1
|
Puschkasch-Möck S, Skutschik C, Schwiete C, Behringer M. Peak torque and eccentric rate of torque development of the hamstrings might not be reflected by contractile properties measured by tensiomyography. J Sports Med Phys Fitness 2025; 65:517-523. [PMID: 39495081 DOI: 10.23736/s0022-4707.24.16465-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
BACKGROUND Eccentric maximum strength and explosive force production of the hamstrings are crucial for performance in many sports. Tensiomyography (TMG has been shown to be a valuable tool to assess muscle contractility and function. For eccentric force production, neural activation has been proposed to be the predominant influencing factor. Nevertheless, high muscle fiber tension has to be generated. Therefore, this study aims to test the hypothesis that eccentric force production does not correlate with muscle contractility measured by TMG. METHODS Twenty-three physical active males (26.09±3.25 years) performed maximal eccentric hamstring contractions at 210 °/s on an isokinetic dynamometer. Additionally, TMG measurements were conducted on the biceps femoris. Contraction time, delay time, maximal deformation and contraction velocity were derived and investigated. Spearman correlations between the TMG parameters and maximum torque, rate of torque development (RTD) and time to peak torque were calculated. Furthermore, Kruskal Wallis test was calculated for the TMG parameters between the top and bottom participants according to RTD. RESULTS The correlation analysis showed no significant relationships between the TMG parameters and eccentric force production (P>0.05 for all comparisons). For the comparison between the high RTD group and the low RTD group, no significant differences in muscle contractility could be observed. CONCLUSIONS The results of the present study suggest that muscle contractile properties play a minor role in eccentric force production. Therefore, TMG measures seem not to be suitable to investigate eccentric behavior.
Collapse
Affiliation(s)
- Sebastian Puschkasch-Möck
- Department of Exercise Science, Olympic Training and Testing Center of Hessen, Frankfurt am Main, Germany -
| | - Christoph Skutschik
- Department of Sports Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Carsten Schwiete
- Department of Sports Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Michael Behringer
- Department of Sports Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
2
|
Antonio J, Evans C, Ferrando AA, Stout JR, Antonio B, Cinteo H, Harty P, Arent SM, Candow DG, Forbes SC, Kerksick CM, Pereira F, Gonzalez D, Kreider RB. Common questions and misconceptions about protein supplementation: what does the scientific evidence really show? J Int Soc Sports Nutr 2024; 21:2341903. [PMID: 38626029 PMCID: PMC11022925 DOI: 10.1080/15502783.2024.2341903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 04/07/2024] [Indexed: 04/18/2024] Open
Abstract
Protein supplementation often refers to increasing the intake of this particular macronutrient through dietary supplements in the form of powders, ready-to-drink shakes, and bars. The primary purpose of protein supplementation is to augment dietary protein intake, aiding individuals in meeting their protein requirements, especially when it may be challenging to do so through regular food (i.e. chicken, beef, fish, pork, etc.) sources alone. A large body of evidence shows that protein has an important role in exercising and sedentary individuals. A PubMed search of "protein and exercise performance" reveals thousands of publications. Despite the considerable volume of evidence, it is somewhat surprising that several persistent questions and misconceptions about protein exist. The following are addressed: 1) Is protein harmful to your kidneys? 2) Does consuming "excess" protein increase fat mass? 3) Can dietary protein have a harmful effect on bone health? 4) Can vegans and vegetarians consume enough protein to support training adaptations? 5) Is cheese or peanut butter a good protein source? 6) Does consuming meat (i.e., animal protein) cause unfavorable health outcomes? 7) Do you need protein if you are not physically active? 8) Do you need to consume protein ≤ 1 hour following resistance training sessions to create an anabolic environment in skeletal muscle? 9) Do endurance athletes need additional protein? 10) Does one need protein supplements to meet the daily requirements of exercise-trained individuals? 11) Is there a limit to how much protein one can consume in a single meal? To address these questions, we have conducted a thorough scientific assessment of the literature concerning protein supplementation.
Collapse
Affiliation(s)
- Jose Antonio
- Nova Southeastern University, Department of Health and Human Performance, Davie, FL, USA
| | - Cassandra Evans
- Nova Southeastern University, Department of Health and Human Performance, Davie, FL, USA
| | - Arny A. Ferrando
- University of Arkansas for Medical Sciences, Department of Geriatrics, Little Rock, AR, USA
| | - Jeffrey R. Stout
- University of Central Florida, School of Kinesiology and Rehabilitation Science, Orlando, FL, USA
| | - Brandi Antonio
- University of Central Florida, School of Kinesiology and Rehabilitation Science, Orlando, FL, USA
| | - Harry Cinteo
- Lindenwood University, Exercise and Performance Nutrition Laboratory, St. Charles, MO, USA
| | - Patrick Harty
- Lindenwood University, Exercise and Performance Nutrition Laboratory, St. Charles, MO, USA
| | - Shawn M. Arent
- University of South Carolina, Department of Exercise Science, Arnold School of Public Health, Columbia, SC, USA
| | - Darren G. Candow
- University of Regina, Faculty of Kinesiology and Health Studies, Regina, Canada
| | - Scott C. Forbes
- Brandon University, Department of Physical Education, Faculty of Education, Brandon, MB, Canada
| | - Chad M. Kerksick
- Lindenwood University, Exercise and Performance Nutrition Laboratory, St. Charles, MO, USA
| | - Flavia Pereira
- Keiser University, Exercise and Sport Science, West Palm Beach Flagship Campus, West Palm Beach, FL, USA
| | - Drew Gonzalez
- Texas A&M University, Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, College Station, TX, USA
| | - Richard B. Kreider
- Texas A&M University, Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, College Station, TX, USA
| |
Collapse
|
3
|
Knowlden AP, Ottati M, McCallum M, Allegrante JP. The relationship between sleep quantity, sleep quality and weight loss in adults: A scoping review. Clin Obes 2024; 14:e12634. [PMID: 38140746 PMCID: PMC10939867 DOI: 10.1111/cob.12634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/22/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023]
Abstract
Sleep is hypothesized to interact with weight gain and loss; however, modelling this relationship remains elusive. Poor sleep perpetuates a cascade of cardiovascular and metabolic consequences that may not only increase risk of adiposity, but also confound weight loss efforts. We conducted a scoping review to assess the research on sleep and weight loss interventions. We searched six databases for studies of behavioural weight loss interventions that included assessments of sleep in the general, non-clinical adult human population. Our synthesis focused on dimensions of Population, Intervention, Control, and Outcomes (PICO) to identify research and knowledge gaps. We identified 35 studies that fell into one of four categories: (a) sleep at baseline as a predictor of subsequent weight loss during an intervention, (b) sleep assessments after a history of successful weight loss, (c) concomitant changes in sleep associated with weight loss and (d) experimental manipulation of sleep and resulting weight loss. There was some evidence of improvements in sleep in response to weight-loss interventions; however, randomized controlled trials of weight loss interventions tended not to report improvements in sleep when compared to controls. We conclude that baseline sleep characteristics may predict weight loss in studies of dietary interventions and that sleep does not improve because of weight loss alone. Future studies should enrol large and diverse, normal, overweight and obese short sleepers in trials to assess the efficacy of sleep as a behavioural weight loss treatment.
Collapse
Affiliation(s)
- Adam P Knowlden
- Department of Health Science, The University of Alabama, Tuscaloosa, Alabama, USA
| | - Megan Ottati
- Department of Health Studies and Applied Educational Psychology, Teachers College, Columbia University, New York, New York, USA
| | - Meaghan McCallum
- Research Operations, Behavioral Science, Noom Inc., New York, New York, USA
| | - John P Allegrante
- Department of Health Studies and Applied Educational Psychology, Teachers College, Columbia University, New York, New York, USA
- Department of Sociomedical Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| |
Collapse
|
4
|
Schwiete C, Roth C, Skutschik C, Möck S, Rettenmaier L, Happ K, Broich H, Behringer M. Effects of muscle fatigue on exercise-induced hamstring muscle damage: a three-armed randomized controlled trial. Eur J Appl Physiol 2023; 123:2545-2561. [PMID: 37330434 PMCID: PMC10616225 DOI: 10.1007/s00421-023-05234-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 05/21/2023] [Indexed: 06/19/2023]
Abstract
PURPOSE Hamstring injuries in soccer reportedly increase towards the end of the matches' halves as well as with increased match frequency in combination with short rest periods, possibly due to acute or residual fatigue. Therefore, this study aimed to investigate the effects of acute and residual muscle fatigue on exercise-induced hamstring muscle damage. METHODS A three-armed randomized-controlled trial, including 24 resistance-trained males, was performed allocating subjects to either a training group with acute muscle fatigue + eccentric exercise (AF/ECC); residual muscle fatigue + eccentric exercise (RF/ECC) or a control group with only eccentric exercise (ECC). Muscle stiffness, thickness, contractility, peak torque, range of motion, pain perception, and creatine kinase were assessed as muscle damage markers pre, post, 1 h post, and on the consecutive three days. RESULTS Significant group × time interactions were revealed for muscle thickness (p = 0.02) and muscle contractility parameters radial displacement (Dm) and contraction velocity (Vc) (both p = 0.01), with larger changes in the ECC group (partial η2 = 0.4). Peak torque dropped by an average of 22% in all groups; stiffness only changed in the RF/ECC group (p = 0.04). Muscle work during the damage protocol was lower for AF/ECC than for ECC and RF/ECC (p = 0.005). CONCLUSION Hamstring muscle damage was comparable between the three groups. However, the AF/ECC group resulted in the same amount of muscle damage while accumulating significantly less muscle work during the protocol of the damage exercise. TRIAL REGISTRATION This study was preregistered in the international trial registration platform (WHO; registration number: DRKS00025243).
Collapse
Affiliation(s)
- Carsten Schwiete
- Department of Sports Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany.
| | - Christian Roth
- Department of Sports Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Christoph Skutschik
- Department of Sports Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Sebastian Möck
- Department of Exercise Science, Olympic Training and Testing Center of Hessen, Frankfurt am Main, Germany
| | - Lukas Rettenmaier
- Department of Sports Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Kevin Happ
- Department of Sports Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Holger Broich
- Department of Science, Performance and Fitness, FC Bayern München AG, Munich, Germany
- Department of Performance, Neuroscience, Therapy, and Health, Medical School Hamburg, Hamburg, Germany
| | - Michael Behringer
- Department of Sports Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
5
|
Sensor location affects skeletal muscle contractility parameters measured by tensiomyography. PLoS One 2023; 18:e0281651. [PMID: 36758055 PMCID: PMC9910630 DOI: 10.1371/journal.pone.0281651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
Tensiomyography (TMG) is a non-invasive method for measuring contractile properties of skeletal muscle that is increasingly being used in research and practice. However, the lack of standardization in measurement protocols mitigates the systematic use in sports medical settings. Therefore, this study aimed to investigate the effects of lower leg fixation and sensor location on TMG-derived parameters. Twenty-two male participants underwent TMG measurements on the m. biceps femoris (BF) in randomized order with and without lower leg fixation (fixed vs. non-fixed). Measurements were conducted at 50% of the muscle's length (BF-mid) and 10 cm distal to this (BF-distal). The sensor location affected the contractile properties significantly, both with and without fixation. Delay time (Td) was greater at BF-mid compared to BF-distal (fixed: 23.2 ± 3.2 ms vs. 21.2 ± 2.7 ms, p = 0.002; non-fixed: 24.03 ± 4.2 ms vs. 21.8 ± 2.7 ms, p = 0.008), as were maximum displacement (Dm) (fixed: 5.3 ± 2.7 mm vs. 3.5 ± 1.7 mm, p = 0.005; non-fixed: 5.4 ± 2.5 mm vs. 4.0 ± 2.0 mm, p = 0.03), and contraction velocity (Vc) (fixed: 76.7 ± 25.1 mm/s vs. 57.2 ± 24.3 mm/s, p = 0.02). No significant differences were revealed for lower leg fixation (all p > 0.05). In summary, sensor location affects the TMG-derived parameters on the BF. Our findings help researchers to create tailored measurement procedures in compliance with the individual goals of the TMG measurements and allow adequate interpretation of TMG parameters.
Collapse
|
6
|
Roth C, Schwiete C, Happ K, Rettenmaier L, Schoenfeld BJ, Behringer M. Resistance training volume does not influence lean mass preservation during energy restriction in trained males. Scand J Med Sci Sports 2023; 33:20-35. [PMID: 36114738 DOI: 10.1111/sms.14237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/04/2022] [Accepted: 09/12/2022] [Indexed: 12/24/2022]
Abstract
This study investigated the effects of a relatively high- versus moderate-volume resistance training program on changes in lean mass during caloric restriction. Thirty-eight resistance-trained males were randomized to perform either a high-volume (HVG; 5 sets/exercise) or a moderate-volume (MVG; 3 sets/exercise) resistance training program. Both groups were supervised during lower body training. Participants consumed 30 kcal/kg for 6 weeks after 1 week of weight maintenance (45 kcal/kg), with protein intake fixed at 2.8 g/kg fat-free mass. Muscle thickness of the m. rectus femoris, body composition, contractile properties, stiffness, mood, and sleep status were assessed at pre-, mid-, and post-study. No significant group × time interaction was observed for muscle thickness of the m. rectus femoris at 50% (∆ [post-pre] 0.36 ± 0.93 mm vs. ∆ -0.01 ± 1.59 mm; p = 0.226) and 75% length (∆ -0.32 ± 1.12 mm vs. ∆ 0.08 ± 1.14 mm; p = 0.151), contractility, sleep, and mood in the HVG and MVG, respectively. Body mass (HVG: ∆ -1.69 ± 1.12 kg vs. MVG: ∆ -1.76 ± 1.76 kg) and lean mass (∆ -0.51 ± 2.30 kg vs. ∆ -0.92 ± 1.59 kg) decreased significantly in both groups (p = 0.022), with no between-group difference detected (p = 0.966). High-volume resistance training appears to have neither an advantage nor disadvantage over moderate-volume resistance training in terms of maintaining lean mass or muscle thickness. Given that both groups increased volume load and maintained muscle contractility, sleep quality, and mood, either moderate or higher training volumes conceivably can be employed by resistance-trained individuals to preserve muscle during periods of moderate caloric restriction.
Collapse
Affiliation(s)
- Christian Roth
- Department of Sports Medicine and Exercise Physiology, Institute of Sport Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Carsten Schwiete
- Department of Sports Medicine and Exercise Physiology, Institute of Sport Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Kevin Happ
- Department of Sports Medicine and Exercise Physiology, Institute of Sport Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Lukas Rettenmaier
- Department of Sports Medicine and Exercise Physiology, Institute of Sport Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Brad J Schoenfeld
- Department of Health Sciences, CUNY Lehman College, Bronx, New York, USA
| | - Michael Behringer
- Department of Sports Medicine and Exercise Physiology, Institute of Sport Sciences, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
7
|
Roth C, Schoenfeld BJ, Behringer M. Lean mass sparing in resistance-trained athletes during caloric restriction: the role of resistance training volume. Eur J Appl Physiol 2022; 122:1129-1151. [PMID: 35146569 PMCID: PMC9012799 DOI: 10.1007/s00421-022-04896-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/11/2022] [Indexed: 11/30/2022]
Abstract
Many sports employ caloric restriction (CR) to reduce athletes’ body mass. During these phases, resistance training (RT) volume is often reduced to accommodate recovery demands. Since RT volume is a well-known anabolic stimulus, this review investigates whether a higher training volume helps to spare lean mass during CR. A total of 15 studies met inclusion criteria. The extracted data allowed calculation of total tonnage lifted (repetitions × sets × intensity load) or weekly sets per muscle group for only 4 of the 15 studies, with RT volume being highly dependent on the examined muscle group as well as weekly training frequency per muscle group. Studies involving high RT volume programs (≥ 10 weekly sets per muscle group) revealed low-to-no (mostly female) lean mass loss. Additionally, studies increasing RT volume during CR over time appeared to demonstrate no-to-low lean mass loss when compared to studies reducing RT volume. Since data regarding RT variables applied were incomplete in most of the included studies, evidence is insufficient to conclude that a higher RT volume is better suited to spare lean mass during CR, although data seem to favor higher volumes in female athletes during CR. Moreover, the data appear to suggest that increasing RT volume during CR over time might be more effective in ameliorating CR-induced atrophy in both male and female resistance-trained athletes when compared to studies reducing RT volume. The effects of CR on lean mass sparing seem to be mediated by training experience, pre-diet volume, and energy deficit, with, on average, women tending to spare more lean mass than men. Potential explanatory mechanisms for enhanced lean mass sparing include a preserved endocrine milieu as well as heightened anabolic signaling.
Collapse
Affiliation(s)
- C Roth
- Department of Sports Medicine and Exercise Physiology, Institute of Sport Sciences, Goethe University Frankfurt, Ginnheimer Landstrasse 39, 60487, Frankfurt/Main, Germany.
| | - B J Schoenfeld
- Department of Health Sciences, CUNY Lehman College, Bronx, NY, USA
| | - M Behringer
- Department of Sports Medicine and Exercise Physiology, Institute of Sport Sciences, Goethe University Frankfurt, Ginnheimer Landstrasse 39, 60487, Frankfurt/Main, Germany
| |
Collapse
|
8
|
Dewansingh P, Reckman GAR, Mijlius CF, Krijnen WP, van der Schans CP, Jager-Wittenaar H, van den Heuvel EGHM. Protein, Calcium, Vitamin D Intake and 25(OH)D Status in Normal Weight, Overweight, and Obese Older Adults: A Systematic Review and Meta-Analysis. Front Nutr 2021; 8:718658. [PMID: 34568405 PMCID: PMC8461258 DOI: 10.3389/fnut.2021.718658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/16/2021] [Indexed: 12/18/2022] Open
Abstract
The aging process is often accompanied by increase in body weight. Older adults with overweight or obesity might have an overconsumption in energy that is accompanied by inadequate intake of protein, vitamin D, and calcium. It is unclear if intake of protein and vitamin D and calcium is sufficient in older adults with overweight/obesity, and whether it differs from older adults with normal weight, since a recent overview of the literature review is lacking. Therefore, we systematically analyzed the current evidence on differences in nutrient intake/status of protein, vitamin D and calcium between older adults with different body mass index (BMI) categories. Randomized controlled trials and prospective cohort studies were identified from PubMed and EMBASE. Studies reporting nutrient intake/status in older adults aged ≥50 years with overweight/obesity and studies comparing between overweight/obesity and normal weight were included. Nutrient intake/status baseline values were reviewed and when possible calculated for one BMI category (single-group meta-analysis), or compared between BMI categories (meta-analysis). Nutrient intake/status was compared with international recommendations. Mean protein (N = 8) and calcium intake (N = 5) was 0.98 gram/kilogram body weight/day (g/kg/d) [95% Confidence Interval (CI) 0.89-1.08] and 965 mg [95% CI: 704-1225] in overweight/obese. Vitamin D intake was insufficient in all BMI categories (N = 5). The pooled mean for vitamin D intake was 6 ug [95% CI 4-9]. For 25(OH)D, the pooled mean was 54 nmol/L [95% CI 45-62], 52 nmol/L [95% CI 46-58], and 48 nmol/l [95% CI 33-62] in normal (N = 7), combined overweight and obese (N = 12), and obese older adults (N = 4), respectively. In conclusion, older adults with overweight and obesity have a borderline sufficient protein and sufficient calcium intake, but insufficient vitamin D intake. The 25(OH)D concentration is deficient for the obese older adults.
Collapse
Affiliation(s)
- Priya Dewansingh
- Research Group Healthy Ageing, Allied Health Care and Nursing, Hanze University of Applied Sciences, Groningen, Netherlands
| | - Gerlof A. R. Reckman
- Research Group Healthy Ageing, Allied Health Care and Nursing, Hanze University of Applied Sciences, Groningen, Netherlands
- Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Caspar F. Mijlius
- Research Group Healthy Ageing, Allied Health Care and Nursing, Hanze University of Applied Sciences, Groningen, Netherlands
- Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Wim P. Krijnen
- Research Group Healthy Ageing, Allied Health Care and Nursing, Hanze University of Applied Sciences, Groningen, Netherlands
- Faculty of Mathematics and Natural Sciences, University of Groningen, Groningen, Netherlands
| | - Cees P. van der Schans
- Research Group Healthy Ageing, Allied Health Care and Nursing, Hanze University of Applied Sciences, Groningen, Netherlands
- Faculty of Medical Sciences, University Medical Center Groningen, Groningen, Netherlands
- Department of Rehabilitation Medicine, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Health Psychology Research, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Harriët Jager-Wittenaar
- Research Group Healthy Ageing, Allied Health Care and Nursing, Hanze University of Applied Sciences, Groningen, Netherlands
- Department of Maxillofacial Surgery, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | | |
Collapse
|