1
|
Li W, Huang T, Liu C, Wushouer H, Yang X, Wang R, Xia H, Li X, Qiu S, Chen S, Ho HC, Huang C, Shi L, Guan X, Tian G, Liu G, Ebi KL, Yang L. Changing climate and socioeconomic factors contribute to global antimicrobial resistance. Nat Med 2025:10.1038/s41591-025-03629-3. [PMID: 40295742 DOI: 10.1038/s41591-025-03629-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 03/04/2025] [Indexed: 04/30/2025]
Abstract
Climate change poses substantial challenges in containing antimicrobial resistance (AMR) from a One Health perspective. Using 4,502 AMR surveillance records involving 32 million tested isolates from 101 countries (1999-2022), we analyzed the impact of socioeconomic and environmental factors on AMR. We also established forecast models based on several scenarios, considering antimicrobial consumption reduction, sustainable development initiatives and different shared socioeconomic pathways under climate change. Our findings reveal growing AMR disparities between high-income countries and low- and middle-income countries under different shared socioeconomic pathway scenarios. By 2050, compared with the baseline, sustainable development efforts showed the most prominent effect by reducing AMR prevalence by 5.1% (95% confidence interval (CI): 0.0-26.6%), surpassing the effect of antimicrobial consumption reduction. Key contributors include reducing out-of-pocket health expenses (3.6% (95% CI: -0.5 to 21.4%)); comprehensive immunization coverage (1.2% (95% CI: -0.1% to 8.2%)); adequate health investments (0.2% (95% CI: 0.0-2.4%)) and universal access to water, sanitation and hygiene services (0.1% (95% CI: 0.0-0.4%)). These findings highlight the importance of sustainable development strategies as the most effective approach to help low- and middle-income countries address the dual challenges of climate change and AMR.
Collapse
Affiliation(s)
- Weibin Li
- School of Public Health, Sun Yat-sen University, Guangzhou, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Tingting Huang
- Laboratory of Cloud-Precipitation Physics and Severe Storms, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
| | - Chaojie Liu
- School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Haishaerjiang Wushouer
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China
- International Research Center for Medicinal Administration, Peking University, Beijing, China
| | - Xinyi Yang
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ruonan Wang
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Haohai Xia
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xiying Li
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Shengyue Qiu
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Shanquan Chen
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Hung Chak Ho
- Department of Public and International Affairs, City University of Hong Kong, Hong Kong SAR, China
| | - Cunrui Huang
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Luwen Shi
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China
- International Research Center for Medicinal Administration, Peking University, Beijing, China
| | - Xiaodong Guan
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China
- International Research Center for Medicinal Administration, Peking University, Beijing, China
| | - Guobao Tian
- School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Gordon Liu
- National School of Development, Peking University, Beijing, China
- Institute for Global Health and Development, Peking University, Beijing, China
| | - Kristie L Ebi
- Center for Health and the Global Environment, University of Washington, Seattle, WA, USA
| | - Lianping Yang
- School of Public Health, Sun Yat-sen University, Guangzhou, China.
- Institute for Global Health and Development, Peking University, Beijing, China.
- Sun Yat-sen Global Health Institute, Institute of State Governance, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
2
|
Nguyen Thanh L, Wernli D, Målqvist M, Søgaard Jørgensen P. 'When global health meets global goals': assessing the alignment between antimicrobial resistance and sustainable development policies in 10 African and Asian countries. BMJ Glob Health 2025; 10:e017837. [PMID: 40068927 PMCID: PMC11904336 DOI: 10.1136/bmjgh-2024-017837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 02/25/2025] [Indexed: 03/15/2025] Open
Abstract
BACKGROUND Sustainable development goals (SDGs) may play a pivotal role in mitigating antimicrobial resistance (AMR). This study examines how countries can integrate AMR mitigation with sustainable development strategies, providing evidence on the prioritisation of AMR-related efforts within both agendas. METHODS We conducted a comparative analysis of the international global action plan (GAP) and national action plan (NAP) on AMR and SDGs across 10 countries in Africa and Asia. We employed content analysis to map actions to AMR drivers, descriptive statistics to summarise the coverage and focus of the actions and inferential statistics to explore factors associated with the level of policy alignment. RESULTS Our findings highlight gaps in the current AMR policy landscape, where drivers are at risk of being redundantly addressed, narrowly focused or entirely overlooked. At the international level, over 50% of AMR drivers are addressed by both frameworks, but national-level overlap is lower (10.5%-47.4%), with Asian countries showing stronger alignment than African countries. Asian countries show a higher proportion of shared drivers than African countries. A considerable proportion of drivers are addressed solely by AMR-NAPs (23.7%-60.5%) or SDG-NAPs (13.2%-31.6%), raising concerns that actions may benefit either sustainable development or AMR at the expense of the other. Finally, 10.5%-26.3% of drivers, mostly distal, are not acknowledged by either framework, highlighting potential policy blind spots. CONCLUSIONS The Agenda 2030 includes ambitious and cross-cutting goals with GAP-AMR, therefore it can facilitate intersectoral collaboration in addressing AMR. The effective implementation of both agendas will depend on national governments' capacity to ensure that efforts in combating AMR also contribute to sustainable development.
Collapse
Affiliation(s)
- Luong Nguyen Thanh
- Centre for Health and Sustainability, Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
- Global Economic Dynamics and the Biosphere, Royal Swedish Academy of Sciences, Stockholm, Sweden
- Uppsala Antibiotic Center, Uppsala University, Uppsala, Sweden
| | - Didier Wernli
- Global Studies Institute and Department of Computer Science, University of Geneva, Geneva, Switzerland
| | - Mats Målqvist
- Centre for Health and Sustainability, Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Peter Søgaard Jørgensen
- Global Economic Dynamics and the Biosphere, Royal Swedish Academy of Sciences, Stockholm, Sweden
- Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden
| |
Collapse
|
3
|
Horvat O, Kovačević Z. Human and Veterinary Medicine Collaboration: Synergistic Approach to Address Antimicrobial Resistance Through the Lens of Planetary Health. Antibiotics (Basel) 2025; 14:38. [PMID: 39858324 PMCID: PMC11762137 DOI: 10.3390/antibiotics14010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/12/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Antimicrobial resistance (AMR) represents a critical threat to human, animal, and environmental health, challenging global efforts to maintain sustainable ecosystems and public health systems. In this review, the complex, cross-disciplinary issues of AMR are explored within the framework of planetary health, emphasizing the interconnectedness of human and veterinary medicine with broader environmental and social systems. Specifically, it addresses the social, economic, environmental, and health dimensions of AMR under the planetary health framework. The social aspects consider how public awareness, education, and healthcare practices shape antimicrobial use (AMU) and resistance patterns. The economic impact evaluates the cost burdens of AMR, including healthcare costs, loss of productivity, and the implications for the livestock and food production industries. The environmental dimension highlights the role of pharmaceutical waste, agricultural runoff, and industrial pollution in contributing to the spread of antimicrobials and resistant pathogens in ecosystems. To illustrate these challenges, a comprehensive literature review using the PubMed and Web of Science databases was conducted, identifying 91 relevant articles on planetary health and AMR. In this review, the knowledge from these studies and additional references is integrated to provide a holistic overview of the AMR crisis. By applying the four pillars of planetary health-social, economic, environmental, and health knowledge-in this manuscript, the necessity is underscored of collaborative strategies across human and veterinary medicine to combat AMR. Ultimately, this synergistic approach aims to shape the policies and practices that safeguard public health, protect ecosystems, and promote a sustainable future by implementing antimicrobial stewardship programs and encouraging prudent AMU.
Collapse
Affiliation(s)
- Olga Horvat
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia;
| | - Zorana Kovačević
- Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovica 8, 21000 Novi Sad, Serbia
| |
Collapse
|
4
|
Gomaa I, Aleid G, El-Moslamy SH, AlShammari A, Al-Marshedy S, Alshammary F, Gharkan J, Abdel-Hameed R, Kamoun EA. Synergistic efficacy of ZnO quantum dots, Ag NPs, and nitazoxanide composite against multidrug-resistant human pathogens as new trend of revolutionizing antimicrobial treatment. DISCOVER NANO 2024; 19:164. [PMID: 39361062 PMCID: PMC11450118 DOI: 10.1186/s11671-024-04085-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/20/2024] [Indexed: 10/06/2024]
Abstract
Antibiotic resistance is currently becoming a more serious threat to global health, especially in severe nosocomial infections treatment by multidrug-resistant bacteria. This research provides a new way of synergizing green-synthesis for zinc oxide quantum dots (ZnO-QDs with hexagonal crystals) that are 7 nm in diameter and zero-valent Ag cubic crystals that are 67 nm in size embedded with nitazoxanide substrate (NAZ). Instrumental characterization like SEM, TEM, EDAX, and FT-IR and comprehensive antimicrobial studies were conducted to study the incorporation behavior of composites based on Ag NPs/ZnO QDs/NAZ. This combination has not been hitherto addressed anywhere else in the published literature, as well as commercial viability. In this context, we have precisely tuned nanoparticle to nitazoxanide ratio for designing the formulation demonstrating potent activity against MDR infections. By employing nitazoxanide as a scaffold and careful decoration thereof antimicrobial potency has been unlocked overriding conventional therapies. In addition, Ag NPs/ZnO-QDs/nitazoxanide (G6) formula exhibited a therapeutic efficacy span of 96.15 ± 1.68% to 99.57 ± 0.20% against MDR human infections post 48 h incubation; a breakthrough in therapeutic efficacy levels has been achieved by our method. Accordingly, ZnO QDs/Ag NPs/NAZ composite offered potential multidrug resistant human pathogens as a new trend of revolutionizing antimicrobial treatment.
Collapse
Affiliation(s)
- Islam Gomaa
- Nanotechnology Research Centre (NTRC), The British University in Egypt (BUE), Suez Desert Road, El-Sherouk City, Cairo, 11837, Egypt
| | - Ghadah Aleid
- Basic Science Departments, Preparatory Year, University of Ha'il, 1560, Hail, Kingdom of Saudi Arabia
| | - Shahira H El-Moslamy
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab City, Alexandria, 21934, Egypt
| | - Anoud AlShammari
- Department of Physics and Chemistry, Northern Border University, Rafha, Kingdom of Saudi Arabia
| | - Sumayyah Al-Marshedy
- Biochemistry Department, College of Medicine, University of Ha'il, Hail, Kingdom of Saudi Arabia
| | - Freah Alshammary
- Department of Preventive Dental Sciences, College of Dentistry, University of Ha'il, Hail, Kingdom of Saudi Arabia
| | - Jouza Gharkan
- Emergency Medical Services and Critical Care, Inaya Medical College, Riyadh, Kingdom of Saudi Arabia
| | - Reda Abdel-Hameed
- Basic Science Departments, Preparatory Year, University of Ha'il, 1560, Hail, Kingdom of Saudi Arabia.
- Chemistry Department, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt.
| | - Elbadawy A Kamoun
- Department of Chemistry, College of Science, King Faisal University, 31982, Al-Ahsa, Kingdom of Saudi Arabia.
- Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications, New Borg Al-Arab City, Alexandria, 21934, Egypt.
| |
Collapse
|
5
|
Fernández Salgueiro M, Cernuda Martínez JA, Gan RK, Arcos González P. Climate change and antibiotic resistance: A scoping review. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70008. [PMID: 39267332 PMCID: PMC11393301 DOI: 10.1111/1758-2229.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/28/2024] [Indexed: 09/17/2024]
Abstract
This scoping review aimed to investigate the potential association between climate change and the rise of antibiotic resistance while also exploring the elements of climate change that may be involved. A scoping review was performed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews, comprehensively searching scientific literature up to 31 January 2024. Multiple databases were utilized, including MEDLINE, Web of Science and SCOPUS. Various search strategies were employed, and selection criteria were established to include articles relevant to antibiotic resistance and climate change. The review included 30 selected articles published predominantly after 2019. Findings from these studies collectively suggest that rising temperatures associated with climate change can contribute to the proliferation of antibiotic resistance, affecting diverse ecosystems. This phenomenon is observed in soil, glaciers, rivers and clinical settings. Rising temperatures are associated with a rise in the prevalence of antibiotic resistance across various environments, raising concerns for global health. However, these studies provide valuable insights but do not establish a definitive causal link between environmental temperature and antibiotic resistance. The selective pressure exerted by antibiotics and their residues in ecosystems further complicates the issue.
Collapse
Affiliation(s)
| | | | - Rick Kye Gan
- Unit for Research in Emergency and DisasterUniversity of OviedoOviedoSpain
| | | |
Collapse
|
6
|
Barasa V. A one health approach to tackling AMR and why gender matters: findings from pastoralist communities in Tanzania. Front Glob Womens Health 2024; 5:1429203. [PMID: 39091999 PMCID: PMC11292418 DOI: 10.3389/fgwh.2024.1429203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/21/2024] [Indexed: 08/04/2024] Open
Abstract
Introduction Inappropriate use of antimicrobials is a major driver of AMR in low-resource settings, where the regulation of supply for pharmaceuticals is limited. In pastoralist settings in Tanzania, men and women face varying degrees of exposure to antibiotics due to gender relations that shape access and use of antimicrobials. For example, critical limitations in healthcare systems in these settings, including inadequate coverage of health services put people at risk of AMR, as families routinely administer self-treatment at home with antimicrobials. However, approaches to understanding AMR drivers and risk distribution, including the One Health approach, have paid little attention to these gender considerations. Understanding differences in access and use of antimicrobials can inform interventions to reduce AMR risk in community settings. This paper focuses on the gendered risk of AMR through a study of gender and social determinants of access to and use of antimicrobials in low-resource pastoralist settings in Tanzania. Methods A mixed methods approach involving household surveys, interviews and ethnographic participant observation in homes and sites of healthcare provision was used, to investigate access and administration of antibiotics in 379 adults in Naiti, Monduli district in northern Tanzania. A purposive sampling technique was used to recruit study participants and all data was disaggregated by sex, age and gender. Results Gender and age are significantly associated with the use of antibiotics without a prescription in the study population. Young people aged 18-24 are more likely to use unprescribed antibiotics than older people and may be at a higher risk of AMR. Meanwhile, although more men purchase unprescribed antibiotics than women, the administration of these drugs is more common among women. This is because men control how women use drugs at the household level. Discussion AMR interventions must consider the critical importance of adopting and implementing a gender-sensitive One Health approach, as gender interacts with other social determinants of health to shape AMR risk through access to and use of antimicrobials, particularly in resource-limited pastoralist settings.
Collapse
Affiliation(s)
- Violet Barasa
- Institute of Development Studies, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
7
|
Shafaati M, Salehi M, Zare M. The twin challenges of longevity and climate change in controlling antimicrobial resistance. J Antibiot (Tokyo) 2024; 77:399-402. [PMID: 38724628 DOI: 10.1038/s41429-024-00730-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/30/2024] [Accepted: 04/07/2024] [Indexed: 06/28/2024]
Abstract
Antimicrobial resistance (AMR) is one of the global health challenges of the 21st century that is faced with the twin threats of global climate change and greater longevity, which pose a synergistic risk to the management of AMR. Antimicrobial agents are in high demand due to the challenges faced by increasing life expectancy and the dynamic changes in disease ecology prompted by climate change. In light of global aging and climate change, the complexity and importance of addressing antibiotic resistance are further highlighted by this interplay of issues.
Collapse
Affiliation(s)
- Maryam Shafaati
- Research Center for Antibiotic Stewardship and Antimicrobial Resistance, Infectious Diseases Department, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammadreza Salehi
- Research Center for Antibiotic Stewardship and Antimicrobial Resistance, Infectious Diseases Department, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran.
| | - Maryam Zare
- Virology Department of Professor Alborzi Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
8
|
Islam MW, Shahjahan M, Azad AK, Hossain MJ. Factors contributing to antibiotic misuse among parents of school-going children in Dhaka City, Bangladesh. Sci Rep 2024; 14:2318. [PMID: 38282010 PMCID: PMC10822859 DOI: 10.1038/s41598-024-52313-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/17/2024] [Indexed: 01/30/2024] Open
Abstract
Antimicrobial resistance (AMR) is a pressing global health concern, especially in resource-constrained countries, such as Bangladesh. This study aimed to identify the factors contributing to antibiotic misuse by assessing knowledge, attitude, and practice (KAP). A cross-sectional study was conducted from August 20 to August 30, 2022, among 704 parents of school-going children in Dhaka South City. Descriptive statistics were used to analyze the KAP, and multivariate models, including linear and ordinal logistic regression, were used to explore the associations between these factors. The findings revealed that approximately 22% of the participants were male and 78% were female. Most parents (58%) had completed higher secondary education. Approximately 45% of the respondents demonstrated moderate knowledge, 53% had uncertain attitudes, and 64% exhibited antibiotic misuse. Factors such as parental age, education level, employment status, income, child's age, and family type significantly influenced KAP. These findings emphasize the importance of targeted education and awareness initiatives to enhance knowledge and responsible antibiotic use among parents, contributing to global efforts against antibiotic resistance. The government should enforce laws and regulations regarding the misuse of antibiotics.
Collapse
Affiliation(s)
- Md Wahidul Islam
- Population Health Studies Division, Center for Health Innovation, Research, Action, and Learning-Bangladesh (CHIRAL Bangladesh), 9-10 Chittaranjan Ave, Dhaka, 1100, Bangladesh
| | - Muhibullah Shahjahan
- Population Health Studies Division, Center for Health Innovation, Research, Action, and Learning-Bangladesh (CHIRAL Bangladesh), 9-10 Chittaranjan Ave, Dhaka, 1100, Bangladesh
| | - Abul Kalam Azad
- Department of Microbiology, Jagannath University, 9-10 Chittaranjan Ave, Dhaka, 1100, Bangladesh
| | - Md Jubayer Hossain
- Population Health Studies Division, Center for Health Innovation, Research, Action, and Learning-Bangladesh (CHIRAL Bangladesh), 9-10 Chittaranjan Ave, Dhaka, 1100, Bangladesh.
| |
Collapse
|
9
|
Magnano San Lio R, Favara G, Maugeri A, Barchitta M, Agodi A. How Antimicrobial Resistance Is Linked to Climate Change: An Overview of Two Intertwined Global Challenges. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1681. [PMID: 36767043 PMCID: PMC9914631 DOI: 10.3390/ijerph20031681] [Citation(s) in RCA: 235] [Impact Index Per Article: 117.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 05/13/2023]
Abstract
Globally, antimicrobial resistance (AMR) and climate change (CC) are two of the top health emergencies, and can be considered as two interlinked public health priorities. The complex commonalities between AMR and CC should be deeply investigated in a One Health perspective. Here, we provided an overview of the current knowledge about the relationship between AMR and CC. Overall, the studies included pointed out the need for applying a systemic approach to planetary health. Firstly, CC increasingly brings humans and animals into contact, leading to outbreaks of zoonotic and vector-borne diseases with pandemic potential. Although it is well-established that antimicrobial use in human, animal and environmental sectors is one of the main drivers of AMR, the COVID-19 pandemic is exacerbating the current scenario, by influencing the use of antibiotics, personal protective equipment, and biocides. This also results in higher concentrations of contaminants (e.g., microplastics) in natural water bodies, which cannot be completely removed from wastewater treatment plants, and which could sustain the AMR spread. Our overview underlined the lack of studies on the direct relationship between AMR and CC, and encouraged further research to investigate the multiple aspects involved, and its effect on human health.
Collapse
Affiliation(s)
| | | | | | | | - Antonella Agodi
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, 95123 Catania, Italy
| |
Collapse
|