1
|
Guo X, Tang G, Lin F, Fang H, Chen J, Zou T. Biological links between psychological factors and adolescent depression: childhood trauma, rumination, and resilience. BMC Psychiatry 2024; 24:907. [PMID: 39696147 DOI: 10.1186/s12888-024-06369-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND The psychosocial factors play an important role in the development of depression in adolescents. we used metabolomics techniques to explore the links among childhood trauma, rumination, resilience, and adolescent depression. METHODS We selected 57 adolescent depression patients and 53 healthy adolescents. The Childhood Trauma Questionnaire (CTQ), Hamilton Depression Scale (HAMD), Resilience Scale (CD-RISC), and Redundant Thinking Response Scale (RRS) were employed for the purpose of psychological assessment. The patients were regrouped according to their scores using the 27% high-low grouping method. Blood specimens were collected from all adolescents and metabolic data were obtained using LC-MS. RESULTS We found no statistically significant difference between the groups in terms of age, gender, and body mass index (BMI). HAMD, CTQ, and RRS scores were significantly higher in the adolescent depression group (MDD) than in the adolescent healthy control group (HC), and CD-RISP scores were significantly lower than in the HC group (P < 0.001). There were significant differences between the low childhood trauma group (LCT) and high childhood trauma group (HCT), the low rumination group (LRR) and high rumination group (HRR), and the low resilience group (LPR) and high resilience group (HPR) (P < 0.001). RRS, CTQ and HAMD scores were positively correlated, RRS and CTQ scores were positively correlated, CD-RIS was negatively correlated with HAMD, RRS and CTQ scores (P < 0.01). More importantly, we found that DHEAS and LPA (22:6) were identified as significant differential metabolites in both the depressed and normal groups, as well as in the high and low childhood trauma groups. N-Acetyl-L-aspartic acid and DHEAS were identified as significant differential metabolites in both the depressed and normal groups, as well as in the high and low childhood rumination groups. Pseudouridine and LPA(22:6) were identified as significant differential metabolites in both the depressed and normal groups, as well as in the high and low childhood resilience groups. CONCLUSION Psychological factors (childhood trauma, rumination, resilience) are biologically linked to the development of depression in adolescents. The impact of rumination on adolescent depression may be associated with DHEA. The impact of childhood trauma and resilience on adolescent depression may be associated with LPA (22:6).
Collapse
Affiliation(s)
- Xunyi Guo
- Department of Psychiatry, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, China
- Psychiatry Department of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Gan Tang
- Department of Psychiatry, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, China
- Psychiatry Department of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Feng Lin
- Department of Psychosomatic Medicine, Suining Central Hospital, Sichuan Province, Suining, China
| | - Haiyan Fang
- Psychiatry Department of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Jing Chen
- Department of Psychiatry, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, China.
| | - Tao Zou
- Department of Psychiatry, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, China.
| |
Collapse
|
2
|
Blevins EJ, Slopen N, Koenen KC, Mikesell C, Basu A. Perspectives on Integrating Biological Assessments to Address the Health Effects of Childhood Adversities. Harv Rev Psychiatry 2024:00023727-990000000-00016. [PMID: 39636757 DOI: 10.1097/hrp.0000000000000413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
ABSTRACT A majority of adults in the United States (US) report a range of stressful and potentially traumatic childhood experiences (e.g., physical or sexual abuse, witnessing violence, neglect). Such adversities are associated with a range of mental (e.g., anxiety, mood, and behavioral difficulties) and physical (e.g., cardiovascular illnesses, diabetes, asthma) health problems. Increasingly, precision medicine approaches seek to prevent and treat such multifinal downstream health problems by identifying common etiological pathways (e.g., inflammation and immune pathways) and candidate biomarkers to target interventions. In this context, we review the rationale for continued research to identify biomarkers of childhood adversity. Building on the bioecological theory, we emphasize that individual neurobiological profiles develop within multiple ecological levels (individual, family, neighborhood, macrosocial) that confer both risk and protective factors that can attenuate or amplify biological effects of childhood adversity. Given the limited data on adversity-associated biomarkers for children and adolescents, we discuss future recommendations for research, implications for clinical care, and ethical considerations. Preventing childhood adversity and supporting adversity- and trauma-informed systemic intervention approaches remains our primary recommendation. We highlight the continued need to consider both biomarkers of risk and protective factors across ecological levels in future research.
Collapse
Affiliation(s)
- Emily J Blevins
- From Department of Psychiatry, Massachusetts General Hospital (Drs. Blevins, Koenen, and Basu, and Ms. Mikesell); Harvard T. H. Chan School of Public Health (Drs. Slopen, Koenen, and Basu, and Ms. Mikesell) Boston, MA; Broad Institute of MIT and Harvard, Cambridge, MA (Drs. Koenen and Basu, and Ms. Mikesell)
| | | | | | | | | |
Collapse
|
3
|
Ding C, Kong Z, Cheng J, Huang R. Development of a predictive model for the U-shaped relationship between the triglyceride glycemic index and depression using machine learning (NHANES 2009-2018). Heliyon 2024; 10:e38615. [PMID: 39397913 PMCID: PMC11470531 DOI: 10.1016/j.heliyon.2024.e38615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024] Open
Abstract
Background At present, the relationship between depression and the triglyceride glycemic (TyG) index remains a topic of debate. This study sought to elucidate the relationship between depression and the TyG index to create a predictive model that would help doctors diagnose patients. Methods We conducted a cross-sectional study utilizing the National Health and Nutrition Examination Survey (NHANES) dataset, which comprises data from 2009 to 2018. The analysis involved 11,222 adults with a Patient Health Questionnaire-9 (PHQ-9) score of 5 or higher, indicating the presence of depression. As part of the analysis, multiple regression models were used to test whether a linear relationship existed between the TyG index and depression. A threshold effects analysis was used to generate smoothed curves and detect nonlinear correlations. Additionally, the Least Absolute Shrinkage and Selection Operator (LASSO) regression were employed to identify the key risk factors associated with depression. The factors identified were then used to construct the risk prediction nomogram. Finally, Receiver Operating Characteristic (ROC) curves were used to evaluate the discriminative performance of the model. Results Multivariable linear regression analysis indicated a strong positive correlation between depression and the TyG index (β: 0.38, 95 % CI: 0.16-0.60, p = 0.0008). A U-shaped relationship with an inflection point was observed at a TyG index of 8.16. The nomogram model, constructed using risk factors identified by LASSO, exhibited a significant predictive value (AUC = 0.888). Conclusions The results of this investigation point to a U-shaped association between depression risk and the TyG index among Americans. Those with a TyG index of over 8.16 are significantly more likely to develop depression. These results suggest a possible causal relationship and emphasize the importance of monitoring the TyG index in depression risk assessment.
Collapse
Affiliation(s)
- Chao Ding
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhiyu Kong
- South China University of Technology, Guangzhou, China
| | - Jiwei Cheng
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rong Huang
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
4
|
Kang S, Kim W, Nam J, Li K, Kang Y, Bae B, Chun KH, Chung C, Lee J. Non-Targeted Metabolomics Investigation of a Sub-Chronic Variable Stress Model Unveils Sex-Dependent Metabolic Differences Induced by Stress. Int J Mol Sci 2024; 25:2443. [PMID: 38397124 PMCID: PMC10889542 DOI: 10.3390/ijms25042443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024] Open
Abstract
Depression is twice as prevalent in women as in men, however, most preclinical studies of depression have used male rodent models. This study aimed to examine how stress affects metabolic profiles depending on sex using a rodent depression model: sub-chronic variable stress (SCVS). The SCVS model of male and female mice was established in discovery and validation sets. The stress-induced behavioral phenotypic changes were similar in both sexes, however, the metabolic profiles of female plasma and brain became substantially different after stress, whereas those of males did not. Four stress-differential plasma metabolites-β-hydroxybutyric acid (BHB), L-serine, glycerol, and myo-inositol-could yield biomarker panels with excellent performance to discern the stressed individuals only for females. Disturbances in BHB, glucose, 1,5-anhydrosorbitol, lactic acid, and several fatty acids in the plasma of stressed females implied a systemic metabolic shift to β-oxidation in females. The plasma levels of BHB and corticosterone only in stressed females were observed not only in SCVS but also in an acute stress model. These results collectively suggest a sex difference in the metabolic responses by stress, possibly involving the energy metabolism shift to β-oxidation and the HPA axis dysregulation in females.
Collapse
Affiliation(s)
- Seulgi Kang
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea; (S.K.); (K.L.); (Y.K.); (B.B.)
| | - Woonhee Kim
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea; (W.K.); (J.N.); (C.H.C.)
| | - Jimin Nam
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea; (W.K.); (J.N.); (C.H.C.)
| | - Ke Li
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea; (S.K.); (K.L.); (Y.K.); (B.B.)
| | - Yua Kang
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea; (S.K.); (K.L.); (Y.K.); (B.B.)
| | - Boyeon Bae
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea; (S.K.); (K.L.); (Y.K.); (B.B.)
| | - Kwang-Hoon Chun
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea;
| | - ChiHye Chung
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea; (W.K.); (J.N.); (C.H.C.)
| | - Jeongmi Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea; (S.K.); (K.L.); (Y.K.); (B.B.)
| |
Collapse
|
5
|
Delanote J, Correa Rojo A, Wells PM, Steves CJ, Ertaylan G. Systematic identification of the role of gut microbiota in mental disorders: a TwinsUK cohort study. Sci Rep 2024; 14:3626. [PMID: 38351227 PMCID: PMC10864280 DOI: 10.1038/s41598-024-53929-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/06/2024] [Indexed: 02/16/2024] Open
Abstract
Mental disorders are complex disorders influenced by multiple genetic, environmental, and biological factors. Specific microbiota imbalances seem to affect mental health status. However, the mechanisms by which microbiota disturbances impact the presence of depression, stress, anxiety, and eating disorders remain poorly understood. Currently, there are no robust biomarkers identified. We proposed a novel pyramid-layer design to accurately identify microbial/metabolomic signatures underlying mental disorders in the TwinsUK registry. Monozygotic and dizygotic twins discordant for mental disorders were screened, in a pairwise manner, for differentially abundant bacterial genera and circulating metabolites. In addition, multivariate analyses were performed, accounting for individual-level confounders. Our pyramid-layer study design allowed us to overcome the limitations of cross-sectional study designs with significant confounder effects and resulted in an association of the abundance of genus Parabacteroides with the diagnosis of mental disorders. Future research should explore the potential role of Parabacteroides as a mediator of mental health status. Our results indicate the potential role of the microbiome as a modifier in mental disorders that might contribute to the development of novel methodologies to assess personal risk and intervention strategies.
Collapse
Affiliation(s)
- Julie Delanote
- Sustainable Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Alejandro Correa Rojo
- Sustainable Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
- Data Science Institute, Interuniversity Institute for Biostatistics and Statistical Bioinformatics (I-BioStat), Hasselt University, Diepenbeek, Belgium
| | - Philippa M Wells
- Department of Twin Research and Genetic Epidemiology, King's College London, St Thomas' Hospital, 3-4th Floor South Wing Block D, Westminster Bridge Road, London, SE1 7EH, UK
| | - Claire J Steves
- Department of Twin Research and Genetic Epidemiology, King's College London, St Thomas' Hospital, 3-4th Floor South Wing Block D, Westminster Bridge Road, London, SE1 7EH, UK
- Department of Ageing and Health, St Thomas' Hospital, 9th floor, North Wing, Westminster Bridge Road, London, SE1 7EH, UK
| | - Gökhan Ertaylan
- Sustainable Health, Flemish Institute for Technological Research (VITO), Mol, Belgium.
| |
Collapse
|
6
|
Liu M, Ma W, He Y, Sun Z, Yang J. Recent Progress in Mass Spectrometry-Based Metabolomics in Major Depressive Disorder Research. Molecules 2023; 28:7430. [PMID: 37959849 PMCID: PMC10647556 DOI: 10.3390/molecules28217430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
Major depressive disorder (MDD) is a serious mental illness with a heavy social burden, but its underlying molecular mechanisms remain unclear. Mass spectrometry (MS)-based metabolomics is providing new insights into the heterogeneous pathophysiology, diagnosis, treatment, and prognosis of MDD by revealing multi-parametric biomarker signatures at the metabolite level. In this comprehensive review, recent developments of MS-based metabolomics in MDD research are summarized from the perspective of analytical platforms (liquid chromatography-MS, gas chromatography-MS, supercritical fluid chromatography-MS, etc.), strategies (untargeted, targeted, and pseudotargeted metabolomics), key metabolite changes (monoamine neurotransmitters, amino acids, lipids, etc.), and antidepressant treatments (both western and traditional Chinese medicines). Depression sub-phenotypes, comorbid depression, and multi-omics approaches are also highlighted to stimulate further advances in MS-based metabolomics in the field of MDD research.
Collapse
Affiliation(s)
- Mingxia Liu
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; (M.L.)
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Wen Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yi He
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; (M.L.)
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Zuoli Sun
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; (M.L.)
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Jian Yang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; (M.L.)
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| |
Collapse
|
7
|
Sano F, Kikushima K, Benner S, Xu L, Kahyo T, Yamasue H, Setou M. Associations between prefrontal PI (16:0/20:4) lipid, TNC mRNA, and APOA1 protein in schizophrenia: A trans-omics analysis in post-mortem brain. Front Psychiatry 2023; 14:1145437. [PMID: 37143779 PMCID: PMC10151580 DOI: 10.3389/fpsyt.2023.1145437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/24/2023] [Indexed: 05/06/2023] Open
Abstract
Background Though various mechanisms have been proposed for the pathophysiology of schizophrenia, the full extent of these mechanisms remains unclear, and little is known about the relationships among them. We carried out trans-omics analyses by comparing the results of the previously reported lipidomics, transcriptomics, and proteomics analyses; all of these studies used common post-mortem brain samples. Methods We collected the data from three aforementioned omics studies on 6 common post-mortem samples (3 schizophrenia patients and 3 controls), and analyzed them as a whole group sample. Three correlation analyses were performed for each of the two of three omics studies in these samples. In order to discuss the strength of the correlations in a limited sample size, the p-values of each correlation coefficient were confirmed using the Student's t-test. In addition, partial correlation analysis was also performed for some correlations, to verify the strength of the impact of each factor on the correlations. Results The following three factors were strongly correlated with each other: the lipid level of phosphatidylinositol (PI) (16:0/20:4), the amount of TNC mRNA, and the quantitative signal intensity of APOA1 protein. PI (16:0/20:4) and TNC showed a positive correlation, while PI (16:0/20:4) and APOA1, and TNC and APOA1 showed negative correlations. All of these correlations reached at p < 0.01. PI (16:0/20:4) and TNC were decreased in the prefrontal cortex of schizophrenia samples, while APOA1 was increased. Partial correlation analyses among them suggested that PI (16:0/20:4) and TNC have no direct correlation, but their relationships are mediated by APOA1. Conclusion The current results suggest that these three factors may provide new clues to elucidate the relationships among the candidate mechanisms of schizophrenia, and support the potential of trans-omics analyses as a new analytical method.
Collapse
Affiliation(s)
- Fumito Sano
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kenji Kikushima
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
- International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Seico Benner
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Lili Xu
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tomoaki Kahyo
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hidenori Yamasue
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
- International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Systems Molecular Anatomy, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
8
|
Zhang L, Liu J, Deng M, Chen X, Jiang L, Zhang J, Tao L, Yu W, Qiu Y. Enterococcus faecalis promotes the progression of colorectal cancer via its metabolite: biliverdin. J Transl Med 2023; 21:72. [PMID: 36732757 PMCID: PMC9896694 DOI: 10.1186/s12967-023-03929-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Enterococcus faecalis (Efa) has been shown to be a "driver bacteria" in the occurrence and development of colorectal cancer (CRC). This study aims to explore the effect of specific metabolites of Efa on CRC. METHODS The pro-tumor effects of Efa were assessed in colonic epithelial cells. The tumor-stimulating molecule produced by Efa was identified using liquid chromatography mass spectrometry (LC-MS). The proliferative effect of metabolites on CRC cells in vitro was assayed as well. The concentration of vascular endothelial growth factor A (VEGFA) and interleukin-8 (IL-8) was determined using enzyme-linked immunosorbent assay (ELISA). Tubular formation assay of human umbilical vein endothelial cells (HUVEC) and cell migration assay were applied to study angiogenesis. Additionally, western blot analysis was used to investigate key regulatory proteins involved in the angiogenesis pathway. Tumor growth was assessed using mouse models with two CRC cells and human colon cancer organoid. RESULTS Co-incubation with the conditioned medium of Efa increased the proliferation of cultured CRC cells. Biliverdin (BV) was determined as the key metabolite produced by Efa using LC-MS screening. BV promoted colony formation and cell proliferation and inhibited cell cycle arrest of cultured CRC cells. BV significantly increased the expression level of IL-8 and VEGFA by regulating the PI3K/AKT/mTOR signaling pathway, leading to the acceleration of angiogenesis in CRC. The up-regulation of proliferation and angiogenesis by BV were also confirmed in mice. CONCLUSION In conclusion, BV, as the tumor-stimulating metabolite of Efa, generates proliferative and angiogenic effects on CRC, which is mainly mediated by the activation of PI3K/AKT/mTOR.
Collapse
Affiliation(s)
- Li Zhang
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Liu
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mingxia Deng
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiangliu Chen
- grid.417397.f0000 0004 1808 0985Department of Gastric Surgery, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Lushun Jiang
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiajie Zhang
- grid.417401.70000 0004 1798 6507Center for General Practice Medicine, Department of Infectious Diseases, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Lisheng Tao
- grid.452247.2Department of Gastroenterology, The People’s Hospital Affiliated to Jiangsu University, Zhenjiang, China
| | - Wei Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Yunqing Qiu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|