1
|
Buongiorno R, Del Corso G, Germanese D, Colligiani L, Python L, Romei C, Colantonio S. Enhancing COVID-19 CT Image Segmentation: A Comparative Study of Attention and Recurrence in UNet Models. J Imaging 2023; 9:283. [PMID: 38132701 PMCID: PMC10744014 DOI: 10.3390/jimaging9120283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/09/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
Imaging plays a key role in the clinical management of Coronavirus disease 2019 (COVID-19) as the imaging findings reflect the pathological process in the lungs. The visual analysis of High-Resolution Computed Tomography of the chest allows for the differentiation of parenchymal abnormalities of COVID-19, which are crucial to be detected and quantified in order to obtain an accurate disease stratification and prognosis. However, visual assessment and quantification represent a time-consuming task for radiologists. In this regard, tools for semi-automatic segmentation, such as those based on Convolutional Neural Networks, can facilitate the detection of pathological lesions by delineating their contour. In this work, we compared four state-of-the-art Convolutional Neural Networks based on the encoder-decoder paradigm for the binary segmentation of COVID-19 infections after training and testing them on 90 HRCT volumetric scans of patients diagnosed with COVID-19 collected from the database of the Pisa University Hospital. More precisely, we started from a basic model, the well-known UNet, then we added an attention mechanism to obtain an Attention-UNet, and finally we employed a recurrence paradigm to create a Recurrent-Residual UNet (R2-UNet). In the latter case, we also added attention gates to the decoding path of an R2-UNet, thus designing an R2-Attention UNet so as to make the feature representation and accumulation more effective. We compared them to gain understanding of both the cognitive mechanism that can lead a neural model to the best performance for this task and the good compromise between the amount of data, time, and computational resources required. We set up a five-fold cross-validation and assessed the strengths and limitations of these models by evaluating the performances in terms of Dice score, Precision, and Recall defined both on 2D images and on the entire 3D volume. From the results of the analysis, it can be concluded that Attention-UNet outperforms the other models by achieving the best performance of 81.93%, in terms of 2D Dice score, on the test set. Additionally, we conducted statistical analysis to assess the performance differences among the models. Our findings suggest that integrating the recurrence mechanism within the UNet architecture leads to a decline in the model's effectiveness for our particular application.
Collapse
Affiliation(s)
- Rossana Buongiorno
- Institute of Information Science and Technologies, National Research Council of Italy (ISTI-CNR), 56124 Pisa, PI, Italy; (G.D.C.); (S.C.)
| | - Giulio Del Corso
- Institute of Information Science and Technologies, National Research Council of Italy (ISTI-CNR), 56124 Pisa, PI, Italy; (G.D.C.); (S.C.)
| | - Danila Germanese
- Institute of Information Science and Technologies, National Research Council of Italy (ISTI-CNR), 56124 Pisa, PI, Italy; (G.D.C.); (S.C.)
| | - Leonardo Colligiani
- Department of Translational Research, Academic Radiology, University of Pisa, 56124 Pisa, PI, Italy;
| | - Lorenzo Python
- 2nd Radiology Unit, Pisa University Hospital, 56124 Pisa, PI, Italy; (L.P.)
| | - Chiara Romei
- 2nd Radiology Unit, Pisa University Hospital, 56124 Pisa, PI, Italy; (L.P.)
| | - Sara Colantonio
- Institute of Information Science and Technologies, National Research Council of Italy (ISTI-CNR), 56124 Pisa, PI, Italy; (G.D.C.); (S.C.)
| |
Collapse
|
2
|
Stammes MA, Lee JH, Meijer L, Naninck T, Doyle-Meyers LA, White AG, Borish HJ, Hartman AL, Alvarez X, Ganatra S, Kaushal D, Bohm RP, le Grand R, Scanga CA, Langermans JAM, Bontrop RE, Finch CL, Flynn JL, Calcagno C, Crozier I, Kuhn JH. Medical imaging of pulmonary disease in SARS-CoV-2-exposed non-human primates. Trends Mol Med 2022; 28:123-142. [PMID: 34955425 PMCID: PMC8648672 DOI: 10.1016/j.molmed.2021.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 12/11/2022]
Abstract
Chest X-ray (CXR), computed tomography (CT), and positron emission tomography-computed tomography (PET-CT) are noninvasive imaging techniques widely used in human and veterinary pulmonary research and medicine. These techniques have recently been applied in studies of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-exposed non-human primates (NHPs) to complement virological assessments with meaningful translational readouts of lung disease. Our review of the literature indicates that medical imaging of SARS-CoV-2-exposed NHPs enables high-resolution qualitative and quantitative characterization of disease otherwise clinically invisible and potentially provides user-independent and unbiased evaluation of medical countermeasures (MCMs). However, we also found high variability in image acquisition and analysis protocols among studies. These findings uncover an urgent need to improve standardization and ensure direct comparability across studies.
Collapse
Affiliation(s)
- Marieke A Stammes
- Biomedical Primate Research Centre (BPRC), 2288 GJ, Rijswijk, The Netherlands.
| | - Ji Hyun Lee
- Integrated Research Facility at Fort Detrick (IRF-Frederick), Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Fort Detrick, Frederick, MD 21702, USA
| | - Lisette Meijer
- Biomedical Primate Research Centre (BPRC), 2288 GJ, Rijswijk, The Netherlands
| | - Thibaut Naninck
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, 92260 Fontenay-aux-Roses, France
| | - Lara A Doyle-Meyers
- Tulane National Primate Research Center, Covington, LA 70433, USA; Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Alexander G White
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - H Jacob Borish
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Amy L Hartman
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pitt Public Health, Pittsburgh, PA 15261, USA
| | - Xavier Alvarez
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | | | - Deepak Kaushal
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Rudolf P Bohm
- Tulane National Primate Research Center, Covington, LA 70433, USA; Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Roger le Grand
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, 92260 Fontenay-aux-Roses, France
| | - Charles A Scanga
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jan A M Langermans
- Biomedical Primate Research Centre (BPRC), 2288 GJ, Rijswijk, The Netherlands; Department Population Health Sciences, Division of Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, 3584 CL, Utrecht, The Netherlands
| | - Ronald E Bontrop
- Biomedical Primate Research Centre (BPRC), 2288 GJ, Rijswijk, The Netherlands; Department of Biology, Theoretical Biology and Bioinformatics, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Courtney L Finch
- Integrated Research Facility at Fort Detrick (IRF-Frederick), Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Fort Detrick, Frederick, MD 21702, USA
| | - JoAnne L Flynn
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Claudia Calcagno
- Integrated Research Facility at Fort Detrick (IRF-Frederick), Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Fort Detrick, Frederick, MD 21702, USA
| | - Ian Crozier
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick (IRF-Frederick), Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Fort Detrick, Frederick, MD 21702, USA
| |
Collapse
|
3
|
Wang T, Chen Z, Shang Q, Ma C, Chen X, Xiao E. A Promising and Challenging Approach: Radiologists' Perspective on Deep Learning and Artificial Intelligence for Fighting COVID-19. Diagnostics (Basel) 2021; 11:diagnostics11101924. [PMID: 34679622 PMCID: PMC8534829 DOI: 10.3390/diagnostics11101924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/10/2021] [Accepted: 10/14/2021] [Indexed: 12/23/2022] Open
Abstract
Chest X-rays (CXR) and computed tomography (CT) are the main medical imaging modalities used against the increased worldwide spread of the 2019 coronavirus disease (COVID-19) epidemic. Machine learning (ML) and artificial intelligence (AI) technology, based on medical imaging fully extracting and utilizing the hidden information in massive medical imaging data, have been used in COVID-19 research of disease diagnosis and classification, treatment decision-making, efficacy evaluation, and prognosis prediction. This review article describes the extensive research of medical image-based ML and AI methods in preventing and controlling COVID-19, and summarizes their characteristics, differences, and significance in terms of application direction, image collection, and algorithm improvement, from the perspective of radiologists. The limitations and challenges faced by these systems and technologies, such as generalization and robustness, are discussed to indicate future research directions.
Collapse
Affiliation(s)
- Tianming Wang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (T.W.); (Z.C.); (Q.S.); (C.M.); (X.C.)
- Department of Radiology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhu Chen
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (T.W.); (Z.C.); (Q.S.); (C.M.); (X.C.)
| | - Quanliang Shang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (T.W.); (Z.C.); (Q.S.); (C.M.); (X.C.)
| | - Cong Ma
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (T.W.); (Z.C.); (Q.S.); (C.M.); (X.C.)
| | - Xiangyu Chen
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (T.W.); (Z.C.); (Q.S.); (C.M.); (X.C.)
| | - Enhua Xiao
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (T.W.); (Z.C.); (Q.S.); (C.M.); (X.C.)
- Molecular Imaging Research Center, Central South University, Changsha 410008, China
- Correspondence:
| |
Collapse
|