1
|
Wang Z, Sun X, Sun M, Wang C, Yang L. Game Changers: Blockbuster Small-Molecule Drugs Approved by the FDA in 2024. Pharmaceuticals (Basel) 2025; 18:729. [PMID: 40430547 PMCID: PMC12114780 DOI: 10.3390/ph18050729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2025] [Revised: 05/04/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
This article profiles 27 innovative advancements in small-molecule drugs approved by the U.S. Food and Drug Administration (FDA) in 2024. These drugs target various therapeutic areas including non-small cell lung cancer, advanced or metastatic breast cancer, glioma, relapsed or refractory acute leukemia, urinary tract infection, Staphylococcus aureus bloodstream infections, nonalcoholic steatohepatitis, primary biliary cholangitis, Duchenne muscular dystrophy, hypertension, anemia due to chronic kidney disease, extravascular hemolysis, primary axillary hyperhidrosis, chronic obstructive pulmonary disease, severe alopecia areata, WHIM syndrome, Niemann-Pick disease type C, schizophrenia, supraventricular tachycardia, congenital adrenal hyperplasia, and cystic fibrosis. Among these approved small-molecule drugs, those with unique mechanisms of action and designated as breakthrough therapies by the FDA represent a significant proportion, highlighting ongoing innovation. Notably, eight of these drugs (including Rezdiffra®, Voydeya®, Iqirvo®, Voranigo®, Livdelzi®, Miplyffa®, Revuforj®, and Crenessity®) are classified as "first-in-class" and have received breakthrough therapy designation. These agents not only exhibit distinct mechanisms of action but also offer substantial improvements in efficacy for patients compared to prior therapeutic options. This article offers a comprehensive analysis of the mechanisms of action, clinical trials, drug design, and synthetic methodologies related to representative drugs, aiming to provide crucial insights for future pharmaceutical development.
Collapse
Affiliation(s)
- Zhonglei Wang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates, Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China;
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus, Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Xin Sun
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China; (X.S.); (M.S.)
| | - Mingyu Sun
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China; (X.S.); (M.S.)
| | - Chao Wang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates, Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China;
| | - Liyan Yang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China; (X.S.); (M.S.)
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
2
|
Ahmed AB, Abdelrahman MM, Edrees FH. Eco-sustainable chromatographic method for the determination of favipiravir and nitazoxanide for COVID-19: application to human plasma. BMC Chem 2025; 19:11. [PMID: 39789629 PMCID: PMC11714856 DOI: 10.1186/s13065-024-01364-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/10/2024] [Indexed: 01/12/2025] Open
Abstract
Coronavirus disease 2019 (COVID-19), an extremely contagious illness, has posed enormous challenges to healthcare systems around the world. Although the evidence on COVID-19 management is growing, antiviral medication is still the first line of treatment. Therefore, it is critical that effective, safe, and tolerable antivirals be available to treat early COVID-19 and stop its progression. Recently, favipiravir (FAV) has received FDA approval as safe and effective antiviral medication for COVID-19 management. Nitazoxanide (NTZ) also possesses antiviral and immunomodulating activities. Moreover, FAV and NTZ in combination are clinically used in COVID-19 treatment with reported safety, synergistic antiviral and immunomodulating effects. Despite the availability of various clinical studies on both FAV and NTZ, no existing analytical application for the simultaneous estimation of FAV and NTZ exists. As a result, the current work goal is to establish a green HPLC method for their analysis and implementation to human plasma. The developed method utilizes isocratic elution with 0.1% aqueous formic acid: ethanol (55:45, v/v) and dantrolene as internal standard. The bioanalytical validation parameters passed the FDA acceptance criteria. NEMI, eco scale, AGREE and ComplexGAPI approaches were used for qualitative and quantitative evaluation of the method's greenness.
Collapse
Affiliation(s)
- Amal B Ahmed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Nahda University (NUB), Sharq El-Nile, Beni-Suef, 62511, Egypt.
| | - Maha M Abdelrahman
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Alshaheed Shehata Ahmad Hegazy St, Beni-Suef, 62514, Egypt
| | - Fadwa H Edrees
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Nile Valley University (NVU), El Fayoum, 63518, Egypt
| |
Collapse
|
3
|
Yang Y, Luo YD, Zhang CB, Xiang Y, Bai XY, Zhang D, Fu ZY, Hao RB, Liu XL. Progress in Research on Inhibitors Targeting SARS-CoV-2 Main Protease (M pro). ACS OMEGA 2024; 9:34196-34219. [PMID: 39157135 PMCID: PMC11325518 DOI: 10.1021/acsomega.4c03023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/12/2024] [Accepted: 07/19/2024] [Indexed: 08/20/2024]
Abstract
Since 2019, the novel coronavirus (SARS-CoV-2) has caused significant morbidity and millions of deaths worldwide. The Coronavirus Disease 2019 (COVID-19), caused by SARS-CoV-2 and its variants, has further highlighted the urgent need for the development of effective therapeutic agents. Currently, the highly conserved and broad-spectrum nature of main proteases (Mpro) renders them of great importance in the field of inhibitor study. In this study, we categorize inhibitors targeting Mpro into three major groups: mimetic, nonmimetic, and natural inhibitors. We then present the research progress of these inhibitors in detail, including their mechanism of action, antiviral activity, pharmacokinetic properties, animal experiments, and clinical studies. This review aims to provide valuable insights and potential avenues for the development of more effective antiviral drugs against SARS-CoV-2.
Collapse
Affiliation(s)
- Yue Yang
- School
of Medicine, Yan’an University, Yan’an 716000, China
| | - Yi-Dan Luo
- School
of Medicine, Yan’an University, Yan’an 716000, China
| | - Chen-Bo Zhang
- School
of Medicine, Yan’an University, Yan’an 716000, China
| | - Yang Xiang
- School
of Medicine, Yan’an University, Yan’an 716000, China
- College
of Physical Education, Yan’an University, Yan’an 716000, China
| | - Xin-Yue Bai
- School
of Medicine, Yan’an University, Yan’an 716000, China
| | - Die Zhang
- School
of Medicine, Yan’an University, Yan’an 716000, China
| | - Zhao-Ying Fu
- School
of Medicine, Yan’an University, Yan’an 716000, China
| | - Ruo-Bing Hao
- School
of Medicine, Yan’an University, Yan’an 716000, China
| | - Xiao-Long Liu
- School
of Medicine, Yan’an University, Yan’an 716000, China
| |
Collapse
|
4
|
Sumi T, Harada K. Vaccine and antiviral drug promise for preventing post-acute sequelae of COVID-19, and their combination for its treatment. Front Immunol 2024; 15:1329162. [PMID: 39185419 PMCID: PMC11341427 DOI: 10.3389/fimmu.2024.1329162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 07/17/2024] [Indexed: 08/27/2024] Open
Abstract
Introduction Most healthy individuals recover from acute SARS-CoV-2 infection, whereas a remarkable number continues to suffer from unexplained symptoms, known as Long COVID or post-acute COVID-19 syndrome (PACS). It is therefore imperative that methods for preventing and treating the onset of PASC be investigated with the utmost urgency. Methods A mathematical model of the immune response to vaccination and viral infection with SARS-CoV-2, incorporating immune memory cells, was developed. Results and discussion Similar to our previous model, persistent infection was observed by the residual virus in the host, implying the possibility of chronic inflammation and delayed recovery from tissue injury. Pre-infectious vaccination and antiviral medication administered during onset can reduce the acute viral load; however, they show no beneficial effects in preventing persistent infection. Therefore, the impact of these treatments on the PASC, which has been clinically observed, is mainly attributed to their role in preventing severe tissue damage caused by acute viral infections. For PASC patients with persistent infection, vaccination was observed to cause an immediate rapid increase in viral load, followed by a temporary decrease over approximately one year. The former was effectively suppressed by the coadministration of antiviral medications, indicating that this combination is a promising treatment for PASC.
Collapse
Affiliation(s)
- Tomonari Sumi
- Research Institute for Interdisciplinary Science, Okayama University, Okayama, Japan
- Department of Chemistry, Faculty of Science, Okayama University, Okayama, Japan
| | - Kouji Harada
- Department of Computer Science and Engineering, Toyohashi University of Technology, Toyohashi, Aichi, Japan
- Center for IT-Based Education, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| |
Collapse
|
5
|
Mohammadi S, Ghaderi S. Post-COVID-19 conditions: a systematic review on advanced magnetic resonance neuroimaging findings. Neurol Sci 2024; 45:1815-1833. [PMID: 38421524 DOI: 10.1007/s10072-024-07427-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/23/2024] [Indexed: 03/02/2024]
Abstract
Post-COVID conditions (PCCs) cover a wide spectrum of lingering symptoms experienced by survivors of coronavirus disease 2019 (COVID-19). Neurological and neuropsychiatric sequelae are common in PCCs. Advanced magnetic resonance imaging (MRI) techniques can reveal subtle alterations in brain structure, function, and perfusion that underlie these sequelae. This systematic review aimed to synthesize findings from studies that used advanced MRI to characterize brain changes in individuals with PCCs. A detailed literature search was conducted in the PubMed and Scopus databases to identify relevant studies that used advanced MRI modalities, such as structural MRI (sMRI), diffusion tensor imaging (DTI), functional MRI (fMRI), and perfusion-weighted imaging (PWI), to evaluate brain changes in PCCs. Twenty-five studies met the inclusion criteria, comprising 1219 participants with PCCs. The most consistent findings from sMRI were reduced gray matter volume (GMV) and cortical thickness (CTh) in cortical and subcortical regions. DTI frequently reveals increased mean diffusivity (MD), radial diffusivity (RD), and decreased fractional anisotropy (FA) in white matter tracts (WMTs) such as the corpus callosum, corona radiata, and superior longitudinal fasciculus. fMRI demonstrated altered functional connectivity (FC) within the default mode, salience, frontoparietal, somatomotor, subcortical, and cerebellar networks. PWI showed decreased cerebral blood flow (CBF) in the frontotemporal area, thalamus, and basal ganglia. Advanced MRI shows changes in the brain networks and regions of the PCCs, which may cause neurological and neuropsychiatric problems. Multimodal neuroimaging may help understand brain-behavior relationships. Longitudinal studies are necessary to better understand the progression of these brain anomalies.
Collapse
Affiliation(s)
- Sana Mohammadi
- Department of Medical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sadegh Ghaderi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Wolszczak-Biedrzycka B, Dorf J, Matowicka-Karna J, Dymicka-Piekarska V, Wojewódzka-Żeleźniakowicz M, Żukowski P, Zalewska A, Dąbrowski Ł, Maciejczyk M. Redox Biomarkers - An Effective Tool for Diagnosing COVID-19 Patients and Convalescents. J Inflamm Res 2024; 17:2589-2607. [PMID: 38699594 PMCID: PMC11063110 DOI: 10.2147/jir.s456849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/02/2024] [Indexed: 05/05/2024] Open
Abstract
Aim COVID-19 triggers the overproduction of reactive oxygen species (ROS) which, in combination with a weakened antioxidant barrier, can lead to protein oxidation and lipid peroxidation. The aim of this study was to evaluate enzymatic and non-enzymatic antioxidants, the overall redox potential, and protein and lipid peroxidation products in COVID-19 patients, convalescents, and healthy subjects, and to the determine the diagnostic applicability of these parameters in COVID-19 patients. Materials and Methods The study involved 218 patients with COVID-19, 69 convalescents, and 48 healthy subjects who were selected for the research based on age and sex. The study was conducted between 20 February 2021 and 20 November 2021 in Białystok, Poland. The antioxidant barrier, redox status, and oxidative damage products were assessed in serum/plasma samples with the use of colorimetric and spectrophotometric assays. Results Glutathione reductase (GR) activity was higher, whereas total antioxidant capacity (TAC) was lower in COVID-19 patients than in convalescents (p<0.0001) and the control group (p<0.0001). The concentrations of advanced glycation end products (AGEs), advanced oxidation protein products (AOPP), 4-hydroxynonenal (4-HNE), and malondialdehyde (MDA) were higher in COVID-19 patients (p<0.0001) and convalescents (p<0.0001) than in the control group. AGEs were the most effective diagnostic biomarker for differentiating COVID-19 patients from the control group (AUC=0.9971) and convalescents from the control group (AUC=1.000). Conclusion An infection with the SARS-CoV-2 disrupts the redox balance and increases protein oxidation and lipid peroxidation. AGEs fulfill the criteria for a potential diagnostic biomarker in COVID-19 patients and convalescents.
Collapse
Affiliation(s)
- Blanka Wolszczak-Biedrzycka
- Department of Psychology and Sociology of Health and Public Health, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Justyna Dorf
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Bialystok, Poland
| | - Joanna Matowicka-Karna
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Bialystok, Poland
| | | | | | - Piotr Żukowski
- Department of Restorative Dentistry, Croydon University Hospital, London, UK
| | - Anna Zalewska
- Independent Laboratory of Experimental Dentistry, Medical University of Bialystok, Bialystok, Poland
| | | | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
7
|
Kowal M, Morgiel E, Winiarski S, Dymarek R, Bajer W, Madej M, Sebastian A, Madziarski M, Wedel N, Proc K, Madziarska K, Wiland P, Paprocka-Borowicz M. Ebbing Strength, Fading Power: Unveiling the Impact of Persistent Fatigue on Muscle Performance in COVID-19 Survivors. SENSORS (BASEL, SWITZERLAND) 2024; 24:1250. [PMID: 38400407 PMCID: PMC10892381 DOI: 10.3390/s24041250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/05/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024]
Abstract
The total number of confirmed cases of COVID-19 caused by SARS-CoV-2 virus infection is over 621 million. Post-COVID-19 syndrome, also known as long COVID or long-haul COVID, refers to a persistent condition where individuals experience symptoms and health issues after the acute phase of COVID-19. The aim of this study was to assess the strength and fatigue of skeletal muscles in people recovered from COVID-19. A total of 94 individuals took part in this cross-sectional study, with 45 participants (referred to as the Post-COVID Cohort, PCC) and 49 healthy age-matched volunteers (Healthy Control Cohort, HCC). This research article uses the direct dynamometry method to provide a detailed analysis of post-COVID survivors' strength and power characteristics. The Biodex System 4 Pro was utilized to evaluate muscle strength characteristics during the fatigue test. The fatigue work in extensors and flexors was significantly higher in the PCC. The PCC also showed significantly less power in both extensors and flexors compared to the HCC. In conclusion, this study provides compelling evidence of the impact of post-COVID-19 fatigue on muscle performance, highlighting the importance of considering these effects in the rehabilitation and care of individuals recovering from the virus. PCC achieved lower muscle strength values than HCC.
Collapse
Affiliation(s)
- Mateusz Kowal
- Department of Physiotherapy, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.K.); (W.B.); (M.P.-B.)
| | - Ewa Morgiel
- Department of Rheumatology and Internal Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (E.M.); (M.M.); (A.S.); (P.W.)
| | - Sławomir Winiarski
- Biomechanics Department, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland;
| | - Robert Dymarek
- Department of Physiotherapy, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.K.); (W.B.); (M.P.-B.)
| | - Weronika Bajer
- Department of Physiotherapy, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.K.); (W.B.); (M.P.-B.)
| | - Marta Madej
- Department of Rheumatology and Internal Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (E.M.); (M.M.); (A.S.); (P.W.)
| | - Agata Sebastian
- Department of Rheumatology and Internal Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (E.M.); (M.M.); (A.S.); (P.W.)
| | - Marcin Madziarski
- Department of Rheumatology and Internal Medicine, University Teaching Hospital, 50-556 Wroclaw, Poland; (M.M.); (K.P.)
| | - Nicole Wedel
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Krzysztof Proc
- Department of Rheumatology and Internal Medicine, University Teaching Hospital, 50-556 Wroclaw, Poland; (M.M.); (K.P.)
| | - Katarzyna Madziarska
- Clinical Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Piotr Wiland
- Department of Rheumatology and Internal Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (E.M.); (M.M.); (A.S.); (P.W.)
| | | |
Collapse
|
8
|
Cao X, Xie YL, Zhou CL, Mu H. The value of age IgG and IL6 in estimating time of viral clearance in asymptomatic or mild patients with COVID-19. Front Microbiol 2023; 14:1256759. [PMID: 38125571 PMCID: PMC10731291 DOI: 10.3389/fmicb.2023.1256759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/07/2023] [Indexed: 12/23/2023] Open
Abstract
Background The aim of this study was to investigate the relationship between Age, immunoglobin G (IgG), immunoglobin M (IgM), procalcitonin (PCT), and interleukin-6 (IL6), and the time to clear viral nucleic acids in asymptomatic and mild coronavirus disease 2019 (COVID-19) patients, as well as evaluated the predictive value of these biochemical indicators. Methods We performed a retrospective analysis on 1,570 individuals who were admitted to Tianjin First Central Hospital and diagnosed with asymptomatic or mild cases. Laboratory data were collected, including age, gender, levels of IgG, IgM, PCT and IL6, as well as results of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) nucleic acid test. These data were statistically analyzed using SPSS software, version 24.0. Results The results indicated that among mild patients, Age, IgG, and the time to clear viral nucleic acids were higher than asymptomatic patients (p < 0.05). And the time to clear viral nucleic acids was significantly correlated with Age, IgG, IgM, PCT, and IL6 (p < 0.05), IgG (r = -0.445, p < 0.001) showed moderate correlations. Using logistic regression analysis, we identified older age, high IL6 levels, and low IgG levels were risk factors for nucleic acid clearance exceeding 14 days (p < 0.05). When combining these three indicators to predict the probability of nucleic acid clearance exceeding 14 days in the 1,570 patients, the AUROC was found to be 0.727. Conclusion Age, IgG, and IL6 could potentially serve as useful predictors for nucleic acid clearance exceeding 14 days in asymptomatic and mild COVID-19 patients.
Collapse
Affiliation(s)
- Xi Cao
- Department of Clinical Laboratory, Tianjin First Central Hospital, Tianjin, China
| | - Yong-Li Xie
- Department of Clinical Laboratory, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China
| | - Chun-lei Zhou
- Department of Clinical Laboratory, Tianjin First Central Hospital, Tianjin, China
| | - Hong Mu
- Department of Clinical Laboratory, Tianjin First Central Hospital, Tianjin, China
| |
Collapse
|
9
|
Zhou K, Chen D. Conventional Understanding of SARS-CoV-2 M pro and Common Strategies for Developing Its Inhibitors. Chembiochem 2023; 24:e202300301. [PMID: 37577869 DOI: 10.1002/cbic.202300301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023]
Abstract
The Coronavirus Disease 2019 (COVID-19) pandemic has brought a widespread influence on the world, especially in the face of sudden coronavirus infections, and there is still an urgent need for specific small molecule therapies to cope with possible future pandemics. The pathogen responsible for this pandemic is Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and understanding its structure and lifecycle is beneficial for designing specific drugs of treatment for COVID-19. The main protease (Mpro ) which has conservative and specific advantages is essential for viral replication and transcription. It is regarded as one of the most potential targets for anti-SARS-CoV-2 drug development. This review introduces the popular knowledge of SARS-CoV-2 Mpro in drug development and lists a series of design principles and relevant activities of advanced Mpro inhibitors, hoping to provide some new directions and ideas for researchers.
Collapse
Affiliation(s)
- Kun Zhou
- School of Pharmacy, Yantai University, Yantai, Shandong, RT 264005, P. R. China
| | - Daquan Chen
- School of Pharmacy, Yantai University, Yantai, Shandong, RT 264005, P. R. China
| |
Collapse
|
10
|
Wang Z, Song XQ, Xu W, Lei S, Zhang H, Yang L. Stand Up to Stand Out: Natural Dietary Polyphenols Curcumin, Resveratrol, and Gossypol as Potential Therapeutic Candidates against Severe Acute Respiratory Syndrome Coronavirus 2 Infection. Nutrients 2023; 15:3885. [PMID: 37764669 PMCID: PMC10535599 DOI: 10.3390/nu15183885] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The COVID-19 pandemic has stimulated collaborative drug discovery efforts in academia and the industry with the aim of developing therapies and vaccines that target SARS-CoV-2. Several novel therapies have been approved and deployed in the last three years. However, their clinical application has revealed limitations due to the rapid emergence of viral variants. Therefore, the development of next-generation SARS-CoV-2 therapeutic agents with a high potency and safety profile remains a high priority for global health. Increasing awareness of the "back to nature" approach for improving human health has prompted renewed interest in natural products, especially dietary polyphenols, as an additional therapeutic strategy to treat SARS-CoV-2 patients, owing to its good safety profile, exceptional nutritional value, health-promoting benefits (including potential antiviral properties), affordability, and availability. Herein, we describe the biological properties and pleiotropic molecular mechanisms of dietary polyphenols curcumin, resveratrol, and gossypol as inhibitors against SARS-CoV-2 and its variants as observed in in vitro and in vivo studies. Based on the advantages and disadvantages of dietary polyphenols and to obtain maximal benefits, several strategies such as nanotechnology (e.g., curcumin-incorporated nanofibrous membranes with antibacterial-antiviral ability), lead optimization (e.g., a methylated analog of curcumin), combination therapies (e.g., a specific combination of plant extracts and micronutrients), and broad-spectrum activities (e.g., gossypol broadly inhibits coronaviruses) have also been emphasized as positive factors in the facilitation of anti-SARS-CoV-2 drug development to support effective long-term pandemic management and control.
Collapse
Affiliation(s)
- Zhonglei Wang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China; (W.X.); (S.L.); (H.Z.)
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus, Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Xian-qing Song
- General Surgery Department, Baoan Central Hospital, Affiliated Baoan Central Hospital of Guangdong Medical University, Shenzhen 518000, China
| | - Wenjing Xu
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China; (W.X.); (S.L.); (H.Z.)
| | - Shizeng Lei
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China; (W.X.); (S.L.); (H.Z.)
| | - Hao Zhang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China; (W.X.); (S.L.); (H.Z.)
| | - Liyan Yang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China
| |
Collapse
|
11
|
Chen TB, Chang CM, Yang CC, Tsai IJ, Wei CY, Yang HW, Yang CP. Neuroimmunological Effect of Vitamin D on Neuropsychiatric Long COVID Syndrome: A Review. Nutrients 2023; 15:3802. [PMID: 37686834 PMCID: PMC10490318 DOI: 10.3390/nu15173802] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the coronavirus disease 2019 (COVID-19). COVID-19 is now recognized as a multiorgan disease with a broad spectrum of manifestations. A substantial proportion of individuals who have recovered from COVID-19 are experiencing persistent, prolonged, and often incapacitating sequelae, collectively referred to as long COVID. To date, definitive diagnostic criteria for long COVID diagnosis remain elusive. An emerging public health threat is neuropsychiatric long COVID, encompassing a broad range of manifestations, such as sleep disturbance, anxiety, depression, brain fog, and fatigue. Although the precise mechanisms underlying the neuropsychiatric complications of long COVID are presently not fully elucidated, neural cytolytic effects, neuroinflammation, cerebral microvascular compromise, breakdown of the blood-brain barrier (BBB), thrombosis, hypoxia, neurotransmitter dysregulation, and provoked neurodegeneration are pathophysiologically linked to long-term neuropsychiatric consequences, in addition to systemic hyperinflammation and maladaptation of the renin-angiotensin-aldosterone system. Vitamin D, a fat-soluble secosteroid, is a potent immunomodulatory hormone with potential beneficial effects on anti-inflammatory responses, neuroprotection, monoamine neurotransmission, BBB integrity, vasculometabolic functions, gut microbiota, and telomere stability in different phases of SARS-CoV-2 infection, acting through both genomic and nongenomic pathways. Here, we provide an up-to-date review of the potential mechanisms and pathophysiology of neuropsychiatric long COVID syndrome and the plausible neurological contributions of vitamin D in mitigating the effects of long COVID.
Collapse
Affiliation(s)
- Ting-Bin Chen
- Department of Neurology, Neurological Institute, Taichung Veterans General Hospital, Taichung 407219, Taiwan;
| | - Ching-Mao Chang
- Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
- Faculty of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 11217, Taiwan
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Cheng-Chia Yang
- Department of Healthcare Administration, Asia University, Taichung 41354, Taiwan;
| | - I-Ju Tsai
- Department of Medical Research, Kuang Tien General Hospital, Taichung 433, Taiwan;
| | - Cheng-Yu Wei
- Department of Exercise and Health Promotion, College of Kinesiology and Health, Chinese Culture University, Taipei 11114, Taiwan
- Department of Neurology, Chang Bing Show Chwan Memorial Hospital, Changhua 50544, Taiwan
| | - Hao-Wen Yang
- Department of Family Medicine, Kuang Tien General Hospital, Taichung 433, Taiwan
| | - Chun-Pai Yang
- Department of Medical Research, Kuang Tien General Hospital, Taichung 433, Taiwan;
- Department of Neurology, Kuang Tien General Hospital, Taichung 433, Taiwan
- Department of Nutrition, HungKuang University, Taichung 433, Taiwan
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
12
|
Wang Z, Yang L. The Therapeutic Potential of Natural Dietary Flavonoids against SARS-CoV-2 Infection. Nutrients 2023; 15:3443. [PMID: 37571380 PMCID: PMC10421531 DOI: 10.3390/nu15153443] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
The exploration of non-toxic and cost-effective dietary components, such as epigallocatechin 3-gallate and myricetin, for health improvement and disease treatment has recently attracted substantial research attention. The recent COVID-19 pandemic has provided a unique opportunity for the investigation and identification of dietary components capable of treating viral infections, as well as gathering the evidence needed to address the major challenges presented by public health emergencies. Dietary components hold great potential as a starting point for further drug development for the treatment and prevention of SARS-CoV-2 infection owing to their good safety, broad-spectrum antiviral activities, and multi-organ protective capacity. Here, we review current knowledge of the characteristics-chemical composition, bioactive properties, and putative mechanisms of action-of natural bioactive dietary flavonoids with the potential for targeting SARS-CoV-2 and its variants. Notably, we present promising strategies (combination therapy, lead optimization, and drug delivery) to overcome the inherent deficiencies of natural dietary flavonoids, such as limited bioavailability and poor stability.
Collapse
Affiliation(s)
- Zhonglei Wang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus, Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Liyan Yang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
13
|
Baroni C, Potito J, Perticone ME, Orausclio P, Luna CM. How Does Long-COVID Impact Prognosis and the Long-Term Sequelae? Viruses 2023; 15:1173. [PMID: 37243259 PMCID: PMC10222218 DOI: 10.3390/v15051173] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/01/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
CONTEXT We reviewed what has been studied and published during the last 3 years about the consequences, mainly respiratory, cardiac, digestive, and neurological/psychiatric (organic and functional), in patients with COVID-19 of prolonged course. OBJECTIVE To conduct a narrative review synthesizing current clinical evidence of abnormalities of signs, symptoms, and complementary studies in COVID-19 patients who presented a prolonged and complicated course. METHODS A review of the literature focused on the involvement of the main organic functions mentioned, based almost exclusively on the systematic search of publications written in English available on PubMed/MEDLINE. RESULTS Long-term respiratory, cardiac, digestive, and neurological/psychiatric dysfunction are present in a significant number of patients. Lung involvement is the most common; cardiovascular involvement may happen with or without symptoms or clinical abnormalities; gastrointestinal compromise includes the loss of appetite, nausea, gastroesophageal reflux, diarrhea, etc.; and neurological/psychiatric compromise can produce a wide variety of signs and symptoms, either organic or functional. Vaccination is not associated with the emergence of long-COVID, but it may happen in vaccinated people. CONCLUSIONS The severity of illness increases the risk of long-COVID. Pulmonary sequelae, cardiomyopathy, the detection of ribonucleic acid in the gastrointestinal tract, and headaches and cognitive impairment may become refractory in severely ill COVID-19 patients.
Collapse
Affiliation(s)
- Carolina Baroni
- Department of Medicine, Pulmonary Diseases Division, Hospital de Clínicas, University of Buenos Aires, Buenos Aires C1120 AAF, Argentina
| | - Jorge Potito
- Department of Medicine, Pulmonary Diseases Division, Hospital de Clínicas, University of Buenos Aires, Buenos Aires C1120 AAF, Argentina
| | - María Eugenia Perticone
- Department of Medicine, Pulmonary Diseases Division, Hospital de Clínicas, University of Buenos Aires, Buenos Aires C1120 AAF, Argentina
| | - Paola Orausclio
- Department of Radiology, Centro Rossi, Buenos Aires C1035 ABC, Argentina
| | - Carlos Marcelo Luna
- Department of Medicine, Pulmonary Diseases Division, Hospital de Clínicas, University of Buenos Aires, Buenos Aires C1120 AAF, Argentina
| |
Collapse
|
14
|
Clinical Investigation of Leukocyte DNA Damage in COVID-19 Patients. Curr Issues Mol Biol 2023; 45:963-974. [PMID: 36826007 PMCID: PMC9955698 DOI: 10.3390/cimb45020062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
This prospective cross-sectional study aimed to evaluate leukocyte DNA damage in coronavirus disease (COVID-19) patients. In this study, 50 COVID-19-positive patients attending the Erzurum City Hospital Internal Medicine Outpatient Clinic and 42 control group patients were included. DNA damage was detected in living cells through leukocyte isolation in 50 COVID-19-positive patients using the comet assay method. DNA tail/head (olive) moments were evaluated and compared. White blood cells (WBC), red blood cells (RBC), hemoglobin (HGB), neutrophils (NEU), lymphocytes (LYM), eosinophils (EO), monocytes (MONO), basophils (BASO), platelets (PLT), and the neutrophil/lymphocyte ratio (NLR) were analyzed. The RBC, lymphocyte, eosinophil, and monocyte means were significantly higher in the control group (p < 0.05), whereas the HGB and neutrophile means were significantly higher in the study group (p < 0.05). There were significant negative correlations between COVID-19 and RBC (r = -0.863), LYM (r = -0.542), EO (r = -0.686), and MONO (r = -0.385). Meanwhile, there were significant positive correlations between COVID-19 and HGB (r = 0.863), NEU (r = 0.307), tail moment (r = 0.598), and olive moment (r = 0.582). Both the tail and olive moment mean differences were significantly higher in the study group, with higher ranges (p < 0.05). COVID-19 infection caused statistically significant increases in both the tail and olive damage percentage in patients, causing DNA damage. Lastly, the NLR rate was associated with the presence and progression of COVID-19.
Collapse
|
15
|
Kawall A, Lewis DSM, Sharma A, Chavada K, Deshmukh R, Rayalam S, Mody V, Taval S. Inhibitory effect of phytochemicals towards SARS-CoV-2 papain like protease (PLpro) proteolytic and deubiquitinase activity. Front Chem 2023; 10:1100460. [PMID: 36712981 PMCID: PMC9878345 DOI: 10.3389/fchem.2022.1100460] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/26/2022] [Indexed: 01/14/2023] Open
Abstract
Recent studies have shown that RNA-dependent RNA polymerase (RdRp), 3-chymotrypsin-like protease (3CLpro), and papain-like protease (PLpro) are necessary for SARS-CoV-2 replication. Among these three enzymes, PLpro exhibits both proteolytic and deubiquitinase (DUB) activity and is responsible for disrupting the host's innate immune response against SARS-CoV-2. Because of this unique property of PLpro, we investigated the inhibitory effects of phytochemicals on the SARS-CoV-2 PLpro enzyme. Our data indicates that the phytochemicals such as catechin, epigallocatechin gallate (EGCG), mangiferin, myricetin, rutin, and theaflavin exhibited inhibitory activity with IC50 values of 14.2, 128.4, 95.3, 12.1, and 43.4, and 7.3 μM, respectively, towards PLpro proteolytic activity. However, the IC50 values of quercetin, oleuropein, and γ-mangostin are ambiguous. We observed that EGCG, mangiferin, myricetin, oleuropein, rutin, and theaflavin have also inhibited the DUB activity with IC50 values of 44.7, 104.3, 29.2, 131.5, 61.7, and 13.2 μM, respectively. Mechanistically, the ligand-protein interaction structural modeling suggests that mangiferin, EGCG, theaflavin, and oleuropein shows that these four ligands interact with Glu167, and Tyr268, however mangiferin and oleuropein showed very weak interaction with Glu167 as compared to EGCG, and theaflavin which reflects their low IC50 values for DUB activity. Our data indicate that the phytochemicals mentioned above inhibit the proteolytic and DUB activity of SARS-CoV-2 PLpro, thus preventing viral replication and promoting host innate immune response. However, the therapeutic potential of these phytochemicals needs to be validated by pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Anasha Kawall
- Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine—Georgia Campus, Suwanee, GA, United States
| | - Devin S. M. Lewis
- Division of Research, Philadelphia College of Osteopathic Medicine—Georgia Campus, Suwanee, GA, United States
| | - Avini Sharma
- Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine—Georgia Campus, Suwanee, GA, United States
| | - Krishna Chavada
- Department of Pharmaceutical Sciences, School of Pharmacy, Philadelphia College of Osteopathic Medicine—Georgia Campus, Suwanee, GA, United States
| | - Rahul Deshmukh
- Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Srujana Rayalam
- Department of Pharmaceutical Sciences, School of Pharmacy, Philadelphia College of Osteopathic Medicine—Georgia Campus, Suwanee, GA, United States
| | - Vicky Mody
- Department of Pharmaceutical Sciences, School of Pharmacy, Philadelphia College of Osteopathic Medicine—Georgia Campus, Suwanee, GA, United States,*Correspondence: Shashidharamurthy Taval, ; Vicky Mody,
| | - Shashidharamurthy Taval
- Department of Pharmaceutical Sciences, School of Pharmacy, Philadelphia College of Osteopathic Medicine—Georgia Campus, Suwanee, GA, United States,*Correspondence: Shashidharamurthy Taval, ; Vicky Mody,
| |
Collapse
|
16
|
Zhang K, Wang L, Peng J, Sangji K, Luo Y, Zeng Y, Zeweng Y, Fan G. Traditional Tibetan medicine to fight against COVID-19: Basic theory and therapeutic drugs. Front Pharmacol 2023; 14:1098253. [PMID: 36874035 PMCID: PMC9978713 DOI: 10.3389/fphar.2023.1098253] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
The Coronavirus Diseases 2019 (COVID-19) has been rapidly spreading globally and has caused severe harm to the health of people and a substantial social burden. In response to this situation, experts around the world have considered various treatments, including the use of traditional medicine. Traditional Tibetan medicine (TTM), one of the traditional medicines in China, has played an important role in the treatment of infectious diseases in history. It has formed a solid theoretical foundation and accumulated rich experience in the treatment of infectious diseases. In this review, we provide a comprehensive introduction to the basic theory, treatment strategies, and commonly used drugs of TTM for the treatment of COVID-19. In addition, the efficacies and potential mechanisms of these TTM drugs against COVID-19 are discussed based on available experimental data. This review may provide important information for the basic research, clinical application and drug development of traditional medicines for the treatment of COVID-19 or other infectious diseases. More pharmacological studies are needed to reveal the therapeutic mechanisms and active ingredients of TTM drugs in the treatment of COVID-19.
Collapse
Affiliation(s)
- Kun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lijie Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiayan Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kangzhuo Sangji
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuting Luo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yujiao Zeng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yongzhong Zeweng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Gang Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
17
|
Giotis ES, Cil E, Brooke GN. Use of Antiandrogens as Therapeutic Agents in COVID-19 Patients. Viruses 2022; 14:2728. [PMID: 36560732 PMCID: PMC9788624 DOI: 10.3390/v14122728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
COVID-19, caused by the severe acute respiratory syndrome coronavirus 2 (SARS CoV-2), is estimated to have caused over 6.5 million deaths worldwide. The emergence of fast-evolving SARS-CoV-2 variants of concern alongside increased transmissibility and/or virulence, as well as immune and vaccine escape capabilities, highlight the urgent need for more effective antivirals to combat the disease in the long run along with regularly updated vaccine boosters. One of the early risk factors identified during the COVID-19 pandemic was that men are more likely to become infected by the virus, more likely to develop severe disease and exhibit a higher likelihood of hospitalisation and mortality rates compared to women. An association exists between SARS-CoV-2 infectiveness and disease severity with sex steroid hormones and, in particular, androgens. Several studies underlined the importance of the androgen-mediated regulation of the host protease TMPRSS2 and the cell entry protein ACE2, as well as the key role of these factors in the entry of the virus into target cells. In this context, modulating androgen signalling is a promising strategy to block viral infection, and antiandrogens could be used as a preventative measure at the pre- or early hospitalisation stage of COVID-19 disease. Different antiandrogens, including commercial drugs used to treat metastatic castration-sensitive prostate cancer and other conditions, have been tested as antivirals with varying success. In this review, we summarise the most recent updates concerning the use of antiandrogens as prophylactic and therapeutic options for COVID-19.
Collapse
Affiliation(s)
- Efstathios S. Giotis
- Department of Infectious Diseases, Imperial College London, London W2 1PG, UK
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK
| | - Emine Cil
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK
| | - Greg N. Brooke
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK
| |
Collapse
|
18
|
Wang Z, Yang L, Song XQ. Oral GS-441524 derivatives: Next-generation inhibitors of SARS-CoV-2 RNA-dependent RNA polymerase. Front Immunol 2022; 13:1015355. [PMID: 36561747 PMCID: PMC9763260 DOI: 10.3389/fimmu.2022.1015355] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
GS-441524, an RNA-dependent RNA polymerase (RdRp) inhibitor, is a 1'-CN-substituted adenine C-nucleoside analog with broad-spectrum antiviral activity. However, the low oral bioavailability of GS-441524 poses a challenge to its anti-SARS-CoV-2 efficacy. Remdesivir, the intravenously administered version (version 1.0) of GS-441524, is the first FDA-approved agent for SARS-CoV-2 treatment. However, clinical trials have presented conflicting evidence on the value of remdesivir in COVID-19. Therefore, oral GS-441524 derivatives (VV116, ATV006, and GS-621763; version 2.0, targeting highly conserved viral RdRp) could be considered as game-changers in treating COVID-19 because oral administration has the potential to maximize clinical benefits, including decreased duration of COVID-19 and reduced post-acute sequelae of SARS-CoV-2 infection, as well as limited side effects such as hepatic accumulation. This review summarizes the current research related to the oral derivatives of GS-441524, and provides important insights into the potential factors underlying the controversial observations regarding the clinical efficacy of remdesivir; overall, it offers an effective launching pad for developing an oral version of GS-441524.
Collapse
Affiliation(s)
- Zhonglei Wang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, China,School of Pharmaceutical Sciences, Tsinghua University, Beijing, China,*Correspondence: Zhonglei Wang, ; Liyan Yang, ; Xian-qing Song,
| | - Liyan Yang
- Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, School of Physics and Physical Engineering, Qufu Normal University, Qufu, China,*Correspondence: Zhonglei Wang, ; Liyan Yang, ; Xian-qing Song,
| | - Xian-qing Song
- General Surgery Department, Ningbo Fourth Hospital, Xiangshan, China,*Correspondence: Zhonglei Wang, ; Liyan Yang, ; Xian-qing Song,
| |
Collapse
|
19
|
Yi Y, Fang J, Liu Y, Gao Y, Lin W, Hao D, Zhang X, Zhang M. Clinical Characteristics of 254 COVID-19 Inpatients in Yichang, Hubei, China, and Efficacy of Integrated Chinese and Western Medicine Treatment. Int J Gen Med 2022; 15:8191-8200. [PMID: 36411815 PMCID: PMC9675424 DOI: 10.2147/ijgm.s391024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022] Open
Abstract
Introduction There is no effective treatment plan for coronavirus disease 2019 (COVID-19). We employed a combination of Chinese and Western medicine treatment for some COVID-19 inpatients. Methods This study was a prospective cohort study that observed non-critical COVID-19 inpatients. The differences will be observed in the time from admission to two consecutive 2019-nCoV nucleic acid test negatives and the Visual Analog Scale (VAS) score between the two groups. Results A total of 254 confirmed COVID-19 patients were included in this study. The median time from the admission to two consecutive negative nucleic acid tests was 14 days for the integrated Chinese and Western Medicine (ICWM) group, while the Western Medicine (WM) group was 16 days. Besides, the median VAS score of the ICWM group was 0, which was an average decrease of 2 points compared to the time of admission. Conclusion For non-critical COVID-19 patients, it was safe and have more benefits to add traditional Chinese medicine decoction based on WM treatment.
Collapse
Affiliation(s)
- Yongxin Yi
- Department of Encephalopathy, the Third People’s Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, People’s Republic of China
| | - Jiayang Fang
- Department of Encephalopathy, the Third People’s Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, People’s Republic of China
| | - Yunzhu Liu
- Department of Encephalopathy, the Third People’s Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, People’s Republic of China
| | - Yidong Gao
- Department of Encephalopathy, the Third People’s Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, People’s Republic of China
| | - Weizhi Lin
- Department of Encephalopathy, the Third People’s Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, People’s Republic of China
| | - Dongdong Hao
- Department of Outpatient, Lanzhou 7th Rest Center for Retired Cadre, Gansu Military Region, Lanzhou, People’s Republic of China
| | - Xing Zhang
- Department of Medicine, the State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, People’s Republic of China
- Department of Medicine, Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, People’s Republic of China
| | - Min Zhang
- Department of Encephalopathy, the Third People’s Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, People’s Republic of China
- Correspondence: Min Zhang, Department of Encephalopathy, the Third People’s Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, People’s Republic of China, Email
| |
Collapse
|
20
|
Wang Z, Wang N, Yang L, Song XQ. Bioactive natural products in COVID-19 therapy. Front Pharmacol 2022; 13:926507. [PMID: 36059994 PMCID: PMC9438897 DOI: 10.3389/fphar.2022.926507] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/11/2022] [Indexed: 01/18/2023] Open
Abstract
The devastating COVID-19 pandemic has caused more than six million deaths worldwide during the last 2 years. Effective therapeutic agents are greatly needed, yet promising magic bullets still do not exist. Numerous natural products (cordycepin, gallinamide A, plitidepsin, telocinobufagin, and tylophorine) have been widely studied and play a potential function in treating COVID-19. In this paper, we reviewed published studies (from May 2021 to April 2022) relating closely to bioactive natural products (isolated from medicinal plants, animals products, and marine organisms) in COVID-19 therapy in vitro to provide some essential guidance for anti-SARS-CoV-2 drug research and development.
Collapse
Affiliation(s)
- Zhonglei Wang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Ning Wang
- General Surgery Department, Ningbo Fourth Hospital, Xiangshan, China
| | - Liyan Yang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, China
| | - Xian-qing Song
- General Surgery Department, Ningbo Fourth Hospital, Xiangshan, China
| |
Collapse
|
21
|
Liu Y, Chen X, Wang H, Yao C, Gou X, Gao Z, Sun L, Liu D, Tang C, Wei Y, Ding Q, Yang H, Lin J, Chen K, Chen J, Zhao L, Li M, Han L, Wang J, Ren J, Zhang Y. Effectiveness and safety analysis of SanHanHuaShi granules for the treatment of coronavirus disease 2019: Study protocol and statistical analysis plan for a randomized, parallel-controlled, open-label clinical trial. Front Pharmacol 2022; 13:936925. [PMID: 36052134 PMCID: PMC9425051 DOI: 10.3389/fphar.2022.936925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/11/2022] [Indexed: 11/20/2022] Open
Abstract
Background: Coronavirus disease 2019 (COVID-19) was declared a global pandemic in March 2020 by the World Health Organization (WHO). As of July 2, 2022, COVID-19 has caused more than 545 million infections and 6.3 million deaths worldwide, posing a significant threat to human health. Currently, there is still a lack of effective prevention and control strategies for the variation and transmission of SARS-CoV-2. Traditional Chinese medicine (TCM), which has a unique theoretical system, has treated various conditions for thousands of years. Importantly, recent studies have revealed that TCM contributed significantly to COVID-19. SanHanHuaShi (SHHS) granules, a Chinese herbal medicine, which has been included in Protocol for the Diagnosis and Treatment of Novel Coronavirus Disease 2019 (6th to 9th editions) issued by the National Health Commission of China and used to prevent and treat COVID-19 disease. A previous retrospective cohort study showed that SHHS could significantly reduce the severity of mild and moderate COVID-19. However, there is an absence of high-quality randomized controlled clinical studies to confirm the clinical effectiveness of SHHS. Therefore, a clinical study protocol and a statistical analysis plan were designed to investigate the efficacy and safety of SHHS for the prevention and treatment of COVID-19. This study will increase the integrity and data transparency of the clinical research process, which is of great significance for improving the practical application of SHHS granules in the future. Methods and analysis: The study was designed as a 7-day, randomized, parallel controlled, open-label, noninferiority clinical trial of positive drugs. A total of 240 patients with mild and moderate COVID-19 will be enrolled and randomly assigned to receive SanHanHuaShi granules or LianHuaQingWen granules treatment in a 1:1 ratio. Disease classification, vital signs, SARS-CoV-2 nucleic acid testing, symptoms, medications, adverse events, and safety evaluations will be recorded at each visit. The primary outcome will be the clinical symptom recovery rate. Secondary outcomes will include the recovery time of clinical symptoms, negative conversion time of SARS-CoV-2 nucleic acid test negative conversion rate, hospitalization time, antipyretic time, rate of conversion to severe patients, and time and rate of single symptom recovery. Adverse incidents and safety assessments will be documented. All data will be analyzed using a predetermined statistical analysis plan, including our method for imputation of missing data, primary and secondary outcome analyses, and safety outcomes. Discussion: The results of this study will provide robust evidence to confirm the effectiveness and safety of SHHS in the treatment of COVID-19. Clinical Trial Registration:http://www.chictr.org.cn. Trial number: ChiCTR2200058080. Registered on 29 March 2022.
Collapse
Affiliation(s)
- Yangyang Liu
- Institute of Integrated Traditional Chinese and Western Medicine, Beijing University of Chinese Medicine, Beijing, China
- The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Xi Chen
- The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Hongan Wang
- The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Chensi Yao
- Department of Endocrinology, Guang’anmen Hospital of China, Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaowen Gou
- Department of Endocrinology, Guang’anmen Hospital of China, Academy of Chinese Medical Sciences, Beijing, China
| | - Zezheng Gao
- Department of Endocrinology, Guang’anmen Hospital of China, Academy of Chinese Medical Sciences, Beijing, China
| | - Linlin Sun
- The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Dan Liu
- The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Cheng Tang
- The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Yu Wei
- Graduate College, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Qiyou Ding
- Graduate College, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Haoyu Yang
- Graduate College, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Jiaran Lin
- Graduate College, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Keyu Chen
- Graduate College, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Jia Chen
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang’anmen Hospital of China, Academy of Chinese Medical Sciences, Beijing, China
| | - Min Li
- Molecular Biology Laboratory, Guang’anmen Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Lin Han
- Institute of Metabolic Diseases, Guang’anmen Hospital of China, Academy of Chinese Medical Sciences, Beijing, China
| | - Jian Wang
- The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Jian Wang, ; Jixiang Ren, ; Ying Zhang,
| | - Jixiang Ren
- The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Jian Wang, ; Jixiang Ren, ; Ying Zhang,
| | - Ying Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Jian Wang, ; Jixiang Ren, ; Ying Zhang,
| |
Collapse
|