1
|
Pretzsch CM, Parlatini V, Murphy D. Single-dose methylphenidate induces shift in functional connectivity associated with positive longer term clinical response in adult attention-deficit/hyperactivity disorder. Sci Rep 2025; 15:5794. [PMID: 39962109 PMCID: PMC11833068 DOI: 10.1038/s41598-025-87204-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 01/16/2025] [Indexed: 02/20/2025] Open
Abstract
Stimulants, such as methylphenidate (MPH), are beneficial for attention-deficit/hyperactivity disorder (ADHD), but individual response varies. A deeper understanding of the mechanisms underpinning response is needed. Previous studies suggest that a single MPH dose modulates resting-state functional connectivity (rs-fc). We investigated whether single-dose induced rs-fc changes were associated with post-dose optimization clinical response. Fifty-six adults with ADHD underwent rs-functional magnetic resonance imaging (rs-fMRI) under placebo and a single MPH dose, before starting MPH treatment. Clinical response was measured at two months. We tested if a single MPH dose (vs. placebo) shifted rs-fc; how these shifts were associated with treatment response (categorical approach); and whether these associations were driven by improvement on either ADHD symptom domain. A single MPH dose (vs. placebo) increased rs-fc in three subcortical-cortical and cerebellar-cortical clusters. Enhanced rs-fc between the cerebellar vermis (lobule 6) and the left precentral gyrus was associated with a greater probability of responding to treatment (χ2(7) = 22.740, p = .002) and with an improvement on both inattentive and hyperactive/impulsive symptoms (both p ≤ .001). We provide proof-of-concept that the brain functional response to a single MPH dose, administered before starting routine treatment, is indicative of two-month clinical response in adult ADHD. This may encourage future replication using clinically applicable measures.
Collapse
Affiliation(s)
- Charlotte M Pretzsch
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK.
| | - Valeria Parlatini
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK
- Centre for Innovation in Mental Health, School of Psychology, University of Southampton, Southampton, UK
- Solent NHS Trust, Southampton, UK
| | - Declan Murphy
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK
| |
Collapse
|
2
|
Liu Q, Liao W, Yang L, Cao L, Liu N, Gu Y, Wang S, Xu X, Wang H. Aberrant amplitude of low-frequency fluctuation and functional connectivity in children with different subtypes of ADHD: a resting-state fNIRS study. BMC Psychiatry 2024; 24:919. [PMID: 39696119 DOI: 10.1186/s12888-024-06350-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder with different subtypes of pathogenesis. Insufficient research on the subtypes of ADHD has limited the effectiveness of therapeutic methods. METHODS This study used resting-state functional near-infrared spectroscopy (fNIRS) to record hemodynamic signals in 34 children with ADHD-combined subtype (ADHD-C), 52 children with ADHD-inattentive subtype (ADHD-I), and 24 healthy controls (HCs). The amplitude of low-frequency fluctuation (ALFF) and the functional connectivity (FC) analysis were conducted for all subjects. RESULTS Compared with HCs, the ADHD group exhibited significantly increased ALFF and decreased FC. The ADHD-C group showed significantly higher ALFF in partial brain regions and significantly lower FC between multiple brain regions than participants with ADHD-I. The male group displayed a significant increase in ALFF in some brain regions, while no significant difference was found in FC when compared to the female group. CONCLUSIONS This study provides evidence to support the subtype classification of ADHD-I and ADHD-C, and the combined analysis of ALFF and FC has the potential to be a promising biomarker for the diagnosis of ADHD.
Collapse
Affiliation(s)
- Qinwei Liu
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Wenjing Liao
- Department of Psychology, Children's Hospital, Zhejiang University School of Medicine, National Children's Regional Medical Center, National Clinical Research Center for Child Health, Hangzhou, 310052, P.R. China
| | - Li Yang
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Longfei Cao
- Centre for Cognition and Brain disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, 311121, P.R. China
| | - Ningning Liu
- Peking University Sixth Hospital, Institute of Mental Health, Beijing, 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Yongxue Gu
- Weifang People's Hospital, Weifang, 261041, China
| | - Shaohua Wang
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
| | - Xiaobin Xu
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- Zhejiang Herymed Technology Co., Ltd., Hangzhou, 310058, China.
| | - Huafen Wang
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
3
|
Wang XK, Yang C, Dong WQ, Zhang QR, Ma SZ, Zang YF, Yuan LX. Impaired segregation of the attention deficit hyperactivity disorder related pattern in children. J Psychiatr Res 2024; 170:111-121. [PMID: 38134720 DOI: 10.1016/j.jpsychires.2023.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/05/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND Inattention is a key characteristic of attention deficit hyperactivity disorder (ADHD). Specific brain abnormalities associated with this symptom form a discernible pattern related with ADHD in children (i.e., ADHD related pattern) in our earlier research. The developmental processes of segregation and integration may be crucial to ADHD. However, how brains reconfigure these processes of the ADHD related pattern in different subtypes of ADHD and across sexes remain unclear. METHODS Nested-spectral partition method was applied to identify effects of subtype and sex on segregation and integration of the ADHD related pattern, using 145 ADHD patients and 135 typically developing controls (TDC) aged 7-14. Relationships between the measures and inattention symptoms were also investigated. RESULTS Children with ADHD exhibited lower segregation of the ADHD related pattern (p = 1.17 × 10-8) than TDCs. Only the main effect of subtype was significant (p = 1.14 × 10-5). Both ADHD-C (p = 2.16 × 10-6) and ADHD-I (p = 2.87 × 10-6) patients had lower segregation components relative to the TDC. Moreover, segregation components were negatively correlated with inattention scores. CONCLUSIONS This study identified impaired segregation in the ADHD related pattern of children with ADHD and found shared neural bases among different subtypes and sexes.
Collapse
Affiliation(s)
- Xing-Ke Wang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China; Jing Hengyi School of Education, Hangzhou Normal University, Hangzhou, China
| | - Chen Yang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China; Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China
| | - Wen-Qiang Dong
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China; Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China
| | - Qiu-Rong Zhang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China; Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China
| | - Sheng-Zhi Ma
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China; Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China
| | - Yu-Feng Zang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China; Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China; TMS Center, Deqing Hospital of Hangzhou Normal University, Deqing, Zhejiang, China
| | - Li-Xia Yuan
- School of Physics, Zhejiang University, Hangzhou, China.
| |
Collapse
|
4
|
Tang S, Liu X, Nie L, Qian F, Chen W, He L, Yang M. Diffusion kurtosis imaging reveals abnormal gray matter and white matter development in some brain regions of children with attention-deficit/hyperactivity disorder. J Neurosci Res 2024; 102:e25284. [PMID: 38284864 DOI: 10.1002/jnr.25284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 01/30/2024]
Abstract
In this study, we explored the application of diffusion kurtosis imaging (DKI) technology in the brains of children with attention-deficit/hyperactivity disorder (ADHD). Seventy-two children with ADHD and 79 age- and sex-matched healthy controls were included in the study. All children were examined by means of 3D T1-weighted image, DKI, and conventional sequence scanning. The volume and DKI parameters of each brain region were obtained by software postprocessing (GE ADW 4.6 workstation) and compared between the two groups of children to determine the imaging characteristics of children with ADHD. The result showed the total brain volume was lower in children with ADHD than in healthy children (p < .05). The gray and white matter volumes in the frontal lobe, temporal lobe, hippocampus, caudate nucleus, putamen, globus pallidus, and other brain regions were lower in children with ADHD than in healthy children (p < .05). The axial kurtosis (Ka), mean kurtosis (MK), fractional anisotropy (FA), and radial kurtosis(Kr) values in the frontal lobe, temporal lobe, and caudate nucleus of children with ADHD were lower than those of healthy children, while the mean diffusivity(MD) and fractional anisotropy of kurtosis (FAK) values were higher than those of healthy children (p < .05). Additionally, the Ka, MK, FA, and Kr values in the frontal lobe, caudate nucleus, and temporal lobe could be used to distinguish children with ADHD (AUC > .05, p < .05). In conclusion, DKI showed abnormal gray matter and white matter development in some brain regions of children with ADHD.
Collapse
Affiliation(s)
- Shilong Tang
- Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Xianfan Liu
- Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Lisha Nie
- GE Healthcare, MR Research China, Beijing, China
| | - Fangfang Qian
- Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Wushuang Chen
- Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Ling He
- Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Mei Yang
- Department of Neonatal Diagnosis and Treatment Center, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Kowalczyk OS, Cubillo AI, Criaud M, Giampietro V, O'Daly OG, Mehta MA, Rubia K. Single-dose effects of methylphenidate and atomoxetine on functional connectivity during an n-back task in boys with ADHD. Psychopharmacology (Berl) 2023; 240:2045-2060. [PMID: 37500785 PMCID: PMC10506949 DOI: 10.1007/s00213-023-06422-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 07/08/2023] [Indexed: 07/29/2023]
Abstract
RATIONALE Working memory deficits and associated neurofunctional abnormalities are frequently reported in attention-deficit/hyperactivity disorder (ADHD). Methylphenidate and atomoxetine improve working memory performance and increase activation of regions under-functioning in ADHD. Additionally, methylphenidate has been observed to modulate functional networks involved in working memory. No research, however, has examined the effects of atomoxetine or compared the two drugs. OBJECTIVES This study aimed to test methylphenidate and atomoxetine effects on functional connectivity during working memory in boys with ADHD. METHODS We tested comparative effects of methylphenidate and atomoxetine on functional connectivity during the n-back task in 19 medication-naïve boys with ADHD (10-15 years old) relative to placebo and assessed potential normalisation effects of brain dysfunctions under placebo relative to 20 age-matched neurotypical boys. Patients were scanned in a randomised, double-blind, cross-over design under single doses of methylphenidate, atomoxetine, and placebo. Controls were scanned once, unmedicated. RESULTS Patients under placebo showed abnormally increased connectivity between right superior parietal gyrus (rSPG) and left central operculum/insula. This hyperconnectivity was not observed when patients were under methylphenidate or atomoxetine. Furthermore, under methylphenidate, patients showed increased connectivity relative to controls between right middle frontal gyrus (rMFG) and cingulo-temporo-parietal and striato-thalamic regions, and between rSPG and cingulo-parietal areas. Interrogating these networks within patients revealed increased connectivity between both rMFG and rSPG and right supramarginal gyrus under methylphenidate relative to placebo. Nonetheless, no differences across drug conditions were observed within patients at whole brain level. No drug effects on performance were observed. CONCLUSIONS This study shows shared modulating effects of methylphenidate and atomoxetine on parieto-insular connectivity but exclusive effects of methylphenidate on connectivity increases in fronto-temporo-parietal and fronto-striato-thalamic networks in ADHD.
Collapse
Affiliation(s)
- Olivia S Kowalczyk
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Ana I Cubillo
- Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Jacobs Center for Productive Youth Development, Zurich Center for Neuroeconomics, University of Zürich, Zürich, Switzerland
| | - Marion Criaud
- Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Vincent Giampietro
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Owen G O'Daly
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Mitul A Mehta
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Katya Rubia
- Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|
6
|
Tang S, Liu X, Nie L, Qian F, Chen W, He L. Three-dimensional pseudocontinuous arterial spin labeling perfusion imaging shows cerebral blood flow perfusion decline in attention-deficit/hyperactivity disorder children. Front Psychiatry 2023; 14:1064647. [PMID: 36741108 PMCID: PMC9889924 DOI: 10.3389/fpsyt.2023.1064647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023] Open
Abstract
PURPOSE To investigate the feasibility of three-dimensional pseudocontinuous arterial spin labeling (3D-pcASL) perfusion imaging in the brain of children with Attention-deficit/hyperactivity disorder (ADHD). METHODS A total of 78 ADHD children aged 5-13 years were prospectively selected as the study group, and 89 healthy children matched in age and sex were selected as the control group. All children underwent MRI conventional sequence, 3D-pcASL, and 3D-T1 sequence scans. The brain gray and white matter volume and cerebral blood flow (CBF) perfusion values were obtained by software post-processing, and were compared and analyzed in the two groups to find out their characteristics in the brain of ADHD children. RESULTS The total brain volume and total CBF values were lower in ADHD children than in healthy children (P < 0.05); the gray and white matter volumes in the frontal lobe, temporal lobe, hippocampus, caudate nucleus, putamen, globus pallidus and other brain regions were lower in ADHD children than in healthy children (P < 0.05); the gray matter CBF values in the frontal lobe, temporal lobe, hippocampus, caudate nucleus, putamen, globus pallidus and other brain regions were lower in ADHD children than in healthy children (P < 0.05); the differences between the white matter CBF values of white matter in the said brain regions of ADHD children and healthy children were not statistically significant (P > 0.05); and the CBF values in frontal lobe and caudate nuclei could distinguish ADHD children (AUC > 0.05, P < 0.05). CONCLUSION The 3D-pcASL technique showed reduced cerebral perfusion in some brain regions of ADHD children.
Collapse
Affiliation(s)
- Shilong Tang
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Xianfan Liu
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Lisha Nie
- GE Healthcare, MR Research China, Beijing, China
| | - Fangfang Qian
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Wushang Chen
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Ling He
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|