1
|
Su X, Zheng B, Huang H, Chen S, Cao M, Chen J. The Effect of Intermittent Theta Burst Stimulation for Post-Stroke Lower Limb Motor Recovery: A Systematic Review and Meta-Analysis. NeuroRehabilitation 2025; 56:219-233. [PMID: 40260719 DOI: 10.1177/10538135241304991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
BackgroundIntermittent theta burst stimulation (iTBS) appears to be a potential intervention for enhancing motor recovery in post-stroke. However, the optimal parameters of iTBS protocol for lower limb dysfunction is ambiguous.ObjectiveTo evaluate the efficacy of iTBS in treating lower limb motor impairment after stroke and to explore the optimal stimulation parameters.MethodsRelevant randomized controlled trials (RCTs) were retrieved from seven databases from their inception to May 2024. We defined primary outcomes as Fugl-Meyer Assessment for Lower Extremity (FMA-LE) and Berg Balance Scale (BBS). Subgroup analyses included stroke stage, stimulation sites, dosages and treatment sessions.ResultsThe study results indicated that compared with the sham iTBS group, the iTBS group showed a significant improvement in lower limb motor recovery, balance, gait and activity of daily living (ADL). No significant effect was found in the Motor Evoked Potential amplitude. Subgroup analysis demonstrated that cerebellar iTBS had a therapeutic effect on subacute stroke patients. Furthermore, administrating 1200 pulses per session for a minimum of 15 sessions of iTBS intervention could significantly improve the balance and ADL performance.ConclusioniTBS could enhance lower limb motor function, improving the quality of life in subacute stroke patients with relatively high safety.
Collapse
Affiliation(s)
- Xinyi Su
- The Rehabilitation Hospital Area, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Beisi Zheng
- The Rehabilitation Hospital Area, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Haiping Huang
- The Rehabilitation Hospital Area, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Shishi Chen
- The Rehabilitation Hospital Area, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Manting Cao
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jianer Chen
- The Rehabilitation Hospital Area, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Department of Neurorehabilitation, Zhejiang Rehabilitation Medical Center, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Trapp NT, Purgianto A, Taylor JJ, Singh MK, Oberman LM, Mickey BJ, Youssef NA, Solzbacher D, Zebley B, Cabrera LY, Conroy S, Cristancho M, Richards JR, Flood MJ, Barbour T, Blumberger DM, Taylor SF, Feifel D, Reti IM, McClintock SM, Lisanby SH, Husain MM. Consensus review and considerations on TMS to treat depression: A comprehensive update endorsed by the National Network of Depression Centers, the Clinical TMS Society, and the International Federation of Clinical Neurophysiology. Clin Neurophysiol 2025; 170:206-233. [PMID: 39756350 PMCID: PMC11825283 DOI: 10.1016/j.clinph.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/13/2024] [Accepted: 12/01/2024] [Indexed: 01/07/2025]
Abstract
This article updates the prior 2018 consensus statement by the National Network of Depression Centers (NNDC) on the use of transcranial magnetic stimulation (TMS) in the treatment of depression, incorporating recent research and clinical developments. Publications on TMS and depression between September 2016 and April 2024 were identified using methods informed by PRISMA guidelines. The NNDC Neuromodulation Work Group met monthly between October 2022 and April 2024 to define important clinical topics and review pertinent literature. A modified Delphi method was used to achieve consensus. 2,396 abstracts and manuscripts met inclusion criteria for review. The work group generated consensus statements which include an updated narrative review of TMS safety, efficacy, and clinical features of use for depression. Considerations related to training, roles/responsibilities of providers, and documentation are also discussed. TMS continues to demonstrate broad evidence for safety and efficacy in treating depression. Newer forms of TMS are faster and potentially more effective than conventional repetitive TMS. Further exploration of targeting methods, use in special populations, and accelerated protocols is encouraged. This article provides an updated overview of topics relevant to the administration of TMS for depression and summarizes expert, consensus opinion on the practice of TMS in the United States.
Collapse
Affiliation(s)
- Nicholas T Trapp
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA.
| | - Anthony Purgianto
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Joseph J Taylor
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Manpreet K Singh
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Sacramento, CA, USA
| | - Lindsay M Oberman
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Brian J Mickey
- Department of Psychiatry, Huntsman Mental Health Institute, University of Utah, Salt Lake City, UT, USA
| | - Nagy A Youssef
- Pine Rest Christian Mental Health Services, Grand Rapids, MI, USA; Division of Psychiatry and Behavioral Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Daniela Solzbacher
- Department of Psychiatry, Huntsman Mental Health Institute, University of Utah, Salt Lake City, UT, USA
| | - Benjamin Zebley
- Department of Psychiatry, Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Laura Y Cabrera
- Department of Engineering Science and Mechanics, Center for Neural Engineering, Pennsylvania State University, University Park, PA, USA
| | - Susan Conroy
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mario Cristancho
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Jackson R Richards
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | | | - Tracy Barbour
- Division of Neuropsychiatry and Neuromodulation, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel M Blumberger
- Department of Psychiatry, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
| | - Stephan F Taylor
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - David Feifel
- Kadima Neuropsychiatry Institute, La Jolla, CA, USA; University of California-San Diego, San Diego, CA, USA
| | - Irving M Reti
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Shawn M McClintock
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas,TX, USA
| | - Sarah H Lisanby
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA; Division of Translational Research, National Institute of Mental Health, Bethesda, MD, USA; Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Mustafa M Husain
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas,TX, USA; Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
3
|
Zhang Q, Shi Y, Cheng J, Chen Y, Wang J, Wang X, Deng L, Wu S. Impact of rTMS and iTBS on Cerebral Hemodynamics and Swallowing in Unilateral Stroke: Insights from fNIRS. Med Sci Monit 2025; 31:e944521. [PMID: 39789787 PMCID: PMC11726903 DOI: 10.12659/msm.944521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 11/04/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Swallowing is a complex behavior involving the musculoskeletal system and higher-order brain functions. We investigated the effects of different modalities of repetitive transcranial magnetic stimulation (rTMS) on the unaffected hemisphere and observed correlation between suprahyoid muscle activity and cortical activation in unilateral stroke patients when swallowing saliva, based on functional near-infrared spectroscopy (fNIRS). MATERIAL AND METHODS From November 2022 to March 2023, twenty-five patients with unilateral stroke were screened using computed tomography or magnetic resonance imaging and identified via a video fluoroscopic swallow study. Finally, patients were divided into rTMS (n=10) and iTBS (n=10) groups. Both groups received 2 weeks of stimulation on unaffected suprahyoid motor cortex. Surface electromyographic measured peak amplitude and swallowing time of bilateral suprahyoid muscles, and penetration-aspiration scale was assessed at baseline and after treatment. fNIRS monitored oxyhemoglobin beta values (OBV) in the primary motor, sensory, and bilateral prefrontal cortex (PFC). RESULTS Both groups showed significant improvements in penetration-aspiration scale, peak amplitude, and swallowing time, compared with baseline (P<0.001), and increased OBV in unaffected regions (P<0.05), especially PFC (P<0.001). No significant OBV increases were seen in affected regions (P>0.05). After treatment, OBV in the unaffected PFC was significantly higher than in the unaffected primary sensory and motor cortex regions for both groups (P<0.05). No significant differences were observed between groups in outcome measures (P>0.05). CONCLUSIONS rTMS and iTBS significantly improved swallowing function in unilateral stroke, relying on compensation by the unaffected cortex, particularly the PFC. iTBS may outperform rTMS by shortening treatment sessions and improving efficiency.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Rehabilitation, Guizhou Medical University, Guiyang, Guizhou, PR China
- Department of Rehabilitation, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, PR China
| | - Yangmei Shi
- Department of Rehabilitation, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, PR China
| | - Jiawen Cheng
- Department of Rehabilitation, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, PR China
| | - Yan Chen
- Department of Rehabilitation, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, PR China
| | - Jia Wang
- Department of Rehabilitation, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, PR China
| | - Xianbin Wang
- Department of Rehabilitation, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, PR China
| | - Luoyi Deng
- Department of Rehabilitation, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, PR China
| | - Shuang Wu
- Department of Rehabilitation, Guizhou Medical University, Guiyang, Guizhou, PR China
- Department of Rehabilitation, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, PR China
| |
Collapse
|
4
|
Deng L, Song N, Wang J, Wang X, Chen Y, Wu S. Effect of Intermittent Theta Burst Stimulation Dual-Target Stimulation on Lower Limb Function in Patients with Incomplete Spinal Cord Injury: A Randomized, Single-Blind, Sham-Controlled Study. World Neurosurg 2024; 190:e46-e59. [PMID: 38960308 DOI: 10.1016/j.wneu.2024.06.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
OBJECTIVE To explore the influence of intermittent theta burst stimulation (iTBS) dual-target stimulation on lower limb function in patients with incomplete spinal cord injury (iSCI). METHODS A randomized, single -blind, sham-controlled trial was used in this study. Thirty iSCI patients with lower limb dysfunction meeting the inclusion criteria were randomly divided into a sham group and an iTBS group, with 15 cases in each group. The iTBS group received conventional rehabilitation therapy combined with iTBS dual-target stimulation on the central cerebral sulcus and the nerve root of the spinal cord injury segment. The sham group was treated with conventional rehabilitation therapy combined with iTBS dual-target sham stimulation therapy. Comprehensive functional assessment was performed on all patients before treatment, on the day 3 and day 21 of treatment. The main evaluation indicators were as follows: amplitude and latency of motor-evoked potential (MEP) in the anterior tibial muscles of both lower limbs, latency of sensory-evoked potential (SEP) of both lower limbs, knee flexor strength and knee extensor strength, lower extremity motor score (LEMS), lower extremity sensory score, spinal cord independence measure (SCIM) score, and gait parameters (stride speed, stride frequency, stride length, and ground reaction force). RESULTS On day 21 of treatment, in the iTBS group, the MEP amplitude of the anterior tibial muscles increased, the latency of MEP shortened, knee flexor strength and knee extensor strength increased, and the LEMS and SCIM score of both lower limbs increased. In addition, there were statistically significant differences in the muscle strength of the knee flexion muscle, knee extensor muscle, MEP amplitude, LEMS, and SCIM between the 2 groups (P < 0.05). Among the 10 patients who could walk with an assisted walker, the step length and step frequency of the iTBS group were increased compared with the sham group after treatment (P < 0.01), and the ground reaction force was increased (P < 0.05). There was no significant difference in the lower extremity sensory score of the lower limbs between the 2 groups (P > 0.05). CONCLUSIONS ITBS dual-target stimulation can significantly improve the motor function of both lower limbs in patients with iSCI but does not significantly improve the sensory function of both lower limbs. Therefore, this treatment mode may participate in the reconstruction and repair of some nerve circuits in patients with iSCI. In addition, iTBS dual-target stimulation can improve the ability of iSCI patients to perform daily living.
Collapse
Affiliation(s)
- Luoyi Deng
- Department of Rehabilitation Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, PR China
| | - Ning Song
- Department of Rehabilitation Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, PR China;; School of Clinical Medicine, Guizhou Medical University, Guiyang, PR China
| | - Jia Wang
- Department of Rehabilitation Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, PR China
| | - Xianbin Wang
- Department of Rehabilitation Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, PR China
| | - Yan Chen
- Department of Rehabilitation Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, PR China
| | - Shuang Wu
- Department of Rehabilitation Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, PR China;.
| |
Collapse
|
5
|
Goldberg MA, Madore MR, Kozel FA, Philip NS, Berlow YA. Early symptom improvement as a predictor of TMS treatment outcomes in posttraumatic stress disorder. Brain Stimul 2024; 17:1137-1139. [PMID: 39303808 PMCID: PMC11964472 DOI: 10.1016/j.brs.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/03/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024] Open
Affiliation(s)
- Miriam A Goldberg
- Center for Neurorestoration and Neurotechnology, VA Providence Healthcare System, Providence, RI, USA; Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Michelle R Madore
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA; Mental Illness Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - F Andrew Kozel
- Department of Behavioral Sciences and Social Medicine, Florida State University College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Noah S Philip
- Center for Neurorestoration and Neurotechnology, VA Providence Healthcare System, Providence, RI, USA; Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Yosef A Berlow
- Center for Neurorestoration and Neurotechnology, VA Providence Healthcare System, Providence, RI, USA; Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA.
| |
Collapse
|
6
|
Liu C, Li L, Li B, Liu Z, Xing W, Zhu K, Jin W, Lin S, Tan W, Ren L, Zhang Q. Efficacy and Safety of Theta Burst Versus Repetitive Transcranial Magnetic Stimulation for the Treatment of Depression: A Meta-Analysis of Randomized Controlled Trials. Neuromodulation 2024; 27:701-710. [PMID: 37831019 DOI: 10.1016/j.neurom.2023.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/05/2023] [Accepted: 08/28/2023] [Indexed: 10/14/2023]
Abstract
OBJECTIVES Theta burst stimulation (TBS) is more energy- and time-efficient than is standard repetitive transcranial magnetic stimulation (rTMS). However, further studies are needed to analyze TBS therapy for its efficacy and safety compared with standard rTMS in treating depression. The aim of this meta-analysis was to compare TBS therapy with standard rTMS treatment regarding their safety and therapeutic effect on individuals with depression. MATERIALS AND METHODS Six data bases (Wanfang, the China National Knowledge Infrastructure, PubMed, Embase, Cochrane Library, and PsycINFO) were searched from inception till December 20, 2022. Two independent reviewers selected potentially relevant studies on the basis of the inclusion criteria, extracted data, and evaluated the methodologic quality of the eligible trials using the modified ten-item Physiotherapy Evidence Database scale per Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines. Finally, ten comparable pairs of nine randomized controlled trials (RCTs) were included for meta-analysis. Summary odds ratios (ORs) of the rates of response, remission, and adverse events were simultaneously calculated using quality-effects (QE) and random-effects (RE) models. Changes in depression scores associated with antidepressant effects were expressed using standardized mean differences simultaneously. This study was registered with the International Prospective Register of Systematic Reviews (CRD42022376790). RESULTS Nine of the 602 RCTs, covering 1124 patients (616 who had TBS protocols applied vs 508 treated using standard rTMS), were included. Differences in response rates between the above two treatment modalities were not significant (OR = 1.01, 95% CI: 0.88-1.16, p = 0.44, I2 = 0%, RE model; OR = 1.07, 95% CI: 0.87-1.32, p = 0.44, I2 = 0%, QE model). Differences in adverse event rates between TBS and standard rTMS groups were not statistically significant. CONCLUSIONS TBS has similar efficacy and safety to standard rTMS for treating depression. Considering the short duration of daily stimulation sessions, this meta-analysis supports the continued development of TBS for treating depression.
Collapse
Affiliation(s)
- Chaomeng Liu
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Li Li
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Bing Li
- Hebei Provincial Mental Health Center, Baoding, China; Hebei Key Laboratory of Major Mental and Behavioral Disorders, Baoding, China; The Sixth Clinical Medical College of Hebei University, Baoding, China
| | - Zhi Liu
- Department of Emergency, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Wenlong Xing
- First Affiliated Hospital of Shihezi University School of Medicine, Shihezi, China
| | - Kemeng Zhu
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Wenqing Jin
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Shuo Lin
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Weihao Tan
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Li Ren
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Qinge Zhang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| |
Collapse
|
7
|
Berman ZR, Citrenbaum C, Corlier J, Leuchter AF, Folmer RL, Leuchter MK. Sequential Multilocus Repetitive Transcranial Magnetic Stimulation for Treatment of Tinnitus With and Without Comorbid Major Depressive Disorder. Neuromodulation 2024; 27:774-780. [PMID: 38385935 DOI: 10.1016/j.neurom.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 02/23/2024]
Abstract
OBJECTIVE Repetitive transcranial magnetic stimulation (rTMS) is a promising treatment for tinnitus, although outcomes are highly variable. We previously described a multilocus sequential rTMS treatment protocol for tinnitus involving stimulation of both prefrontal and auditory targets. In this study, we report results using this approach in an open-label treatment study of tinnitus with and without comorbid major depressive disorder (MDD). MATERIALS AND METHODS Forty patients with chronic tinnitus (mean age 56 years, ten female) and with (n = 17) or without (n = 23) MDD received multilocus rTMS administered sequentially to 1) left dorsolateral prefrontal cortex, followed by 2) auditory cortex (Heschel's gyrus). Patients completed weekly self-report ratings using the Tinnitus Functional Index (TFI) and Tinnitus Handicap Inventory, and patients with MDD completed the Inventory of Depressive Symptomatology Self-Report 30-item. RESULTS Patients showed significant mean improvement in tinnitus at sessions 5 (mean TFI improvement 6.8 points ± 12.2, p = 0.002) and 10 (mean improvement 9.2 points ± 14.1, p = 0.002), with 48% of patients responding within ten treatment sessions. Responders were significantly older than nonresponders (61.5 ± 15 years vs 51.3 ± 16 years), and there was a trend toward decreased likelihood of response in subjects with comorbid MDD compared with subjects without comorbidity (odds ratio = 0.28, p = 0.06). Patients with comorbid MDD reported significantly less improvement after ten sessions than did those with tinnitus alone (4.3 ± 10.3 vs 14.7 ± 15.0 points, p = 0.04). Post hoc analyses suggested that the comorbid group achieved improvement comparable to that of the tinnitus-only group after 30 treatments. CONCLUSIONS Patients showed significant improvement in tinnitus from multilocus sequential rTMS treatment, and those with tinnitus alone improved more quickly. Those with depression who continued rTMS through a full 30-session course further improved, indicating that tinnitus with comorbid MDD may respond with extended treatment.
Collapse
Affiliation(s)
- Zoe R Berman
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at University of California Los Angeles, Los Angeles, CA, USA; McGovern Medical School, University of Texas Health Sciences Center at Houston, Houston, TX, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Cole Citrenbaum
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at University of California Los Angeles, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Juliana Corlier
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at University of California Los Angeles, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Andrew F Leuchter
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at University of California Los Angeles, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Robert L Folmer
- Department of Otolaryngology, Oregon Health & Science University, Portland, OR, USA; National Center for Rehabilitative Auditory Research, VA Portland Medical Center, Portland, OR, USA
| | - Michael K Leuchter
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at University of California Los Angeles, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
8
|
Sackeim HA, Aaronson ST, Carpenter LL, Hutton TM, Pages K, Lucas L, Chen B. When to hold and when to fold: Early prediction of nonresponse to transcranial magnetic stimulation in major depressive disorder. Brain Stimul 2024; 17:272-282. [PMID: 38458381 DOI: 10.1016/j.brs.2024.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Determining when to recommend a change in treatment regimen due to insufficient improvement is a common challenge in therapeutics. METHODS In a sample of 7215 patients with major depressive disorder treated with transcranial magnetic stimulation (TMS) and with PHQ-9 scores before, during and after the course, 3 groups were identified based on number of acute course sessions: exactly 36 sessions (N = 3591), more than 36 sessions (N = 975), and less than 36 sessions (N = 2649). Two techniques were used to determine thresholds for percentage change in PHQ-9 scores at assessments after 10, 20, and 30 sessions that optimized prediction of endpoint response status: the Youden index and fixing the false positive rate at 10%. Positive and negative predictive values were calculated to assess the accuracy of identifying final nonresponders and responders, respectively. RESULTS There was greater accuracy in predicting final response than nonresponse, especially in the groups that had at least 36 sessions. Substantial proportions of patients with low levels of early improvement were classified as responders at the end of treatment. LIMITATIONS The findings should be validated with clinician ratings using a more comprehensive depression severity scale. CONCLUSIONS Manifesting clinical improvement early in the TMS course is strongly predictive of final status as a responder, while lack of early improvement is a relatively poor indicator of final nonresponse status. The predictive value of lack of early symptomatic improvement is too low to make reliable recommendations regarding changes in treatment regimen.
Collapse
Affiliation(s)
- Harold A Sackeim
- Department of Psychiatry, Columbia University, New York, NY, USA; Department of Radiology, Columbia University, New York, NY, USA.
| | - Scott T Aaronson
- Sheppard Pratt Health System, Baltimore, MD, USA; Department of Psychiatry, University of Maryland, Baltimore, MD, USA
| | - Linda L Carpenter
- Butler Hospital, Providence, RI, USA; Brown University Department of Psychiatry and Human Behavior, Providence, RI, USA
| | | | | | | | - Bing Chen
- NAMSA, St. Louis Park, Minneapolis, MN, USA
| |
Collapse
|
9
|
Leuchter MK, Citrenbaum C, Wilson AC, Tibbe TD, Jackson NJ, Krantz DE, Wilke SA, Corlier J, Strouse TB, Hoftman GD, Tadayonnejad R, Koek RJ, Slan AR, Ginder ND, Distler MG, Artin H, Lee JH, Adelekun AE, Leuchter AF. A comparison of self- and observer-rated scales for detecting clinical improvement during repetitive transcranial stimulation (rTMS) treatment of depression. Psychiatry Res 2023; 330:115608. [PMID: 37984281 DOI: 10.1016/j.psychres.2023.115608] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/06/2023] [Accepted: 11/11/2023] [Indexed: 11/22/2023]
Abstract
Clinical outcomes of repetitive Transcranial Magnetic Stimulation (rTMS) for treatment of Major Depressive Disorder (MDD) vary widely, and no single mood rating scale is standard for assessing rTMS outcomes. This study of 708 subjects undergoing clinical rTMS compared the performance of four scales in measuring symptom change during rTMS treatment. Self-report and observer ratings were examined weekly with the Inventory of Depressive Symptomatology 30-item (IDS), Patient Health Questionnaire 9-item (PHQ), Profile of Mood States 30-item (POMS), and Hamilton Depression Rating Scale 17-item (HDRS). While all scales were correlated and detected significant improvement, the degree of improvement over time as well as response (33-50%) and remission (20-24%) rates varied significantly. Higher baseline severity was associated with lower likelihood of remission, and greater improvement by sessions 5 and 10 predicted response across all scales. Use of only a single scale to assess outcome conferred 14-36% risk of failing to detect response/remission indicated by another scale. The PHQ was most likely to indicate improvement and least likely to miss response or remission. These findings indicate that assessment of symptom burden during rTMS treatment may be most accurately assessed through use of multiple instruments.
Collapse
Affiliation(s)
- Michael K Leuchter
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA 90024, USA.
| | - Cole Citrenbaum
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA 90024, USA
| | | | - Tristan D Tibbe
- Department of Psychology, University of California, Los Angeles, CA 90024, USA; Department of Medicine Statistics Core, David Geffen School of Medicine at UCLA 90024, USA
| | - Nicholas J Jackson
- Department of Medicine Statistics Core, David Geffen School of Medicine at UCLA 90024, USA
| | - David E Krantz
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA 90024, USA
| | - Scott A Wilke
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA 90024, USA
| | - Juliana Corlier
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA 90024, USA
| | - Thomas B Strouse
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA 90024, USA
| | - Gil D Hoftman
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA 90024, USA
| | - Reza Tadayonnejad
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA 90024, USA; Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Ralph J Koek
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA 90024, USA
| | - Aaron R Slan
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA 90024, USA
| | - Nathaniel D Ginder
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA 90024, USA
| | - Margaret G Distler
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA 90024, USA
| | - Hewa Artin
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA 90024, USA
| | - John H Lee
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA 90024, USA
| | - Adesewa E Adelekun
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA 90024, USA
| | - Andrew F Leuchter
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA 90024, USA
| |
Collapse
|
10
|
Bowman T, Mestanza Mattos FG, Salvalaggio S, Marazzini F, Allera Longo C, Bocini S, Gennuso M, Materazzi FG, Pelosin E, Putzolu M, Russo R, Turolla A, Mezzarobba S, Cattaneo D. Classification and Quantification of Physical Therapy Interventions across Multiple Neurological Disorders: An Italian Multicenter Network. J Clin Med 2023; 12:6483. [PMID: 37892621 PMCID: PMC10607918 DOI: 10.3390/jcm12206483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/03/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
Despite their relevance in neurorehabilitation, physical therapy (PT) goals and interventions are poorly described, compromising a proper understanding of PT effectiveness in everyday clinical practice. Thus, this paper aims to describe the prevalence of PT goals and interventions in people with neurological disorders, along with the participants' clinical features, setting characteristics of the clinical units involved, and PT impact on outcome measures. A multicenter longitudinal observational study involving hospitals and rehabilitation centers across Italy has been conducted. We recruited people with stroke (n = 119), multiple sclerosis (n = 48), and Parkinson's disease (n = 35) who underwent the PT sessions foreseen by the National Healthcare System. Clinical outcomes were administered before and after the intervention, and for each participant the physical therapists completed a semi-structured interview to report the goals and interventions of the PT sessions. Results showed that the most relevant PT goals were related to the ICF activities with "walking" showing the highest prevalence. The most used interventions aimed at improving walking performance, followed by those aimed at improving organ/body system functioning, while interventions targeting the cognitive-affective and educational aspects have been poorly considered. Considering PT effectiveness, 83 participants experienced a clinically significant improvement in the outcome measures assessing gait and balance functions.
Collapse
Affiliation(s)
- Thomas Bowman
- IRCCS Fondazione Don Carlo Gnocchi, 20148 Milan, Italy;
| | | | - Silvia Salvalaggio
- Laboratory of Computational Neuroimaging, IRCCS San Camillo Hospital, Via Alberoni 70, 30126 Venice, Italy;
- Padova Neuroscience Center, Università degli Studi di Padova, via Orus 2/B, 35131 Padova, Italy
| | | | - Cristina Allera Longo
- Department of Rehabilitation, San Carlo Borromeo Hospital, 20153 Milan, Italy; (C.A.L.); (R.R.)
| | - Serena Bocini
- Division of Physical and Rehabilitation Medicine, Fondazione Opera San Camillo, Presidio di Torino, 10131 Torino, Italy;
| | - Michele Gennuso
- Department of Neurological Sciences, Neurorehabilitation Clinic, AOU Delle Marche, 60126 Ancona, Italy;
| | - Francesco Giuseppe Materazzi
- Montecatone Rehabilitation Institute, 40026 Imola, Italy;
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy
| | - Elisa Pelosin
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132 Genoa, Italy; (E.P.); (S.M.)
- IRCCS Ospedale Policlinico San Martino, IRCCS, 16132 Genoa, Italy
| | - Martina Putzolu
- Department of Experimental Medicine (DIMES), Section of Human Physiology, University of Genoa, Viale Benedetto XV/3, 16132 Genoa, Italy;
| | - Rita Russo
- Department of Rehabilitation, San Carlo Borromeo Hospital, 20153 Milan, Italy; (C.A.L.); (R.R.)
| | - Andrea Turolla
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum—Università di Bologna, 40138 Bologna, Italy;
- Unit of Occupational Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Susanna Mezzarobba
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132 Genoa, Italy; (E.P.); (S.M.)
- IRCCS Ospedale Policlinico San Martino, IRCCS, 16132 Genoa, Italy
- Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), 34128 Trieste, Italy
| | - Davide Cattaneo
- IRCCS Fondazione Don Carlo Gnocchi, 20148 Milan, Italy;
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20100 Milan, Italy;
| |
Collapse
|
11
|
Ørbo MC, Grønli OK, Larsen C, Vangberg TR, Friborg O, Turi Z, Mittner M, Csifcsak G, Aslaksen PM. The antidepressant effect of intermittent theta burst stimulation (iTBS): study protocol for a randomized double-blind sham-controlled trial. Trials 2023; 24:627. [PMID: 37784199 PMCID: PMC10546766 DOI: 10.1186/s13063-023-07674-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND Intermittent theta burst stimulation (iTBS) when applied over the left dorsolateral prefrontal cortex (DLPFC) has been shown to be equally effective and safe to treat depression compared to traditional repetitive transcranial magnetic stimulation (rTMS) paradigms. This protocol describes a funded single-centre, double-blind, randomized placebo-controlled, clinical trial to investigate the antidepressive effects of iTBS and factors associated with an antidepressive response. METHODS In this trial, outpatients (N = 96, aged 22-65 years) meeting the diagnostic criteria for at least moderate depression (Montgomery and Aasberg Depression Rating Scale score ≥ 20) will be enrolled prospectively and receive ten, once-a-day sessions of either active iTBS or sham iTBS to the left DLPFC, localized via a neuronavigation system. Participants may have any degree of treatment resistance. Prior to stimulation, participants will undergo a thorough safety screening and a brief diagnostic assessment, genetic analysis of brain-derived neurotropic factor, 5-HTTLPR and 5-HT1A, and cerebral MRI assessments. A selection of neuropsychological tests and questionnaires will be administered prior to stimulation and after ten stimulations. An additional follow-up will be conducted 4 weeks after the last stimulation. The first participant was enrolled on June 4, 2022. Study completion will be in December 2027. The project is approved by the Regional Ethical Committee of Medicine and Health Sciences, Northern Norway, project number 228765. The trial will be conducted according to Good Clinical Practice and published safety guidelines on rTMS treatment. DISCUSSION The aims of the present trial are to investigate the antidepressive effect of a 10-session iTBS protocol on moderately depressed outpatients and to explore the factors that can explain the reduction in depressive symptoms after iTBS but also a poorer response to the treatment. In separate, but related work packages, the trial will assess how clinical, cognitive, brain imaging and genetic measures at baseline relate to the variability in the antidepressive effects of iTBS. TRIAL REGISTRATION ClinicalTrials.gov NCT05516095. Retrospectively registered on August 25, 2022.
Collapse
Affiliation(s)
- Marte Christine Ørbo
- Department of Psychology, Faculty of Health Sciences, UIT the Arctic University of Norway, Huginbakken 32, Tromsø, N-9037, Norway.
| | - Ole K Grønli
- Department of Clinical Medicine, Faculty of Health Sciences, UIT the Arctic University of Norway, Tromsø, Norway
- Division of Mental Health and Substance Abuse, University Hospital of North Norway, Tromsø, Norway
| | - Camilla Larsen
- Department of Psychology, Faculty of Health Sciences, UIT the Arctic University of Norway, Huginbakken 32, Tromsø, N-9037, Norway
- Division of Mental Health and Substance Abuse, University Hospital of North Norway, Tromsø, Norway
| | - Torgil R Vangberg
- Department of Clinical Medicine, Faculty of Health Sciences, UIT the Arctic University of Norway, Tromsø, Norway
- PET Imaging Center, University Hospital of North Norway, Tromsø, Norway
| | - Oddgeir Friborg
- Department of Psychology, Faculty of Health Sciences, UIT the Arctic University of Norway, Huginbakken 32, Tromsø, N-9037, Norway
| | - Zsolt Turi
- Department of Neuroanatomy, Institute for Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany
| | - Matthias Mittner
- Department of Psychology, Faculty of Health Sciences, UIT the Arctic University of Norway, Huginbakken 32, Tromsø, N-9037, Norway
| | - Gabor Csifcsak
- Department of Psychology, Faculty of Health Sciences, UIT the Arctic University of Norway, Huginbakken 32, Tromsø, N-9037, Norway
| | - Per M Aslaksen
- Department of Psychology, Faculty of Health Sciences, UIT the Arctic University of Norway, Huginbakken 32, Tromsø, N-9037, Norway
- Regional Centre for Eating Disorders, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
12
|
Ahmadpanah M, Amini S, Mazdeh M, Haghighi M, Soltanian A, Jahangard L, Keshavarzi A, Brand S. Effectiveness of Repetitive Transcranial Magnetic Stimulation (rTMS) Add-On Therapy to a Standard Treatment in Individuals with Multiple Sclerosis and Concomitant Symptoms of Depression—Results from a Randomized Clinical Trial and Pilot Study. J Clin Med 2023; 12:jcm12072525. [PMID: 37048608 PMCID: PMC10095476 DOI: 10.3390/jcm12072525] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Background: Compared to the general population, persons with multiple sclerosis (MS) are at increased risk of suffering from major depressive disorder (MDD). Repetitive Transcranial Magnetic Stimulation (rTMS) was used successfully to treat individuals with MDD. Here, we conducted a randomized clinical trial and pilot study, and tested the effectiveness of rTMS adjuvant to a standard pharmacological treatment among persons with MS, compared to a sham condition. Materials and Methods: A total of 40 persons with MS (mean age: 32 years; 42.5% females; median EDSS score: 4) and with moderate to severe symptoms of depression were randomly assigned to the rTMS or to the rTMS sham condition, always as adjuvant intervention to the standard treatment with sertraline, a selective serotonin reuptake inhibitor (SSRI). rTMS consisted of 10 sessions each of 37.5 min; the sham condition was identical to the active condition except for the absence of rTMS stimuli. At the beginning and two weeks after the end of the study, participants reported on their fatigue, while experts rated the severity of participants’ depressive symptoms (Montgomery–Asberg Depression Rating Scale; MADRS), cognitive performance (Montreal Cognitive Assessment; MoCA), and degree of disability (Expanded Disability Status Scale; EDSS). Results: Data were analyzed per intent-to-treat. Scores for depression, fatigue, and EDSS declined significantly over time (large effect sizes), but more so in the rTMS condition than in the sham condition (large effect sizes for the time by group-interactions). Compared to the sham condition, scores for depression were significantly lower in the rTMS condition. Scores for cognition improved over time in both study conditions (large effect size). Conclusion: Compared to a sham condition, adjuvant rTMS to a standard pharmacological treatment ameliorated typical MS-related symptoms (depression; fatigue; EDSS scores). Results from this pilot study suggested that rTMS might be routinely applied in persons with MS displaying symptoms of depression and fatigue.
Collapse
|
13
|
Zhao Y, He Z, Luo W, Yu Y, Chen J, Cai X, Gao J, Li L, Gao Q, Chen H, Lu F. Effect of intermittent theta burst stimulation on suicidal ideation and depressive symptoms in adolescent depression with suicide attempt: A randomized sham-controlled study. J Affect Disord 2023; 325:618-626. [PMID: 36682694 DOI: 10.1016/j.jad.2023.01.061] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/04/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023]
Abstract
BACKGROUND Suicidal ideation is a serious symptom of major depressive disorder (MDD). Intermittent theta burst stimulation (iTBS) is a safe, effective brain stimulation treatment for alleviating suicidal ideation in adults with MDD. This study aimed to examine the clinical efficacy of iTBS on reducing suicidal ideation in adolescent MDD with suicide attempt. METHODS In a randomized, sham-controlled protocol, a total of 10 sessions of iTBS was administrated to the left dorsolateral prefrontal cortex (DLPFC) in patients once a day for two weeks. The suicidal ideation and depressive symptoms were assessed using Beck Scale for Suicide Ideation-Chinese Version (BSI-CV), Hamilton Rating Scale for Depression (HAMD-24), and Self-rating Depression Scale (SDS) at baseline and after 10 treatment sessions. RESULTS Forty-five patients were randomized assigned to either active iTBS (n = 23) or sham group (n = 22). The suicidal ideation and depressive symptoms of the active iTBS group were significantly ameliorated over 2 weeks of treatment. Further, higher baseline SDS, HAMD-24 and BSI-CV scores in the active iTBS group were associated with greater reductions. LIMITATIONS A larger sample size and double-blinded clinical trial should be conducted to verify the reliability and reproducibility. CONCLUSIONS The current study suggested that daily iTBS of the left DLPFC for 2 weeks could effectively and safely alleviate suicidal ideation and mitigate depression in adolescent MDD, especially for individuals with relatively more severe symptoms. Although caution is warranted, the findings could provide further evidence for the effectiveness and safety of iTBS in clinical practice.
Collapse
Affiliation(s)
- Yi Zhao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Zongling He
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Wei Luo
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yue Yu
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jiajia Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xiao Cai
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jingjing Gao
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Lingjiang Li
- Health Institute, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qing Gao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Fengmei Lu
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.
| |
Collapse
|
14
|
Gao B, Wang Y, Zhang D, Wang Z, Wang Z. Intermittent theta-burst stimulation with physical exercise improves poststroke motor function: A systemic review and meta-analysis. Front Neurol 2022; 13:964627. [PMID: 36110393 PMCID: PMC9468864 DOI: 10.3389/fneur.2022.964627] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Background Intermittent theta-burst stimulation (iTBS) is an optimized rTMS modality that could modulate the excitability of neural structures. Several studies have been conducted to investigate the efficacy of iTBS in improving the motor function of stroke patients. However, the specific role of iTBS in motor function recovery after stroke is unclear. Hence, in our study, we performed a meta-analysis to investigate the efficacy of iTBS for the motor function improvement of stroke patients. Methods MEDLINE, Embase, and Cochrane Library were searched until May 2022 for randomized controlled trials (RCTs). Results Thirteen RCTs with 334 patients were finally included in our study. The primary endpoints were the Fugl-Meyer assessment scale (FMA) and Motor Assessment Scale (MAS) change from baseline. We found that iTBS led to a significant reduction in FMA score (P = 0.002) but not in MAS score (P = 0.24) compared with the sham group. Moreover, standard 600-pulse stimulation showed a better effect on motor function improvement than the sham group (P = 0.004), however, 1200-pulse iTBS showed no effect on motor function improvement after stroke (P = 0.23). The effect of iTBS for improving motor function only exists in chronic stroke patients (P = 0.02) but not in subacute patients (P = 0.27). Conclusion This study supports that iTBS has good efficacy for improving motor function in stroke patients. Therefore, standard 600-pulse stimulation iTBS therapy is proper management and treatment for chronic stroke.
Collapse
Affiliation(s)
- Bixi Gao
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Stroke Research, Soochow University, Suzhou, China
| | - Yunjiang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Stroke Research, Soochow University, Suzhou, China
- Department of Neurosurgery, Yancheng Third People's Hospital, Yancheng, China
| | - Dingding Zhang
- Department of Anesthesia, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zongqi Wang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Stroke Research, Soochow University, Suzhou, China
- *Correspondence: Zongqi Wang
| | - Zhong Wang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Stroke Research, Soochow University, Suzhou, China
| |
Collapse
|