1
|
Ozsahin I, Wang X, Zhou L, Xi K, Hojjati SH, Tanzi E, Maloney T, Fung EK, Dyke JP, Chen K, Pahlajani S, McIntire LB, Costa AP, Dartora WJ, Razlighi QR, Glodzik L, Li Y, Chiang GC, Rusinek H, de Leon MJ, Butler TA. Divergent neurodegeneration associations with choroid plexus volume and degree of calcification in cognitively normal APOE ε4 carriers and non-carriers. Sci Rep 2025; 15:12818. [PMID: 40229453 PMCID: PMC11997051 DOI: 10.1038/s41598-025-97409-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 04/04/2025] [Indexed: 04/16/2025] Open
Abstract
Choroid plexus (CP), best known for producing CSF, also regulate inflammation and clear metabolic waste to maintain brain homeostasis. CP dysfunction is implicated in Alzheimer's Disease (AD), with MRI studies showing CP enlargement in AD. The basis for CP enlargement is unknown. We hypothesized that calcium deposition within CP, which increases with aging and in certain neurodegenerative conditions, might underlie pathologic CP enlargement and be linked to neurodegeneration. In 166 cognitively normal participants, we used multimodal imaging to examine CP structure (MRI-measured overall volume, CT-measured calcium volume), PET-measured Aβ, age, and APOE genotype as predictors of neurodegeneration, indexed as hippocampal volume. CP enlargement was associated with reduced hippocampal volume, particularly in APOE4 carriers. CP calcium was not independently associated with hippocampal volume. However, a significant interaction revealed APOE4 genotype-specific associations between CP calcium and neurodegeneration, with APOE4 carriers showing greater hippocampal volumes in association with greater CP calcium-opposite to our hypothesis. Results suggest that a factor other than calcium drives pathologic CP enlargement associated with neurodegeneration, with this factor especially important in APOE4 carriers. Candidate factors include lipids and inflammatory cells, which are known to accumulate in CP and be regulated by APOE. Our findings highlight CP as a critical locus for studying AD pathogenesis and the mechanisms by which APOE4 promotes AD.
Collapse
Affiliation(s)
- Ilker Ozsahin
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA.
- Operational Research Center in Healthcare, Near East University, Near East Boulevard, Nicosia/TRNC, 99138, Mersin 10, Turkey.
| | - Xiuyuan Wang
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA
| | - Liangdong Zhou
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA
| | - Ke Xi
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA
| | - Seyed Hani Hojjati
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA
| | - Emily Tanzi
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA
| | - Thomas Maloney
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA
| | - Edward K Fung
- Department of Radiology, Weill Cornell Medicine, 525 East 68th Street, New York, NY, 10065, USA
| | - Jonathan P Dyke
- Department of Radiology, Weill Cornell Medicine, 525 East 68th Street, New York, NY, 10065, USA
| | - Kewei Chen
- Banner Alzheimer Institute, Arizona State University, 901 E Willetta St, Phoenix, AZ, 85006, USA
| | - Silky Pahlajani
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA
| | - Laura Beth McIntire
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA
| | - Ana Paula Costa
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - William Jones Dartora
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA
| | - Qolamreza R Razlighi
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA
| | - Lidia Glodzik
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA
| | - Yi Li
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA
| | - Gloria C Chiang
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA
| | - Henry Rusinek
- Department of Radiology, New York University, 660 1st Avenue, New York, NY, 10016, USA
| | - Mony J de Leon
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA
| | - Tracy A Butler
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA.
| |
Collapse
|
2
|
Gong Z, de Rouen A, Zhang N, Alisch JSR, Bilgel M, An Y, Bae J, Fox NY, Guo A, Resnick SM, Mazucanti C, Klistorner S, Klistorner A, Egan JM, Bouhrara M. Age-Related Differences in the Choroid Plexus Structural Integrity Are Associated with Changes in Cognition. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.27.25323022. [PMID: 40061356 PMCID: PMC11888513 DOI: 10.1101/2025.02.27.25323022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
The choroid plexus (CP) plays a critical role in maintaining central nervous system (CNS) homeostasis, producing cerebrospinal fluid, and regulating the entry of specific substances into the CNS from blood. CP dysfunction has been implicated in various neurological and psychiatric disorders, including Alzheimer's disease, Parkinson's disease, and multiple sclerosis. This study investigates the relationship between CP structural integrity and cognitive decline in normative aging, using structural and advanced magnetic resonance imaging techniques, including CP volume, diffusion tensor imaging indices (mean diffusivity, MD, and fractional anisotropy, FA) and relaxometry metrics (longitudinal, T1, and transverse, T2, relaxation times). Our results show that diminished CP microstructural integrity, as reflected by higher T1, T2, and MD values, or lower FA values, is associated with lower cognitive performance in processing speed and fluency. Notably, CP microstructural measures demonstrated greater sensitivity to cognitive decline than macrostructural measures, i.e. CP volume. Longitudinal analysis revealed that individuals with reduced CP structural integrity exhibit steeper cognitive decline over time. Furthermore, structural equation modeling revealed that a latent variable representing CP integrity predicts faster overall cognitive decline, with an effect size comparable to that of age. These findings highlight the importance of CP integrity in maintaining cognitive health and suggest that a holistic approach to assessing CP integrity could serve as a sensitive biomarker for early detection of cognitive decline. Further research is needed to elucidate the mechanisms underlying the relationship between CP structural integrity and cognitive decline and to explore the potential therapeutic implications of targeting CP function to prevent or treat age-related cognitive deficits.
Collapse
Affiliation(s)
- Zhaoyuan Gong
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Angelique de Rouen
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Nathan Zhang
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Joseph S R Alisch
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Murat Bilgel
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Yang An
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jonghyun Bae
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Noam Y Fox
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Alex Guo
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Caio Mazucanti
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Samuel Klistorner
- Save Sight Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Alexander Klistorner
- Save Sight Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Josephine M Egan
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Mustapha Bouhrara
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
3
|
Taoka T, Iwamoto K, Miyata S, Ito R, Nakamichi R, Nakane T, Okada I, Ichikawa K, Kan H, Kamagata K, Kikuta J, Aoki S, Fujimoto A, Kogo Y, Ichinose N, Naganawa S, Ozaki N. MR Imaging Indices for Brain Interstitial Fluid Dynamics and the Effects of Orexin Antagonists on Sleep. Magn Reson Med Sci 2025:mp.2024-0176. [PMID: 39924214 DOI: 10.2463/mrms.mp.2024-0176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025] Open
Abstract
PURPOSE The purpose of this study was to assess the extent to which improvement in sleep with lemborexant contributed to changes in interstitial fluid dynamics. METHODS The 3 methods including diffusion tensor image analysis along the perivascular space (DTI-ALPS), dynamic contrast-enhanced method to assess tissue vascular permeability (Ktrans), and choroid plexus volume (CPV) were used. Correlations between these imaging indices and sleep parameters (latency to persistent sleep [LPS], wake after sleep onset [WASO], total sleep time [TST], and sleep efficiency [SE]) were evaluated using Pearson correlation analysis. Additionally, multiple regression analysis and linear mixed model analysis were employed to assess the relationship between baseline sleep status and imaging parameter changes. MRI and sleep assessments were performed before treatment initiation (week 0, w0) and at 12 weeks after lemborexant administration (week 12, w12). RESULTS The ALPS-index was inversely correlated with LPS and positively correlated with TST and SE at w0. In multiple regression analysis, ALPS-index was lower when sleep parameters other than LPS were poor at w0. A linear mixed model analysis suggested that poor sleep status in LPS and SE at w0 may have an effect on greater ALPS-index. In the evaluation of Ktrans measurement, the single regression analysis showed a statistically significant correlation between the reduction in Ktrans and the shortening in LPS. Examination of CPV and sleep parameters showed a significant negative correlation between TST and CPV at w0 and w12. Multiple regression analysis also showed that TST of w12 had a significant effect on CPV at w12. CONCLUSION Our results suggested that poor sleep status is related to the greater change of ALPS-index and CPV improvement after lemborexant administration may be related to in part to sleep parameter improvement.
Collapse
Affiliation(s)
- Toshiaki Taoka
- Department of Innovative Biomedical Visualization (iBMV), Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Kunihiro Iwamoto
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Seiko Miyata
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Rintaro Ito
- Department of Innovative Biomedical Visualization (iBMV), Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Rei Nakamichi
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Toshiki Nakane
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Ippei Okada
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Kazushige Ichikawa
- Department of Radiological Technology, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Hirohito Kan
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University of Medicine, Tokyo, Japan
| | - Junko Kikuta
- Department of Radiology, Juntendo University of Medicine, Tokyo, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University of Medicine, Tokyo, Japan
| | | | - Yuki Kogo
- Medical Headquarters, Eisai Co., Ltd., Tokyo, Japan
| | - Nobuyasu Ichinose
- Department of Innovative Biomedical Visualization (iBMV), Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Department of CT-MR Solution Planning, Canon Medical Systems Corporation, Otawara, Tochigi, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Norio Ozaki
- Department of Pathophysiology of Mental Disorders, Nagoya University Graduate School of Medicine, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
4
|
Jiang J, Zhuo Z, Wang A, Li W, Jiang S, Duan Y, Ren Q, Zhao M, Wang L, Yang S, Awan MUN, Liu Y, Xu J. Choroid plexus volume as a novel candidate neuroimaging marker of the Alzheimer's continuum. Alzheimers Res Ther 2024; 16:149. [PMID: 38961406 PMCID: PMC11221040 DOI: 10.1186/s13195-024-01520-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Enlarged choroid plexus (ChP) volume has been reported in patients with Alzheimer's disease (AD) and inversely correlated with cognitive performance. However, its clinical diagnostic and predictive value, and mechanisms by which ChP impacts the AD continuum remain unclear. METHODS This prospective cohort study enrolled 607 participants [healthy control (HC): 110, mild cognitive impairment (MCI): 269, AD dementia: 228] from the Chinese Imaging, Biomarkers, and Lifestyle study between January 1, 2021, and December 31, 2022. Of the 497 patients on the AD continuum, 138 underwent lumbar puncture for cerebrospinal fluid (CSF) hallmark testing. The relationships between ChP volume and CSF pathological hallmarks (Aβ42, Aβ40, Aβ42/40, tTau, and pTau181), neuropsychological tests [Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), Neuropsychiatric Inventory (NPI), and Activities of Daily Living (ADL) scores], and multimodal neuroimaging measures [gray matter volume, cortical thickness, and corrected cerebral blood flow (cCBF)] were analyzed using partial Spearman's correlation. The mediating effects of four neuroimaging measures [ChP volume, hippocampal volume, lateral ventricular volume (LVV), and entorhinal cortical thickness (ECT)] on the relationship between CSF hallmarks and neuropsychological tests were examined. The ability of the four neuroimaging measures to identify cerebral Aβ42 changes or differentiate among patients with AD dementia, MCI and HCs was determined using receiver operating characteristic analysis, and their associations with neuropsychological test scores at baseline were evaluated by linear regression. Longitudinal associations between the rate of change in the four neuroimaging measures and neuropsychological tests scores were evaluated on the AD continuum using generalized linear mixed-effects models. RESULTS The participants' mean age was 65.99 ± 8.79 years. Patients with AD dementia exhibited the largest baseline ChP volume than the other groups (P < 0.05). ChP volume enlargement correlated with decreased Aβ42 and Aβ40 levels; lower MMSE and MoCA and higher NPI and ADL scores; and lower volume, cortical thickness, and cCBF in other cognition-related regions (all P < 0.05). ChP volume mediated the association of Aβ42 and Aβ40 levels with MMSE scores (19.08% and 36.57%), and Aβ42 levels mediated the association of ChP volume and MMSE or MoCA scores (39.49% and 34.36%). ChP volume alone better identified cerebral Aβ42 changes than LVV alone (AUC = 0.81 vs. 0.67, P = 0.04) and EC thickness alone (AUC = 0.81 vs.0.63, P = 0.01) and better differentiated patients with MCI from HCs than hippocampal volume alone (AUC = 0.85 vs. 0.81, P = 0.01), and LVV alone (AUC = 0.85 vs.0.82, P = 0.03). Combined ChP and hippocampal volumes significantly increased the ability to differentiate cerebral Aβ42 changes and patients among AD dementia, MCI, and HCs groups compared with hippocampal volume alone (all P < 0.05). After correcting for age, sex, years of education, APOE ε4 status, eTIV, and hippocampal volume, ChP volume was associated with MMSE, MoCA, NPI, and ADL score at baseline, and rapid ChP volume enlargement was associated with faster deterioration in NPI scores with an average follow-up of 10.03 ± 4.45 months (all P < 0.05). CONCLUSIONS ChP volume may be a novel neuroimaging marker associated with neurodegenerative changes and clinical AD manifestations. It could better detect the early stages of the AD and predict prognosis, and significantly enhance the differential diagnostic ability of hippocampus on the AD continuum.
Collapse
Affiliation(s)
- Jiwei Jiang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zhizheng Zhuo
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Anxin Wang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Wenyi Li
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Shirui Jiang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yunyun Duan
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Qiwei Ren
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Min Zhao
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Linlin Wang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Shiyi Yang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
| | | | - Yaou Liu
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- National Clinical Research Center for Neurological Diseases, Beijing, China.
| | - Jun Xu
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- National Clinical Research Center for Neurological Diseases, Beijing, China.
| |
Collapse
|
5
|
Pearson MJ, Wagstaff R, Williams RJ. Choroid plexus volumes and auditory verbal learning scores are associated with conversion from mild cognitive impairment to Alzheimer's disease. Brain Behav 2024; 14:e3611. [PMID: 38956818 PMCID: PMC11219301 DOI: 10.1002/brb3.3611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 07/04/2024] Open
Abstract
PURPOSE Mild cognitive impairment (MCI) can be the prodromal phase of Alzheimer's disease (AD) where appropriate intervention might prevent or delay conversion to AD. Given this, there has been increasing interest in using magnetic resonance imaging (MRI) and neuropsychological testing to predict conversion from MCI to AD. Recent evidence suggests that the choroid plexus (ChP), neural substrates implicated in brain clearance, undergo volumetric changes in MCI and AD. Whether the ChP is involved in memory changes observed in MCI and can be used to predict conversion from MCI to AD has not been explored. METHOD The current study used data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database to investigate whether later progression from MCI to AD (progressive MCI [pMCI], n = 115) or stable MCI (sMCI, n = 338) was associated with memory scores using the Rey Auditory Verbal Learning Test (RAVLT) and ChP volumes as calculated from MRI. Classification analyses identifying pMCI or sMCI group membership were performed to compare the predictive ability of the RAVLT and ChP volumes. FINDING The results indicated a significant difference between pMCI and sMCI groups for right ChP volume, with the pMCI group showing significantly larger right ChP volume (p = .01, 95% confidence interval [-.116, -.015]). A significant linear relationship between the RAVLT scores and right ChP volume was found across all participants, but not for the two groups separately. Classification analyses showed that a combination of left ChP volume and auditory verbal learning scores resulted in the most accurate classification performance, with group membership accurately predicted for 72% of the testing data. CONCLUSION These results suggest that volumetric ChP changes appear to occur before the onset of AD and might provide value in predicting conversion from MCI to AD.
Collapse
Affiliation(s)
- Michael J. Pearson
- Faculty of HealthCharles Darwin UniversityDarwinNorthern TerritoryAustralia
| | - Ruth Wagstaff
- Faculty of HealthCharles Darwin UniversityDarwinNorthern TerritoryAustralia
| | | | | |
Collapse
|
6
|
Andravizou A, Stavropoulou De Lorenzo S, Kesidou E, Michailidou I, Parissis D, Boziki MK, Stamati P, Bakirtzis C, Grigoriadis N. The Time Trajectory of Choroid Plexus Enlargement in Multiple Sclerosis. Healthcare (Basel) 2024; 12:768. [PMID: 38610190 PMCID: PMC11011748 DOI: 10.3390/healthcare12070768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/22/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Choroid plexus (CP) can be seen as a watchtower of the central nervous system (CNS) that actively regulates CNS homeostasis. A growing body of literature suggests that CP alterations are involved in the pathogenesis of multiple sclerosis (MS) but the underlying mechanisms remain elusive. CPs are enlarged and inflamed in relapsing-remitting (RRMS) but also in clinically isolated syndrome (CIS) and radiologically isolated syndrome (RIS) stages, far beyond MS diagnosis. Increases in the choroid plexus/total intracranial volume (CP/TIV) ratio have been robustly associated with increased lesion load, higher translocator protein (TSPO) uptake in normal-appearing white matter (NAWM) and thalami, as well as with higher annual relapse rate and disability progression in highly active RRMS individuals, but not in progressive MS. The CP/TIV ratio has only slightly been correlated with magnetic resonance imaging (MRI) findings (cortical or whole brain atrophy) and clinical outcomes (EDSS score) in progressive MS. Therefore, we suggest that plexus volumetric assessments should be mainly applied to the early disease stages of MS, whereas it should be taken into consideration with caution in progressive MS. In this review, we attempt to clarify the pathological significance of the temporal CP volume (CPV) changes in MS and highlight the pitfalls and limitations of CP volumetric analysis.
Collapse
Affiliation(s)
- Athina Andravizou
- Multiple Sclerosis Center, Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (A.A.); (S.S.D.L.); (E.K.); (I.M.); (D.P.); (M.-K.B.); (N.G.)
| | - Sotiria Stavropoulou De Lorenzo
- Multiple Sclerosis Center, Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (A.A.); (S.S.D.L.); (E.K.); (I.M.); (D.P.); (M.-K.B.); (N.G.)
| | - Evangelia Kesidou
- Multiple Sclerosis Center, Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (A.A.); (S.S.D.L.); (E.K.); (I.M.); (D.P.); (M.-K.B.); (N.G.)
| | - Iliana Michailidou
- Multiple Sclerosis Center, Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (A.A.); (S.S.D.L.); (E.K.); (I.M.); (D.P.); (M.-K.B.); (N.G.)
| | - Dimitrios Parissis
- Multiple Sclerosis Center, Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (A.A.); (S.S.D.L.); (E.K.); (I.M.); (D.P.); (M.-K.B.); (N.G.)
| | - Marina-Kleopatra Boziki
- Multiple Sclerosis Center, Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (A.A.); (S.S.D.L.); (E.K.); (I.M.); (D.P.); (M.-K.B.); (N.G.)
| | - Polyxeni Stamati
- Department of Neurology, University Hospital of Larissa, 41334 Larissa, Greece;
| | - Christos Bakirtzis
- Multiple Sclerosis Center, Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (A.A.); (S.S.D.L.); (E.K.); (I.M.); (D.P.); (M.-K.B.); (N.G.)
| | - Nikolaos Grigoriadis
- Multiple Sclerosis Center, Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (A.A.); (S.S.D.L.); (E.K.); (I.M.); (D.P.); (M.-K.B.); (N.G.)
| |
Collapse
|
7
|
Akaishi T, Fujimori J, Nakashima I. Enlarged choroid plexus in multiple sclerosis is associated with increased lesion load and atrophy in white matter but not gray matter atrophy. Mult Scler Relat Disord 2024; 82:105424. [PMID: 38181695 DOI: 10.1016/j.msard.2024.105424] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/16/2023] [Accepted: 01/01/2024] [Indexed: 01/07/2024]
Abstract
BACKGROUND Enlargement of the choroid plexus (CP) is reported to associate with inflammatory activity and contribute to brain atrophy in patients with multiple sclerosis (pwMS). However, a recent study in healthy volunteers (HVTs) has suggested that CP enlargement can be attributed to ventriculomegaly. OBJECTIVES To clarify the pathological significance of the enlargement of CP in multiple sclerosis (MS). METHODS A total of 102 pwMS (89 with relapsing-remitting MS and 13 with secondary progressive MS) and 41 HVTs were cross-sectionally evaluated using brain volumetry. The CP volume was compared between disease groups and investigated for the relationships with other brain regional volumes. RESULTS CP volume was significantly larger in pwMS than in HVTs in the univariate analysis, but not in multivariable analysis. Meanwhile, the CP and lateral ventricle (LV) volumes were significantly correlated. CP enlargement was significantly associated with increased lesion load and cerebral white matter (WM) atrophy, even after adjusting for LV volume. In contrast, multivariable analyses revealed that LV enlargement, but not CP enlargement, was associated with total gray matter (GM) atrophy. CONCLUSION CP enlargement was closely associated with LV enlargement. After adjusting for LV volume, CP enlargement in pwMS was associated with increased lesion load and WM atrophy but not GM atrophy.
Collapse
Affiliation(s)
- Tetsuya Akaishi
- Department of Neurology, Tohoku University, Sendai, Japan; Department of Education and Support for Regional Medicine, Tohoku University, Sendai, Japan
| | - Juichi Fujimori
- Division of Neurology, Tohoku Medical and Pharmaceutical University, Sendai, Japan.
| | - Ichiro Nakashima
- Division of Neurology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
8
|
Garmendia JV, De Sanctis CV, Das V, Annadurai N, Hajduch M, De Sanctis JB. Inflammation, Autoimmunity and Neurodegenerative Diseases, Therapeutics and Beyond. Curr Neuropharmacol 2024; 22:1080-1109. [PMID: 37898823 PMCID: PMC10964103 DOI: 10.2174/1570159x22666231017141636] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/13/2023] [Accepted: 08/03/2023] [Indexed: 10/30/2023] Open
Abstract
Neurodegenerative disease (ND) incidence has recently increased due to improved life expectancy. Alzheimer's (AD) or Parkinson's disease (PD) are the most prevalent NDs. Both diseases are poly genetic, multifactorial and heterogenous. Preventive medicine, a healthy diet, exercise, and controlling comorbidities may delay the onset. After the diseases are diagnosed, therapy is needed to slow progression. Recent studies show that local, peripheral and age-related inflammation accelerates NDs' onset and progression. Patients with autoimmune disorders like inflammatory bowel disease (IBD) could be at higher risk of developing AD or PD. However, no increase in ND incidence has been reported if the patients are adequately diagnosed and treated. Autoantibodies against abnormal tau, β amyloid and α- synuclein have been encountered in AD and PD and may be protective. This discovery led to the proposal of immune-based therapies for AD and PD involving monoclonal antibodies, immunization/ vaccines, pro-inflammatory cytokine inhibition and anti-inflammatory cytokine addition. All the different approaches have been analysed here. Future perspectives on new therapeutic strategies for both disorders are concisely examined.
Collapse
Affiliation(s)
- Jenny Valentina Garmendia
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, The Czech Republic
| | - Claudia Valentina De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, The Czech Republic
| | - Viswanath Das
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, The Czech Republic
- The Czech Advanced Technology and Research Institute (Catrin), Palacky University, Olomouc, The Czech Republic
| | - Narendran Annadurai
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, The Czech Republic
| | - Marián Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, The Czech Republic
- The Czech Advanced Technology and Research Institute (Catrin), Palacky University, Olomouc, The Czech Republic
| | - Juan Bautista De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, The Czech Republic
- The Czech Advanced Technology and Research Institute (Catrin), Palacky University, Olomouc, The Czech Republic
| |
Collapse
|
9
|
Stavropoulou De Lorenzo S, Bakirtzis C, Konstantinidou N, Kesidou E, Parissis D, Evangelopoulos ME, Elsayed D, Hamdy E, Said S, Grigoriadis N. How Early Is Early Multiple Sclerosis? J Clin Med 2023; 13:214. [PMID: 38202221 PMCID: PMC10780129 DOI: 10.3390/jcm13010214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
The development and further optimization of the diagnostic criteria for multiple sclerosis (MS) emphasize the establishment of an early and accurate diagnosis. So far, numerous studies have revealed the significance of early treatment administration for MS and its association with slower disease progression and better late outcomes of the disease with regards to disability accumulation. However, according to current research results, both neuroinflammatory and neurodegenerative processes may exist prior to symptom initiation. Despite the fact that a significant proportion of individuals with radiologically isolated syndrome (RIS) progress to MS, currently, there is no available treatment approved for RIS. Therefore, our idea of "early treatment administration" might be already late in some cases. In order to detect the individuals who will progress to MS, we need accurate biomarkers. In this review, we present notable research results regarding the underlying pathology of MS, as well as several potentially useful laboratory and neuroimaging biomarkers for the identification of high-risk individuals with RIS for developing MS. This review aims to raise clinicians' awareness regarding "subclinical" MS, enrich their understanding of MS pathology, and familiarize them with several potential biomarkers that are currently under investigation and might be used in clinical practice in the future for the identification of individuals with RIS at high risk for conversion to definite MS.
Collapse
Affiliation(s)
- Sotiria Stavropoulou De Lorenzo
- Multiple Sclerosis Center, Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (S.S.D.L.); (N.K.); (E.K.); (D.P.); (N.G.)
| | - Christos Bakirtzis
- Multiple Sclerosis Center, Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (S.S.D.L.); (N.K.); (E.K.); (D.P.); (N.G.)
| | - Natalia Konstantinidou
- Multiple Sclerosis Center, Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (S.S.D.L.); (N.K.); (E.K.); (D.P.); (N.G.)
| | - Evangelia Kesidou
- Multiple Sclerosis Center, Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (S.S.D.L.); (N.K.); (E.K.); (D.P.); (N.G.)
| | - Dimitrios Parissis
- Multiple Sclerosis Center, Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (S.S.D.L.); (N.K.); (E.K.); (D.P.); (N.G.)
| | | | - Dina Elsayed
- Department of Neuropsychiatry, Faculty of Medicine, Alexandria University, Alexandria 21311, Egypt; (D.E.); (E.H.); (S.S.)
| | - Eman Hamdy
- Department of Neuropsychiatry, Faculty of Medicine, Alexandria University, Alexandria 21311, Egypt; (D.E.); (E.H.); (S.S.)
| | - Sameh Said
- Department of Neuropsychiatry, Faculty of Medicine, Alexandria University, Alexandria 21311, Egypt; (D.E.); (E.H.); (S.S.)
| | - Nikolaos Grigoriadis
- Multiple Sclerosis Center, Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (S.S.D.L.); (N.K.); (E.K.); (D.P.); (N.G.)
| |
Collapse
|