1
|
Wang F, Liu Y, Li Y, Yang X, Zhao J, Yang B, Tang D, Zhang C, He Z, Ming D, Zhu X. Combining Network Pharmacology and Experimental Verification to Ascertain the Mechanism of Action of Asparagus officinalis Against the Brain Damage Caused by Fluorosis. ENVIRONMENTAL TOXICOLOGY 2025; 40:509-523. [PMID: 39041630 PMCID: PMC11911904 DOI: 10.1002/tox.24382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 07/24/2024]
Abstract
Asparagus officinalis (ASP) has antioxidation, anti-inflammatory, antiaging, and immune system-enhancing effects. We explored the preventive and therapeutic consequences of ASP on the brain damage elicited by fluorosis through network pharmacology and in vivo experimental validation. We ascertained the pharmaceutically active ingredients and drug targets of ASP from the Traditional Chinese Medicine Systems Pharmacology database, predicted the disease targets of fluorosis-induced brain injury using GeneCards and Online Mendelian Inheritance in Man databases, obtained target protein-protein interaction networks in the Search Tool for the Retrieval of Interacting Genes/Proteins database, used Cytoscape to obtain key targets and active ingredients, and conducted enrichment analyses of key targets in the Database for Annotation, Visualization and Integrated Discovery. Enrichment analyses showed that "mitogen-activated protein kinase" (MAPK), "phosphoinositide 3-kinase/protein kinase B" (PI3K-Akt), "nuclear factor-kappa B" (NF-κB), and the "neurotrophin signaling pathway" were the most enriched biological processes and signaling pathways. ASP could alleviate fluorosis-based injury, improve brain-tissue damage, increase urinary fluoride content, and improve oxidation levels and inflammatory-factor levels in the body. ASP could also reduce dental fluorosis, bone damage, fluoride concentrations in blood and bone, and accumulation of lipid peroxide. Upon ASP treatment, expression of silent information regulator (SIRT)1, brain-derived neurotrophic factor (BDNF), tropomyosin receptor kinase B (TrkB), MAPK, NF-κB, PI3K, Akt, and B-cell lymphoma-2 in rat brain tissue increased gradually, whereas that of Bax, caspase-3, and p53 decreased gradually. We demonstrated that ASP could regulate the brain damage caused by fluorosis through the SIRT1/BDNF/TrkB signaling pathway, and reported the possible part played by ASP in preventing and treating fluorosis.
Collapse
Affiliation(s)
- Feiqing Wang
- Academy of Medical Engineering and Translational MedicineTianjin UniversityTianjinChina
- Clinical Research CenterThe First Affiliated Hospital of Guizhou University of Traditional Chinese MedicineGuiyangGuizhouChina
| | - Yang Liu
- Clinical Research CenterThe First Affiliated Hospital of Guizhou University of Traditional Chinese MedicineGuiyangGuizhouChina
| | - Yanju Li
- Department of HematologyAffiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Xu Yang
- Clinical Research CenterThe First Affiliated Hospital of Guizhou University of Traditional Chinese MedicineGuiyangGuizhouChina
| | - Jianing Zhao
- Clinical Research CenterThe First Affiliated Hospital of Guizhou University of Traditional Chinese MedicineGuiyangGuizhouChina
| | - Bo Yang
- Clinical Research CenterThe First Affiliated Hospital of Guizhou University of Traditional Chinese MedicineGuiyangGuizhouChina
| | - Dongxin Tang
- Clinical Research CenterThe First Affiliated Hospital of Guizhou University of Traditional Chinese MedicineGuiyangGuizhouChina
| | - Chike Zhang
- Department of HematologyAffiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Zhixu He
- National & Guizhou Joint Engineering Laboratory for Cell Engineering and Biomedicine TechniqueGuiyangGuizhouChina
| | - Dong Ming
- Academy of Medical Engineering and Translational MedicineTianjin UniversityTianjinChina
| | - Xiaodong Zhu
- Academy of Medical Engineering and Translational MedicineTianjin UniversityTianjinChina
- Neurological Institute, Tianjin Medical University General HospitalTianjinChina
| |
Collapse
|
2
|
Song J, Zhao A, Li R, Luo Y, Dong Y, Wang C, Zhang T, Deng J, Qi X, Guan Z, He Y. Association of PPARGC1A gene polymorphism and mtDNA methylation with coal-burning fluorosis: a case-control study. BMC Genomics 2024; 25:908. [PMID: 39350036 PMCID: PMC11441093 DOI: 10.1186/s12864-024-10819-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Coal-burning fluorosis is a chronic poisoning resulting from the prolonged use of locally available high-fluoride coal for heating and cooking. Prolonged fluoride exposure has been demonstrated to decrease PPARGC1A levels. Therefore, this case-control aims to evaluate the genetic association of PPARGC1A gene polymorphisms and methylation of the mitochondrial D-loop region with coal-burning fluorosis. RESULT The results showed that the TT genotype at rs13131226 and the AA genotype at rs1873532 increased the risk of coal-burning fluorosis (OR = 1.84, P = 0.004; OR = 1.97, P = 0.007), the CT and CC genotypes at rs7665116 decreased the risk of coal-burning fluorosis (OR = 0.54, P = 0.003). The TT genotype at the rs2970847 site and the AA genotype at the rs2970870 site increase the risk of developing skeletal fluorosis (OR = 4.12, P = 0.003; OR = 2.22, P = 0.011). Haplotype AG constructed by rs3736265-rs1873532 increased the risk of the prevalence of coal-burning fluorosis (OR = 1.465, P = 0.005); CG decreased the risk of the prevalence of coal-burning fluorosis (OR = 0.726, P = 0.020). Haplotype CGGT constructed by rs6821591-rs768695-rs3736265-rs2970847 increased the risk of the prevalence of skeletal fluorosis (OR = 1.558, P = 0.027). A 1% increase in CpG_4 methylation levels in the mtDNA D-loop region is associated with a 2.3% increase in the risk of coal-burning fluorosis. Additionally. There was a significant interaction between rs13131226 and rs1873532; CpG_4 and CpG_8.9; rs13131224,rs6821591 and rs7665116 were observed in the occurrence of fluorosis in the Guizhou population (χ2 = 16.917, P < 0.001; χ2 = 21.198, P < 0.001; χ2 = 36.078, P < 0.001). CONCLUSION PPARGC1A polymorphisms rs13131226 and rs1873532 and the mitochondrial DNA D-loop methylation site CpG_4 have been associated with an increased risk of fluorosis, conversely polymorphism rs7665116 was associated with a decreased risk of fluorosis. Polymorphisms rs2970870 were associated with increased risk of skeletal fluorosis, and polymorphism rs2970847 was associated with decreased risk of skeletal fluorosis. These SNPs and CpG can be used as potential targets to assess fluorosis risk.
Collapse
Affiliation(s)
- Juhui Song
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, & Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, Guizhou, China
| | - Ansu Zhao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, & Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, Guizhou, China
| | - Ruichao Li
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, & Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, Guizhou, China
- Department of Laboratory Medicine, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Yunyan Luo
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, & Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yangting Dong
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, & Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, Guizhou, China
| | - Chanjuan Wang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, & Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, Guizhou, China
| | - Ting Zhang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, & Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jie Deng
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, & Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, & Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhizhong Guan
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, & Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yan He
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, & Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, Guizhou, China.
| |
Collapse
|
3
|
Ji Y, Guo N, Lu C, Zhang M, Wang S, Yang L, Li Q, Lv M, Yang Y, Gao Y. Association between mtDNA haplogroups and skeletal fluorosis in Han population residing in drinking water endemic fluorosis area of northern China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:2397-2406. [PMID: 37660259 DOI: 10.1080/09603123.2023.2253161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/24/2023] [Indexed: 09/04/2023]
Abstract
To investigate the association between mtDNA genetic information and the risk of SF, individuals were conducted in the drinking water endemic fluorosis area in northern China, sequenced the whole genome of mtDNA, identified the SNPs and SNVs, analyzed the haplogroups, and diagnosed SF, and then, the effect of mtDNA genetic information on the risk of SF was evaluated. We find that, D5 haplogroup and its specific SNPs reduced the risk, while the D4 haplogroup and its specific SNPs increased the risk of SF. The number of SNVs in coding regions of mitochondrial respiratory chain (MRC) is different between the controls and cases. This suggests that D5 haplogroup may play a protective role in the risk of SF, while the opposite is observed for the D4 haplogroup, this may relate to their specific SNPs. And SNVs that encode the MRC complex may also be associated with the risk of SF.
Collapse
Affiliation(s)
- Yi Ji
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Ning Guo
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Chunqing Lu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Meichen Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Sa Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Liu Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Qiao Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Man Lv
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yanmei Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin, Heilongjiang Province, China
| |
Collapse
|
4
|
Wang F, Li Y, Tang D, Yang B, Tian T, Tian M, Meng N, Xie W, Zhang C, He Z, Zhu X, Ming D, Liu Y. Exploration of the SIRT1-mediated BDNF-TrkB signaling pathway in the mechanism of brain damage and learning and memory effects of fluorosis. Front Public Health 2023; 11:1247294. [PMID: 37711250 PMCID: PMC10499441 DOI: 10.3389/fpubh.2023.1247294] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/16/2023] [Indexed: 09/16/2023] Open
Abstract
Introduction Fluoride is considered an environmental pollutant that seriously affects organisms and ecosystems, and its harmfulness is a perpetual public health concern. The toxic effects of fluoride include organelle damage, oxidative stress, cell cycle destruction, inflammatory factor secretion, apoptosis induction, and synaptic nerve transmission destruction. To reveal the mechanism of fluorosis-induced brain damage, we analyzed the molecular mechanism and learning and memory function of the SIRT1-mediated BDNF-TrkB signaling pathway cascade reaction in fluorosis-induced brain damage through in vivo experiments. Methods This study constructed rat models of drinking water fluorosis using 50 mg/L, 100 mg/L, and 150 mg/L fluoride, and observed the occurrence of dental fluorosis in the rats. Subsequently, we measured the fluoride content in rat blood, urine, and bones, and measured the rat learning and memory abilities. Furthermore, oxidative stress products, inflammatory factor levels, and acetylcholinesterase (AchE) and choline acetyltransferase (ChAT) activity were detected. The pathological structural changes to the rat bones and brain tissue were observed. The SIRT1, BDNF, TrkB, and apoptotic protein levels were determined using western blotting. Results All rats in the fluoride exposure groups exhibited dental fluorosis; decreased learning and memory abilities; and higher urinary fluoride, bone fluoride, blood fluoride, oxidative stress product, and inflammatory factor levels compared to the control group. The fluoride-exposed rat brain tissue had abnormal AchE and ChAT activity, sparsely arranged hippocampal neurons, blurred cell boundaries, significantly fewer astrocytes, and swollen cells. Furthermore, the nucleoli were absent from the fluoride-exposed rat brain tissue, which also contained folded neuron membranes, deformed mitochondria, absent cristae, vacuole formation, and pyknotic and hyperchromatic chromatin. The fluoride exposure groups had lower SIRT1, BDNF, and TrkB protein levels and higher apoptotic protein levels than the control group, which were closely related to the fluoride dose. The findings demonstrated that excessive fluoride caused brain damage and affected learning and memory abilities. Discussion Currently, there is no effective treatment method for the tissue damage caused by fluorosis. Therefore, the effective method for preventing and treating fluorosis damage is to control fluoride intake.
Collapse
Affiliation(s)
- Feiqing Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Medical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
| | - Yanju Li
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Dongxin Tang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Bo Yang
- Medical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
| | - Tingting Tian
- Medical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
| | - Mengxian Tian
- Medical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
| | - Na Meng
- Medical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
| | - Wei Xie
- Medical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
| | - Chike Zhang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Zhixu He
- National & Guizhou Joint Engineering Laboratory for Cell Engineering and Biomedicine Technique, Guiyang, Guizhou Province, China
| | - Xiaodong Zhu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Yang Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- National & Guizhou Joint Engineering Laboratory for Cell Engineering and Biomedicine Technique, Guiyang, Guizhou Province, China
| |
Collapse
|