1
|
da Silva JAD, Filetti FM, da Silva NP, Gomes KN, Graceli JB, Lopes AB, Vassallo DV, Nunes KZ. Copper exposure at a daily dose twice the recommended in diabetic rats induces oxidative stress, vascular dysfunction and perivascular adipose tissue inflammation in diabetic rats. Toxicol Lett 2025; 409:97-108. [PMID: 40339834 DOI: 10.1016/j.toxlet.2025.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 04/16/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025]
Abstract
Individuals with diabetes often have a heightened risk of cardiovascular diseases and present copper (Cu) metabolism imbalances. We investigated the effect of chronic exposure to twice the recommended daily dose of CuCl2 on vascular reactivity in isolated thoracic aorta segments of diabetic and non-diabetic rats. Eighty male Wistar rats, aged 12 weeks, were divided into four groups: Control (Ct), Copper (Cu), Diabetes Mellitus (DM), and Diabetes + Copper (DM+Cu). Type 1 diabetes was induced using a single dose of streptozotocin (65 mg/kg i.p), and the animals exposed to Cu received twice the recommended daily dose (25.7 µg/Kg/day CuCl2) for 30 days. After treatment, we investigated vascular reactivity and performed histological evaluations on samples of aortas and perivascular adipose tissue (PVAT). Our findings revealed pronounced weight loss and higher hyperglycemia in the DM+Cu group compared to DM, along with increased pro-inflammatory factors in PVAT (IL-6). Vascular reactivity to phenylephrine decreased without PVAT, accompanied by elevated vasodilator factors: NO and H2O2, and involvement of K+ channels. Additionally, we observed an increase in the thickness of the aorta wall, collagen deposition. In the presence of PVAT, vascular reactivity increased in the DM+Cu and Cu groups. These findings demonstrate that exposure to double the recommended Cu dose in diabetic animals leads to endothelial and PVAT dysfunction, associated with elevation of vasodilator and pro-inflammatory factors.
Collapse
Affiliation(s)
- Julia Antonietta Dantas da Silva
- Graduate Program in Physiological Sciences, Health Sciences Center at the Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Filipe Martinuzo Filetti
- Graduate Program in Physiological Sciences, Health Sciences Center at the Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Natália Pimentel da Silva
- Graduate Program in Physiological Sciences, Health Sciences Center at the Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Karoline Neumann Gomes
- Graduate Program in Physiological Sciences, Health Sciences Center at the Federal University of Espírito Santo, Vitória, ES, Brazil; Graduate Program in Nutrition and Health, Health Sciences Center at the Federal University of Espírito Santo (UFES), Vitória, ES, Brazil
| | - Jones Bernardes Graceli
- Animal Science, School of Agricultural Sciences, Southern Illinois University, Carbondale, IL, USA; Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | - Andressa Bolsoni Lopes
- Graduate Program in Physiological Sciences, Health Sciences Center at the Federal University of Espírito Santo, Vitória, ES, Brazil; Graduate Program in Nutrition and Health, Health Sciences Center at the Federal University of Espírito Santo (UFES), Vitória, ES, Brazil
| | - Dalton Valentim Vassallo
- Graduate Program in Physiological Sciences, Health Sciences Center at the Federal University of Espírito Santo, Vitória, ES, Brazil; Health Science Centre of Vitória-EMESCAM, Vitória, ES, Brazil
| | - Karolini Zuqui Nunes
- Graduate Program in Physiological Sciences, Health Sciences Center at the Federal University of Espírito Santo, Vitória, ES, Brazil; Graduate Program in Nutrition and Health, Health Sciences Center at the Federal University of Espírito Santo (UFES), Vitória, ES, Brazil.
| |
Collapse
|
2
|
Yang R, Sun F, Pan XF, Su Y, Wu P, Yuan J, Lai Y, Pan A, Huang W. Metal exposure and blood lipid biomarkers in early pregnancy: A cross-sectional study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124238. [PMID: 38810682 DOI: 10.1016/j.envpol.2024.124238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/05/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
Recognizing the risk factors for dyslipidemia during pregnancy is crucial for safeguarding the health of both the mothers and the offspring. Growing evidence emerged and suggested links between environmental factors, including metals, and alteration in lipid levels or dyslipidemia in general populations. However, knowledge of the associations during pregnancy remains extremely lacking. Herein, we aimed to explore whether elevated metal exposure constitutes a risk factor for dyslipidemia in pregnant women. Based on the Tongji-Shuangliu Birth Cohort (TSBC), a total of 663 pregnant women were recruited and their urinary levels of 17 metals and blood lipid biomarkers in early pregnancy were measured, namely triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C). The multivariable linear regression models revealed that exposure to selected metals during early pregnancy was significantly associated with some important biomarkers. In particular, after natural log-transformed for the levels of lipid biomarkers and metals, copper (Cu) exposure was positively associated with HDL-C (β = 0.024, 95% CI: 0.001, 0.046), while zinc (Zn) was associated with TG (β = 0.062, 95% CI: 0.013, 0.110) and selenium with TC (β = 0.028, 95% CI: 0.004, 0.054). Exposure to rubidium (Rb) was positively associated with multiple lipid biomarkers, including HDL-C (β = 0.020, 95% CI: 0.002, 0.037) and LDL-C (β = 0.022, 95% CI: 0.001, 0.042). Mixture exposure analysis further identified significant associations between Cu and HDL-C, Zn and TG, Rb and HDL-C, when multiple metal exposures were considered in the Bayesian kernel machine regression model simultaneously. Our findings showed that exposure to several metals during early pregnancy was associated with an increased prevalence of blood lipid abnormalities in pregnant women. These findings underscore the potential impact of metal combinations on lipid metabolism and increase our understanding of the risk factors associated with abnormal lipid metabolism during pregnancy.
Collapse
Affiliation(s)
- Rui Yang
- College of Environment and Climate, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, China
| | - Fengjiang Sun
- College of Environment and Climate, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, China
| | - Xiong-Fei Pan
- Section of Epidemiology and Population Health & Department of Gynecology and Obstetrics, Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children & National Medical Products Administration Key Laboratory for Technical Research on Drug Products In Vitro and In Vivo Correlation, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China; West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Shuangliu Institute of Women's and Children's Health, Shuangliu Maternal and Child Health Hospital, Chengdu, Sichuan, China
| | - Yingqian Su
- College of Environment and Climate, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, China
| | - Ping Wu
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaying Yuan
- Shuangliu Institute of Women's and Children's Health, Shuangliu Maternal and Child Health Hospital, Chengdu, Sichuan, China
| | - Yuwei Lai
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - An Pan
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Huang
- College of Environment and Climate, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Luo S, Zhang J, Sun J, Zhao T, Deng J, Yang H. Future development trend of food-borne delivery systems of functional substances for precision nutrition. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 112:385-433. [PMID: 39218507 DOI: 10.1016/bs.afnr.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
BACKGROUND Precision nutrition, a personalized nutritional supplementation model, is widely acknowledged for its significant impact on human health. Nevertheless, challenges persist in the advancement of precision nutrition, including consumer dietary behaviors, nutrient absorption, and utilization. Thus, the exploration of effective strategies to enhance the efficacy of precision nutrition and maximize its potential benefits in dietary interventions and disease management is imperative. SCOPE AND APPROACH The primary objective of this comprehensive review is to synthesize and assess the latest technical approaches and future prospects for achieving precision nutrition, while also addressing the existing constraints in this field. The role of delivery systems is pivotal in the realization of precision nutrition goals. This paper outlines the potential applications of delivery systems in precision nutrition and highlights key considerations for their design and implementation. Additionally, the review offers insights into the evolving trends in delivery systems for precision nutrition, particularly in the realms of nutritional fortification, specialized diets, and disease prevention. KEY FINDINGS AND CONCLUSIONS By leveraging computer data collection, omics, and metabolomics analyses, this review scrutinizes the lifestyles, dietary patterns, and health statuses of diverse organisms. Subsequently, tailored nutrient supplementation programs are devised based on individual organism profiles. The utilization of delivery systems enhances the bioavailability of functional compounds and enables targeted delivery to specific body regions, thereby catering to the distinct nutritional requirements and disease prevention needs of consumers, with a particular emphasis on special populations and dietary preferences.
Collapse
Affiliation(s)
- Shuwei Luo
- College of Food Science and Nutritional and Engineering, China Agricultural University, Beijing, P.R. China
| | - Juntao Zhang
- College of Food Science and Nutritional and Engineering, China Agricultural University, Beijing, P.R. China
| | - Jing Sun
- College of Food Science and Nutritional and Engineering, China Agricultural University, Beijing, P.R. China
| | - Tong Zhao
- College of Food Science and Nutritional and Engineering, China Agricultural University, Beijing, P.R. China
| | - Jianjun Deng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Haixia Yang
- College of Food Science and Nutritional and Engineering, China Agricultural University, Beijing, P.R. China.
| |
Collapse
|
4
|
Zou Y, Wu S, Xu X, Tan X, Yang S, Chen T, Zhang J, Li S, Li W, Wang F. Cope with copper: From molecular mechanisms of cuproptosis to copper-related kidney diseases. Int Immunopharmacol 2024; 133:112075. [PMID: 38663316 DOI: 10.1016/j.intimp.2024.112075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 05/12/2024]
Abstract
Cuproptosis has recently been identified as a novel regulatory mechanism of cell death. It is characterized by the accumulation of copper in mitochondria and its binding to acylated proteins. These characteristics lead to the downregulation of iron-sulfur cluster proteins and protein toxicity stress, ultimately resulting in cell death. Cuproptosis is distinct from other types of cell death, including necrosis, apoptosis, ferroptosis, and pyroptosis. Cu induces oxidative stress damage, protein acylation, and the oligomerization of acylated TCA cycle proteins. These processes lead to the downregulation of iron-sulfur cluster proteins and protein toxicity stress, disrupting cellular Cu homeostasis, and causing cell death. Cuproptosis plays a significant role in the development and progression of various kidney diseases such as acute kidney injury, chronic kidney disease, diabetic nephropathy, kidney transplantation, and kidney stones. On the one hand, inducers of cuproptosis, such as disulfiram (DSF), chloroquinolone, and elesclomol facilitate cuproptosis by promoting cell oxidative stress. In contrast, inhibitors of Cu chelators, such as tetraethylenepentamine and tetrathiomolybdate, relieve these diseases by inhibiting apoptosis. To summarize, cuproptosis plays a significant role in the pathogenesis of kidney disease. This review comprehensively discusses the molecular mechanisms underlying cuproptosis and its significance in kidney diseases.
Collapse
Affiliation(s)
- Yurong Zou
- Department of Nephrology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Shukun Wu
- Department of Nephrology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xingli Xu
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoqiu Tan
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Shuang Yang
- Department of Nephrology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Tangting Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Jiong Zhang
- Department of Nephrology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Shengqiang Li
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, China.
| | - Wei Li
- Department of Emergency Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| | - Fang Wang
- Department of Nephrology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
5
|
Wu K, Chen L, Kong Y, Zhuo J, Sun Q, Chang J. The association between serum copper concentration and prevalence of diabetes among US adults with hypertension (NHANES 2011-2016). J Cell Mol Med 2024; 28:e18270. [PMID: 38568081 PMCID: PMC10989603 DOI: 10.1111/jcmm.18270] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/17/2024] [Accepted: 03/13/2024] [Indexed: 04/05/2024] Open
Abstract
The objective of this study was to examine the association between the serum copper concentration and the prevalence of diabetes among US adults with hypertension using the data from the National Health and Nutrition Examination Survey (NHANES). The study population was selected from adults aged over 20 years old in the three survey cycles of NHANES from 2011 to 2016. Logistic regression model analyses were applied to determine the independent risky effect of copper to the prevalence of diabetes. Also, a restricted cubic spline (RCS) model was performed to explore the potential nonlinear association between serum copper concentration and the prevalence of diabetes. A total of 1786 subjects (742 cases and 1044 controls) were included, and 924 were men (51.7%), and 742 (41.5%) were diabetic. Compared with non-diabetic individuals, the concentration of serum copper in diabetic patients with hypertension was higher. After adjusting for age, sex, race, education, marital status, body mass index (BMI), family poverty income ratio (PIR), smoking, alcohol drinking, physical activity, systolic blood pressure (SBP), diastolic blood pressure (DBP), and hyperlipidemia, the highest quartile of serum copper concentration significantly increased the risk of diabetes as compared with the lowest quartile (OR: 1.38, 95% CI: 1.01-1.92, ptrend = 0.036). The results of RCS analysis showed significant non-linear relationship between serum copper concentration and prevalence of diabetes (p-non-linear = 0.010). This study finds that serum copper concentration are significantly associated with risk of diabetes in hypertensive patients, which suggests copper as an important risk factor of diabetes development.
Collapse
Affiliation(s)
- Kaiming Wu
- Department of Chinese MedicineThe Second Affiliated Hospital of Guangdong Medical UniversityGuangdongChina
- Department of Chinese MedicineQingdao West Coast New Area People's HospitalQingdaoChina
| | - Lixia Chen
- Department of Chinese MedicineQingdao West Coast New Area People's HospitalQingdaoChina
| | - Yanyan Kong
- Rehabilitation Medicine DepartmentQingdao West Coast New Area People's HospitalQingdaoChina
| | - Jian‐Feng Zhuo
- Geriatrics DepartmentThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
| | - Qiu Sun
- Surgery Teaching and Research OfficeHeilongjiang University of Chinese MedicineHarbinChina
| | - Jianfei Chang
- Department of Chinese MedicineThe Second Affiliated Hospital of Guangdong Medical UniversityGuangdongChina
| |
Collapse
|
6
|
Xu T, Wan S, Shi J, Xu T, Wang L, Guan Y, Luo J, Luo Y, Sun M, An P, He J. Antioxidant Minerals Modified the Association between Iron and Type 2 Diabetes in a Chinese Population. Nutrients 2024; 16:335. [PMID: 38337620 PMCID: PMC10857573 DOI: 10.3390/nu16030335] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
Inconsistent findings exist regarding the relationship between heme iron intake and type 2 diabetes (T2D) among Western and Eastern populations. Easterners tend to consume a plant-based diet which is abundant in antioxidant minerals. To examine the hypothesis that antioxidant mineral may modify the relationship between iron and T2D, we performed a case-control study by measuring the serum mineral levels in 2198 Chinese subjects. A total of 2113 T2D patients and 2458 controls were invited; 502 T2D patients and 1696 controls were finally analyzed. In the total population, high serum iron showed a positive association with T2D odds (odds ratio [OR] = 1.27 [1.04, 1.55]); high magnesium (OR = 0.18 [0.14, 0.22]), copper (OR = 0.27 [0.21, 0.33]), zinc (OR = 0.37 [0.30, 0.46]), chromium (OR = 0.61 [0.50, 0.74]), or selenium concentrations (OR = 0.39 [0.31, 0.48]) were inversely associated with T2D odds. In contrast, in individuals with higher magnesium (>2673.2 µg/dL), zinc (>136.7 µg/dL), copper (>132.1 µg/dL), chromium (>14.0 µg/dL), or selenium concentrations (>16.8 µg/dL), serum iron displayed no association with T2D (p > 0.05). Serum copper and magnesium were significant modifiers of the association between iron and T2D in individuals with different physiological status (p < 0.05). Our findings support the idea that consuming a diet rich in antioxidant minerals is an effective approach for preventing T2D.
Collapse
Affiliation(s)
- Teng Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;
| | - Sitong Wan
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100190, China; (S.W.); (J.S.); (L.W.); (Y.G.); (J.L.); (Y.L.)
| | - Jiaxin Shi
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100190, China; (S.W.); (J.S.); (L.W.); (Y.G.); (J.L.); (Y.L.)
| | - Tiancheng Xu
- School of Food and Health, Beijing Technology & Business University, Beijing 100048, China;
| | - Langrun Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100190, China; (S.W.); (J.S.); (L.W.); (Y.G.); (J.L.); (Y.L.)
| | - Yiran Guan
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100190, China; (S.W.); (J.S.); (L.W.); (Y.G.); (J.L.); (Y.L.)
| | - Junjie Luo
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100190, China; (S.W.); (J.S.); (L.W.); (Y.G.); (J.L.); (Y.L.)
| | - Yongting Luo
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100190, China; (S.W.); (J.S.); (L.W.); (Y.G.); (J.L.); (Y.L.)
| | - Mingyue Sun
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Peng An
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100190, China; (S.W.); (J.S.); (L.W.); (Y.G.); (J.L.); (Y.L.)
| | - Jingjing He
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100190, China; (S.W.); (J.S.); (L.W.); (Y.G.); (J.L.); (Y.L.)
| |
Collapse
|
7
|
Yang L, Yang P, Lip GYH, Ren J. Copper homeostasis and cuproptosis in cardiovascular disease therapeutics. Trends Pharmacol Sci 2023; 44:573-585. [PMID: 37500296 DOI: 10.1016/j.tips.2023.07.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/08/2023] [Accepted: 07/08/2023] [Indexed: 07/29/2023]
Abstract
Copper (Cu) homeostasis is gaining increasing attention in human health as both Cu overload and deficiency evokes pathological changes including cardiovascular diseases (CVDs). Cu supplementation, nanocarriers, and chelators have all exhibited therapeutic promise in some human diseases, although how Cu dyshomeostasis and cuproptosis, a novel form of regulated cell death, contribute to CVD pathology remains elusive. Here, we discuss Cu dyshomeostasis and the potential role of cuproptosis in various CVDs. We evaluate underlying cellular mechanisms, aiming to provide some insights regarding the utility of targeting Cu dyshomeostasis and cuproptosis as a novel strategy in the management of CVDs.
Collapse
Affiliation(s)
- Lifang Yang
- Department of Anesthesiology, Xi'an Children Hospital, Xi'an, Shaanxi, China
| | - Pingping Yang
- Department of Anesthesiology, Xi'an Children Hospital, Xi'an, Shaanxi, China
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart and Chest Hospital, Liverpool, UK; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
8
|
He J, Chen F, Wan S, Luo Y, Luo J, He S, Zhou D, An P, Zeng P. Association of Serum Antioxidant Minerals and Type 2 Diabetes Mellitus in Chinese Urban Residents. Antioxidants (Basel) 2022; 12:62. [PMID: 36670924 PMCID: PMC9854585 DOI: 10.3390/antiox12010062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/09/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Antioxidant minerals including zinc, copper and selenium play critical roles in the maintenance of the redox balance in the body. However, their influences on type 2 diabetes mellitus (T2DM) are still inconclusive in Chinese populations. To elucidate the relationship between antioxidant minerals and T2DM, serum zinc, copper and selenium concentrations were measured in 1443 Chinese urban residents using a 1:2 matched case-control study. Conditional logistic regression models (CLR) were used to obtain the odds ratios (ORs) and 95% confidence intervals (CIs), and restricted cubic splines (RCS) were used to examine their dose−response associations. Serum zinc (OR = 0.52 [0.35, 0.77]) and copper concentrations (OR = 0.25 [0.17, 0.37]) were negatively associated with T2DM in a fully adjusted model. An L-shaped zinc-T2DM association (Poverall association = 0.003, and Pnonlinearity = 0.005) and a negative linear copper-T2DM association (Poverall association < 0.0001, and Pnonlinearity = 0.395) were observed. No association was found between serum selenium and T2DM in fully adjusted CLR or RCS models. In addition, joint associations with T2DM were identified between serum zinc and copper and between serum selenium and copper. In conclusion, our study emphasizes the importance of an adequate intake of antioxidant minerals for T2DM prevention in the Chinese population.
Collapse
Affiliation(s)
- Jingjing He
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Fangyan Chen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, China
| | - Sitong Wan
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Yongting Luo
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Junjie Luo
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Shuli He
- Department of Clinical Nutrition, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Daizhan Zhou
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Peng An
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Ping Zeng
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, China
| |
Collapse
|
9
|
Single and Combined Associations of Plasma and Urine Essential Trace Elements (Zn, Cu, Se, and Mn) with Cardiovascular Risk Factors in a Mediterranean Population. Antioxidants (Basel) 2022; 11:antiox11101991. [PMID: 36290714 PMCID: PMC9598127 DOI: 10.3390/antiox11101991] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
Trace elements are micronutrients that are required in very small quantities through diet but are crucial for the prevention of acute and chronic diseases. Despite the fact that initial studies demonstrated inverse associations between some of the most important essential trace elements (Zn, Cu, Se, and Mn) and cardiovascular disease, several recent studies have reported a direct association with cardiovascular risk factors due to the fact that these elements can act as both antioxidants and pro-oxidants, depending on several factors. This study aims to investigate the association between plasma and urine concentrations of trace elements and cardiovascular risk factors in a general population from the Mediterranean region, including 484 men and women aged 18−80 years and considering trace elements individually and as joint exposure. Zn, Cu, Se, and Mn were determined in plasma and urine using an inductively coupled plasma mass spectrometer (ICP-MS). Single and combined analysis of trace elements with plasma lipid, blood pressure, diabetes, and anthropometric variables was undertaken. Principal component analysis, quantile-based g-computation, and calculation of trace element risk scores (TERS) were used for the combined analyses. Models were adjusted for covariates. In single trace element models, we found statistically significant associations between plasma Se and increased total cholesterol and systolic blood pressure; plasma Cu and increased triglycerides and body mass index; and urine Zn and increased glucose. Moreover, in the joint exposure analysis using quantile g-computation and TERS, the combined plasma levels of Zn, Cu, Se (directly), and Mn (inversely) were strongly associated with hypercholesterolemia (OR: 2.03; 95%CI: 1.37−2.99; p < 0.001 per quartile increase in the g-computation approach). The analysis of urine mixtures revealed a significant relationship with both fasting glucose and diabetes (OR: 1.91; 95%CI: 1.01−3.04; p = 0.046). In conclusion, in this Mediterranean population, the combined effect of higher plasma trace element levels (primarily Se, Cu, and Zn) was directly associated with elevated plasma lipids, whereas the mixture effect in urine was primarily associated with plasma glucose. Both parameters are relevant cardiovascular risk factors, and increased trace element exposures should be considered with caution.
Collapse
|