained from studies investigating spontaneous brain activity in individuals during periods of eyes-closed and eyes-open rest. Meta-analyses provided estimates of the average temporal dynamics of microstates across 93 studies totaling 6583 unique individual participants drawn from diverse populations. Results quantified the expected range of plausible estimates of average microstate dynamics across study samples, as well as characterized heterogeneity resulting from sampling variability and systematic differences in development, clinical diagnoses, or other study methodological factors. Specifically, microstate dynamics significantly differed for samples with specific developmental differences or clinical diagnoses, relative to healthy, typically developing samples. This research supports the notion that microstates and their dynamics reflect functionally relevant properties of large-scale brain networks, encoding typical and atypical neurocognitive functioning.
Collapse
Affiliation(s)
- Anthony P Zanesco
- Department of Psychology, University of Miami, Coral Gables, FL, USA.
| |
Collapse
|
12
|
Peng RJ, Fan Y, Li J, Zhu F, Tian Q, Zhang XB. Abnormalities of electroencephalography microstates in patients with depression and their association with cognitive function. World J Psychiatry 2024; 14:128-140. [PMID: 38327889 PMCID: PMC10845229 DOI: 10.5498/wjp.v14.i1.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/09/2023] [Accepted: 12/22/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND A growing number of recent studies have explored underlying activity in the brain by measuring electroencephalography (EEG) in people with depression. However, the consistency of findings on EEG microstates in patients with depression is poor, and few studies have reported the relationship between EEG microstates, cognitive scales, and depression severity scales. AIM To investigate the EEG microstate characteristics of patients with depression and their association with cognitive functions. METHODS A total of 24 patients diagnosed with depression and 32 healthy controls were included in this study using the Structured Clinical Interview for Disease for The Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition. We collected information relating to demographic and clinical characteristics, as well as data from the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS; Chinese version) and EEG. RESULTS Compared with the controls, the duration, occurrence, and contribution of microstate C were significantly higher [depression (DEP): Duration 84.58 ± 24.35, occurrence 3.72 ± 0.56, contribution 30.39 ± 8.59; CON: Duration 72.77 ± 10.23, occurrence 3.41 ± 0.36, contribution 24.46 ± 4.66; Duration F = 6.02, P = 0.049; Occurrence F = 6.19, P = 0.049; Contribution F = 10.82, P = 0.011] while the duration, occurrence, and contribution of microstate D were significantly lower (DEP: Duration 70.00 ± 15.92, occurrence 3.18 ± 0.71, contribution 22.48 ± 8.12; CON: Duration 85.46 ± 10.23, occurrence 3.54 ± 0.41, contribution 28.25 ± 5.85; Duration F = 19.18, P < 0.001; Occurrence F = 5.79, P = 0.050; Contribution F = 9.41, P = 0.013) in patients with depression. A positive correlation was observed between the visuospatial/constructional scores of the RBANS scale and the transition probability of microstate class C to B (r = 0.405, P = 0.049). CONCLUSION EEG microstate, especially C and D, is a possible biomarker in depression. Patients with depression had a more frequent transition from microstate C to B, which may relate to more negative rumination and visual processing.
Collapse
Affiliation(s)
- Rui-Jie Peng
- Suzhou Medical College, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Yu Fan
- Department of Psychiatry, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu Province, China
| | - Jin Li
- Department of Psychiatry, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu Province, China
| | - Feng Zhu
- Department of Psychiatry, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu Province, China
| | - Qing Tian
- Department of Psychiatry, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu Province, China
| | - Xiao-Bin Zhang
- Department of Psychiatry, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu Province, China
| |
Collapse
|
13
|
Zhu M, Gong Q. EEG spectral and microstate analysis originating residual inhibition of tinnitus induced by tailor-made notched music training. Front Neurosci 2023; 17:1254423. [PMID: 38148944 PMCID: PMC10750374 DOI: 10.3389/fnins.2023.1254423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/21/2023] [Indexed: 12/28/2023] Open
Abstract
Tailor-made notched music training (TMNMT) is a promising therapy for tinnitus. Residual inhibition (RI) is one of the few interventions that can temporarily inhibit tinnitus, which is a useful technique that can be applied to tinnitus research and explore tinnitus mechanisms. In this study, RI effect of TMNMT in tinnitus was investigated mainly using behavioral tests, EEG spectral and microstate analysis. To our knowledge, this study is the first to investigate RI effect of TMNMT. A total of 44 participants with tinnitus were divided into TMNMT group (22 participants; ECnm, NMnm, RInm represent that EEG recordings with eyes closed stimuli-pre, stimuli-ing, stimuli-post by TMNMT music, respectively) and Placebo control group (22 participants; ECpb, PBpb, RIpb represent that EEG recordings with eyes closed stimuli-pre, stimuli-ing, stimuli-post by Placebo music, respectively) in a single-blind manner. Behavioral tests, EEG spectral analysis (covering delta, theta, alpha, beta, gamma frequency bands) and microstate analysis (involving four microstate classes, A to D) were employed to evaluate RI effect of TMNMT. The results of the study showed that TMNMT had a stronger inhibition ability and longer inhibition time according to the behavioral tests compared to Placebo. Spectral analysis showed that RI effect of TMNMT increased significantly the power spectral density (PSD) of delta, theta bands and decreased significantly the PSD of alpha2 band, and microstate analysis showed that RI effect of TMNMT had shorter duration (microstate B, microstate C), higher Occurrence (microstate A, microstate C, microstate D), Coverage (microstate A) and transition probabilities (microstate A to microstate B, microstate A to microstate D and microstate D to microstate A). Meanwhile, RI effect of Placebo decreased significantly the PSD of alpha2 band, and microstate analysis showed that RI effect of Placebo had shorter duration (microstate C, microstate D), higher occurrence (microstate B, microstate C), lower coverage (microstate C, microstate D), higher transition probabilities (microstate A to microstate B, microstate B to microstate A). It was also found that the intensity of tinnitus symptoms was significant positively correlated with the duration of microstate B in five subgroups (ECnm, NMnm, RInm, ECpb, PBpb). Our study provided valuable experimental evidence and practical applications for the effectiveness of TMNMT as a novel music therapy for tinnitus. The observed stronger residual inhibition (RI) ability of TMNMT supported its potential applications in tinnitus treatment. Furthermore, the temporal dynamics of EEG microstates serve as novel functional and trait markers of synchronous brain activity that contribute to a deep understanding of the neural mechanism underlying TMNMT treatment for tinnitus.
Collapse
Affiliation(s)
- Min Zhu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Qin Gong
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
- School of Medicine, Shanghai University, Shanghai, China
| |
Collapse
|
14
|
Wen Y, Li H, Huang Y, Qiao D, Ren T, Lei L, Li G, Yang C, Xu Y, Han M, Liu Z. Dynamic network characteristics of adolescents with major depressive disorder: Attention network mediates the association between anhedonia and attentional deficit. Hum Brain Mapp 2023; 44:5749-5769. [PMID: 37683097 PMCID: PMC10619388 DOI: 10.1002/hbm.26474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Attention deficit is a critical symptom that impairs social functioning in adolescents with major depressive disorder (MDD). In this study, we aimed to explore the dynamic neural network activity associated with attention deficits and its relationship with clinical outcomes in adolescents with MDD. We included 188 adolescents with MDD and 94 healthy controls. By combining psychophysics, resting-state electroencephalography (EEG), and functional magnetic resonance imaging (fMRI) techniques, we aimed to identify dynamic network features through the investigation of EEG microstate characteristics and related temporal network features in adolescents with MDD. At baseline, microstate analysis revealed that the occurrence of Microstate C in the patient group was lower than that in healthy controls, whereas the duration and coverage of Microstate D increased in the MDD group. Mediation analysis revealed that the probability of transition from Microstate C to D mediated anhedonia and attention deficits in the MDD group. fMRI results showed that the temporal variability of the dorsal attention network (DAN) was significantly weaker in patients with MDD than in healthy controls. Importantly, the temporal variability of DAN mediated the relationship between anhedonia and attention deficits in the patient group. After acute-stage treatment, the response prediction group (RP) showed improvement in Microstates C and D compared to the nonresponse prediction group (NRP). For resting-state fMRI data, the temporal variability of DAN was significantly higher in the RP group than in the NRP group. Overall, this study enriches our understanding of the neural mechanisms underlying attention deficits in patients with MDD and provides novel clinical biomarkers.
Collapse
Affiliation(s)
- Yujiao Wen
- Department of PsychiatryThe First Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Hong Li
- Department of PsychiatryThe First Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Yangxi Huang
- Department of PsychiatryThe First Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Dan Qiao
- Department of PsychiatryThe First Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Tian Ren
- Department of PsychiatryThe First Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Lei Lei
- Department of PsychiatryThe First Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Gaizhi Li
- Department of PsychiatryThe First Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Chunxia Yang
- Department of PsychiatryThe First Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Yifan Xu
- Department of PsychiatryThe First Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Min Han
- Department of PsychiatryThe First Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Zhifen Liu
- Department of PsychiatryThe First Hospital of Shanxi Medical UniversityTaiyuanChina
| |
Collapse
|
15
|
Hu J, Zhou D, Zhao L, Ma L, Peng X, He X, Chen R, Chen W, Jiang Z, Kuang L, Wang W. Associations between abnormal electroencephalogram microstates and childhood emotional abuse in adolescent depression. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:1678-1685. [PMID: 38432858 PMCID: PMC10929957 DOI: 10.11817/j.issn.1672-7347.2023.230220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Indexed: 03/05/2024]
Abstract
OBJECTIVES Childhood traumatic experiences greatly influenced the brain network activities of patients with depression, and there is an urgent need to explore the temporal dynamics for these changes. This study aims to investigate the abnormalities of resting-state electroencephalogram (EEG) microstates in eye-open state of depressed adolescents and to explore the correlations between their EEG microstates and the childhood traumatic experience. METHODS Using resting-state EEG microstate analysis, we explored the temporal dynamics of brain activity in patients with adolescent depression. This study selected 66 adolescents with depression as a patient group, and 27 healthy adolescents as a healthy control group. A modified k-means clustering algorithm was used to classify the 64-channel resting-state EEG data into different microstates. Independent sample t-tests were used to compare the microstate parameters between the 2 groups and further assciations between these parameters and childhood traumatic experience in patients were explored via using Spearman correlation. RESULTS In this study, significant differences were observed in the occurrence and transition probabilities of EEG microstates between the healthy control and the patient group. Notably, there was a statistically significant difference (P<0.05) in the occurrence of microstate A across 2 groups, exhibiting a negative correlation with the emotional abuse component within the childhood trauma scores (Spearman's rho=-0.31, P=0.013). Furthermore, patient-specific, non-random transitions from microstate B to A (Spearman's rho=-0.30, P=0.015) and C to A (Spearman's rho=-0.31, P=0.013) were inversely associated with the scores of emotional abuse factors from childhood trauma in the patient group, showing statistically significant differences when comparing to the healthy controls (P<0.05). Upon stratification into quartiles based on the emotional abuse factor scores, the occurrence of microstate A, as well as the transition rates from microstates B to A and C to A, retained statistical significance following adjustment for multiple comparisons (all P<0.05). CONCLUSIONS The abnormal temporal dynamics in brain networks of adolescents with depression are linked to childhood emotional abuse. Those who have suffered severe emotional abuse may show greater impairments in the brain's visual and central executive networks. EEG microstate analysis could be a potential tool for detecting adolescent depression with severe childhood trauma.
Collapse
Affiliation(s)
- Jinhui Hu
- Mental Health Center, University-Town Hospital, Chongqing Medical University, Chongqing 401331.
| | - Dongdong Zhou
- Mental Health Center, University-Town Hospital, Chongqing Medical University, Chongqing 401331
| | - Lin Zhao
- Department of Psychiatry, First Affiliated Hospital, Chongqing Medical University, Chongqing 400042, China
| | - Lingli Ma
- Department of Psychiatry, First Affiliated Hospital, Chongqing Medical University, Chongqing 400042, China
| | - Xinyu Peng
- Department of Psychiatry, First Affiliated Hospital, Chongqing Medical University, Chongqing 400042, China
| | - Xiaoqing He
- Mental Health Center, University-Town Hospital, Chongqing Medical University, Chongqing 401331
| | - Ran Chen
- Mental Health Center, University-Town Hospital, Chongqing Medical University, Chongqing 401331
| | - Wanjun Chen
- Mental Health Center, University-Town Hospital, Chongqing Medical University, Chongqing 401331
| | - Zhenghao Jiang
- Mental Health Center, University-Town Hospital, Chongqing Medical University, Chongqing 401331
| | - Li Kuang
- Mental Health Center, University-Town Hospital, Chongqing Medical University, Chongqing 401331
- Department of Psychiatry, First Affiliated Hospital, Chongqing Medical University, Chongqing 400042, China
| | - Wo Wang
- Mental Health Center, University-Town Hospital, Chongqing Medical University, Chongqing 401331.
| |
Collapse
|
16
|
Hu JH, Zhou DD, Ma LL, Zhao L, He XQ, Peng XY, Chen R, Chen WJ, Jiang ZH, Ran LY, Liu XY, Tao WQ, Yuan K, Wang W. A resting-state electroencephalographic microstates study in depressed adolescents with non-suicidal self-injury. J Psychiatr Res 2023; 165:264-272. [PMID: 37541092 DOI: 10.1016/j.jpsychires.2023.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 07/15/2023] [Accepted: 07/15/2023] [Indexed: 08/06/2023]
Abstract
Neuroimaging studies have revealed abnormal brain activities in depressed teenagers who engage in non-suicidal self-injury (NSSI). We used resting-state electroencephalography (EEG) microstate analysis, which indicates the brief overlap of brain network activation for exploring the characteristics of large-scale cortical activities in depressed adolescents engaged with NSSI to clarify the underlying temporal mechanism. A modified k-means cluster algorithm was used to segment 64-channel resting-state EEG data into microstates. Data from 27 healthy adolescents, 37 adolescents with major depressive disorder (MDD), and 53 adolescents with both MDD and NSSI were examined in this study. The resting-state microstate parameters were compared among groups using the one-way ANOVA and Spearman correlation. Then the associations between significantly different microstate parameters and the depressive severity and self-harming data in the patient groups were further analyzed. The MDD group had higher contribution (p < 0.01), occurrence (p < 0.01) of microstate A, and higher microstate E→A transition (p < 0.05) than the HC and the NSSI group. The MDD group showed a distinctly longer duration (p < 0.05) of microstate A and microstate A→C transition than the HC. The transition probability from B to C was increased in the NSSI group compared to the HC. In the MDD group, the HAMD correlated with the duration of microstate A (Spearman's rho = 0.34, p = 0.044), as the PHQ-9 correlated with its occurrence (Spearman's rho = 0.37, p = 0.028). This research revealed that whereas depressive adolescents with NSSI and MDD displayed similar patterns with healthy controls in EEG microstate, the MDD group did not. Additionally, the non-random transition from microstate E→A may protect against recent self-harm in adolescents with MDD.
Collapse
Affiliation(s)
- Jin-Hui Hu
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Dong-Dong Zhou
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Lin-Li Ma
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lin Zhao
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiao-Qing He
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Xin-Yu Peng
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ran Chen
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Wan-Jun Chen
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zheng-Hao Jiang
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Liu-Yi Ran
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Xin-Yi Liu
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Wan-Qing Tao
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Ke Yuan
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Wo Wang
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
17
|
Zhao Z, Niu Y, Zhao X, Zhu Y, Shao Z, Wu X, Wang C, Gao X, Wang C, Xu Y, Zhao J, Gao Z, Ding J, Yu Y. EEG microstate in first-episode drug-naive adolescents with depression. J Neural Eng 2022; 19. [PMID: 35952647 DOI: 10.1088/1741-2552/ac88f6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/11/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND A growing number of studies have revealed significant abnormalities in EEG microstate in patients with depression, but these findings may be affected by medication. Therefore, how the EEG microstates abnormally change in patients with depression in the early stage and without the influence of medication has not been investigated so far. METHODS Resting-state EEG data and Hamilton Depression Rating Scale (HDRS) were collected from 34 first-episode drug-naïve adolescent with depression and 34 matched healthy controls. EEG microstate analysis was applied and nonlinear characteristics of EEG microstate sequences were studied by sample entropy and Lempel-Ziv complexity (LZC). The microstate temporal parameters and complexity were tried to train a SVM for classification of patients with depression. RESULTS Four typical EEG microstate topographies were obtained in both groups, but microstate C topography was significantly abnormal in depression patients. The duration of microstate B, C, D and the occurrence and coverage of microstate B significantly increased, the occurrence and coverage of microstate A, C reduced significantly in depression group. Sample entropy and LZC in the depression group were abnormally increased and were negatively correlated with HDRS. When the combination of EEG microstate temporal parameters and complexity of microstate sequence was used to classify patients with depression from healthy controls, a classification accuracy of 90.9% was obtained. CONCLUSION Abnormal EEG microstate has appeared in early depression, reflecting an underlying abnormality in configuring neural resources and transitions between distinct brain network states. EEG microstate can be used as a neurophysiological biomarker for early auxiliary diagnosis of depression.
Collapse
Affiliation(s)
- Zongya Zhao
- Xinxiang Medical University, College of Medical Engineering, Xinxiang, Henan, 453003, CHINA
| | - Yanxiang Niu
- Xinxiang Medical University, college of medical engineering, Xinxiang, Henan, 453600, CHINA
| | - Xiaofeng Zhao
- First Affiliated Hospital of Zhengzhou University, Department of Psychiatry, Zhengzhou, 450000, CHINA
| | - Yu Zhu
- Xinxiang Medical University, college of medical engineering, Xinxiang, Henan, 453600, CHINA
| | - Zhenpeng Shao
- Xinxiang Medical University, college of medical engineering, Xinxiang, Henan, 453600, CHINA
| | - Xingyang Wu
- Xinxiang Medical University, college of medical engineering, Xinxiang, 453003, CHINA
| | - Chong Wang
- Xinxiang Medical University, college of medical engineering, Xinxiang, Henan, 453600, CHINA
| | - Xudong Gao
- Xinxiang Medical University, college of medical engineering, Xinxiang, Henan, 453600, CHINA
| | - Chang Wang
- Xinxiang Medical University, college of medical engineering, Xinxiang, Henan, 453600, CHINA
| | - Yongtao Xu
- Xinxiang Medical University, college of medical engineering, Xinxiang, 453003, CHINA
| | - Junqiang Zhao
- Xinxiang Medical University, college of medical engineering, Xinxiang, 453003, CHINA
| | - Zhixian Gao
- Xinxiang Medical University, college of medical engineering, Xinxiang, 453003, CHINA
| | - Junqing Ding
- First Affiliated Hospital of Zhengzhou University Zhengzhou, Department of Neurology, Zhengzhou, 450000, CHINA
| | - Yi Yu
- Xinxiang Medical University, college of Biomedical Engineering, Xinxiang, 453003, CHINA
| |
Collapse
|
18
|
EEG microstate temporal Dynamics Predict depressive symptoms in College Students. Brain Topogr 2022; 35:481-494. [PMID: 35790705 DOI: 10.1007/s10548-022-00905-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 05/19/2022] [Indexed: 11/02/2022]
Abstract
Previous studies on resting-state electroencephalographic responses in patients with depressive disorders have identified electroencephalogram (EEG) parameters as potential biomarkers for the early detection and diagnosis of depressive disorders. However, these studies did not investigate the relationship between resting-state EEG microstates and the early detection of depressive symptoms in preclinical individuals. To explore the possible association between resting-state EEG microstate temporal dynamics and depressive symptoms among college students, EEG microstate analysis was performed on eyes-closed resting-state EEG data for approximately 5 min from 34 undergraduates with high intensity of depressive symptoms and 34 age- and sex-matched controls with low intensity of depressive symptoms. Five microstate classes (A-E) were identified to best explain the datasets of both groups. Compared to controls, the mean duration, occurrence, and coverage of microstate class B increased significantly, whereas the occurrence and coverage of microstate classes D and E decreased significantly in individuals with high intensity of depressive symptoms. Additionally, the presence of microstate class B was positively correlated with participants' Beck Depression Inventory-II (BDI-II) scores, and the presence of microstate classes D and E were negatively correlated with their BDI-II scores. Further, individuals with high intensity of depressive symptoms had higher transition probabilities of A→B, B→A, B→C, B→D, and C→B, with lower transition probabilities of A→D, A→E, D→A, D→E, E→A, E→C, and E→D than controls. These results highlight resting-state EEG microstate temporal dynamics as potential biomarkers for the early detection and timely treatment of depression in college students.
Collapse
|
19
|
Sun Y, Ren G, Ren J, Wang Q. Intrinsic Brain Activity in Temporal Lobe Epilepsy With and Without Depression: Insights From EEG Microstates. Front Neurol 2022; 12:753113. [PMID: 35058871 PMCID: PMC8764160 DOI: 10.3389/fneur.2021.753113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/03/2021] [Indexed: 11/18/2022] Open
Abstract
Background: Depression is the most common psychiatric comorbidity of temporal lobe epilepsy (TLE). In the recent years, studies have focused on the common pathogenesis of TLE and depression. However, few of the studies focused on the dynamic characteristics of TLE with depression. We tested the hypotheses that there exist abnormalities in microstates in patients with TLE with depression. Methods: Participants were classified into patients with TLE with depression (PDS) (n = 19) and patients with TLE without depression (nPDS) (n = 19) based upon the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-V). Microstate analysis was applied based on 256-channel electroencephalography (EEG) to detect the dynamic changes in whole brain. The coverage (proportion of time spent in each state), frequency of occurrence, and duration (average time of each state) were calculated. Results: Patients with PDS showed a shorter mean microstate duration with higher mean occurrence per second compared to patients with nPDS. There was no difference between the two groups in the coverage of microstate A–D. Conclusion: This is the first study to present the temporal fluctuations of EEG topography in comorbid depression in TLE using EEG microstate analysis. The temporal characteristics of the four canonical EEG microstates were significantly altered in patients with TLE suffer from comorbid depression.
Collapse
Affiliation(s)
- Yueqian Sun
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guoping Ren
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Center for Clinical Medicine of Neurological Diseases, Beijing, China
| | - Jiechuan Ren
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Center for Clinical Medicine of Neurological Diseases, Beijing, China
| | - Qun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Center for Clinical Medicine of Neurological Diseases, Beijing, China.,Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
20
|
Das S, Zomorrodi R, Enticott PG, Kirkovski M, Blumberger DM, Rajji TK, Desarkar P. Resting state electroencephalography microstates in autism spectrum disorder: A mini-review. Front Psychiatry 2022; 13:988939. [PMID: 36532178 PMCID: PMC9752812 DOI: 10.3389/fpsyt.2022.988939] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/09/2022] [Indexed: 12/04/2022] Open
Abstract
Atypical spatial organization and temporal characteristics, found via resting state electroencephalography (EEG) microstate analysis, have been associated with psychiatric disorders but these temporal and spatial parameters are less known in autism spectrum disorder (ASD). EEG microstates reflect a short time period of stable scalp potential topography. These canonical microstates (i.e., A, B, C, and D) and more are identified by their unique topographic map, mean duration, fraction of time covered, frequency of occurrence and global explained variance percentage; a measure of how well topographical maps represent EEG data. We reviewed the current literature for resting state microstate analysis in ASD and identified eight publications. This current review indicates there is significant alterations in microstate parameters in ASD populations as compared to typically developing (TD) populations. Microstate parameters were also found to change in relation to specific cognitive processes. However, as microstate parameters are found to be changed by cognitive states, the differently acquired data (e.g., eyes closed or open) resting state EEG are likely to produce disparate results. We also review the current understanding of EEG sources of microstates and the underlying brain networks.
Collapse
Affiliation(s)
- Sushmit Das
- Centre for Addiction and Mental Health, Toronto, ON, Canada.,Azrieli Adult Neurodevelopmental Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Reza Zomorrodi
- Centre for Addiction and Mental Health, Toronto, ON, Canada.,Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Peter G Enticott
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia
| | - Melissa Kirkovski
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia.,Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Daniel M Blumberger
- Centre for Addiction and Mental Health, Toronto, ON, Canada.,Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Tarek K Rajji
- Centre for Addiction and Mental Health, Toronto, ON, Canada.,Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Pushpal Desarkar
- Centre for Addiction and Mental Health, Toronto, ON, Canada.,Azrieli Adult Neurodevelopmental Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
21
|
He Y, Yu Q, Yang T, Zhang Y, Zhang K, Jin X, Wu S, Gao X, Huang C, Cui X, Luo X. Abnormalities in Electroencephalographic Microstates Among Adolescents With First Episode Major Depressive Disorder. Front Psychiatry 2021; 12:775156. [PMID: 34975577 PMCID: PMC8718790 DOI: 10.3389/fpsyt.2021.775156] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/24/2021] [Indexed: 12/28/2022] Open
Abstract
Background: Recent studies have reported changes in the electroencephalograms (EEG) of patients with major depressive disorder (MDD). However, little research has explored EEG differences between adolescents with MDD and healthy controls, particularly EEG microstates differences. The aim of the current study was to characterize EEG microstate activity in adolescents with MDD and healthy controls (HCs). Methods: A total of 35 adolescents with MDD and 35 HCs were recruited in this study. The depressive symptoms were assessed by Hamilton Depression Scale (HAMD) and Children's Depression Inventory (CDI), and the anxiety symptoms were assessed by Chinese version of DSM-5 Level 2-Anxiety-Child scale. A 64-channel EEG was recorded for 5 min (eye closed, resting-state) and analyzed using microstate analysis. Microstate properties were compared between groups and correlated with patients' depression scores. Results: We found increased occurrence and contribution of microstate B in MDD patients compared to HCs, and decreased occurrence and contribution of microstate D in MDD patients compared to HCs. While no significant correlation between depression severity (HAMD score) and the microstate metrics (occurrence and contribution of microstate B and D) differing between MDD adolescents and HCs was found. Conclusions: Adolescents with MDD showed microstate B and microstate D changes. The obtained results may deepen our understanding of dynamic EEG changes among adolescents with MDD and provide some evidence of changes in brain development in adolescents with MDD.
Collapse
Affiliation(s)
- Yuqiong He
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qianting Yu
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Tingyu Yang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yaru Zhang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Kun Zhang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xingyue Jin
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shuxian Wu
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xueping Gao
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China.,Autism Center of the Second Xiangya Hospital, Central South University, Changsha, China
| | - Chunxiang Huang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China.,Autism Center of the Second Xiangya Hospital, Central South University, Changsha, China
| | - Xilong Cui
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China.,Autism Center of the Second Xiangya Hospital, Central South University, Changsha, China
| | - Xuerong Luo
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China.,Autism Center of the Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|