1
|
Eid AH, S Zaki E, Sabry MO, El-Shiekh RA, Khalaf SS. Exploring the anti-anaphylaxis potential of natural products: A Review. Inflammopharmacology 2025:10.1007/s10787-025-01685-2. [PMID: 40106030 DOI: 10.1007/s10787-025-01685-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/10/2025] [Indexed: 03/22/2025]
Abstract
Allergies are a common health issue affecting many people around the world, especially in developed countries. They occur when the immune system overreacts to substances that are usually harmless. Some common allergic conditions include asthma, sinus infections, skin rashes, food allergies, hay fever, severe allergic reactions, eczema, swelling, and reactions to medications or insect stings. The causes of these allergies are complex and often linked to genetics, which can lead to heightened immune responses known as atopy. Throughout history, plant extracts have been used for various purposes, including medicine and food. In addition, their bioactive compounds show a wide range of beneficial effects, such as reducing allergic reactions, fighting oxidative stress, mast cell stabilizers, and lowering inflammation, highlighting their potential for treating various health conditions. Flavonoids and phenolic compounds are commonly used in anaphylaxis for their potent anti-inflammatory action. This review aims to promote the use of natural products as potential treatments for anaphylaxis. In addition, the discovery of new drugs derived from natural sources holds significant promise for the management of anaphylaxis.
Collapse
Affiliation(s)
- Aya H Eid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Eman S Zaki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Miral O Sabry
- Faculty of Science, National University of Singapore, Singapore, Singapore
- Institute of Manufacturing Technology (SIMTech), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| | - Samar S Khalaf
- Biochemistry Department Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| |
Collapse
|
2
|
Liu L, Dai J, Yang Q, Lv L. A comprehensive review on anti-allergic natural bioactive compounds for combating food allergy. Food Res Int 2025; 201:115565. [PMID: 39849714 DOI: 10.1016/j.foodres.2024.115565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 11/18/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
Food allergy poses a great challenge to food safety and public health worldwide. Currently, clinical symptoms are primarily managed with medications, which can lead to drug resistance, adverse effects, and disruptions in gut flora balance. As a result, there has been a focus on researching safe and effective anti-allergic natural ingredients. This paper provides a comprehensive overview of food allergy mechanisms, methods of assessment of anti-food allergy studies, and a classification of natural substances with anti-allergic properties. It also examines the anti-allergic effects of these substances on food allergies and investigates gut microbiota changes induced by these natural bioactives, highlighting their significance to food allergies.Natural actives with anti-food allergic properties may alleviate allergic reactions through multiple targets and pathways. These mechanisms include promoting a shift in the Th1/Th2 balance, reducting IgE synthesis, preventing cellular degranulation and reducing the release of allergic mediator. The gut environment is closely related to food allergy and there is a significant interaction between the two. By targeting the intestinal flora, we can adopt dietary interventions to effectively address and control food allergies. This provides valuable insights for the future development of functional foods targeting the alleviation of food allergies.
Collapse
Affiliation(s)
- Lu Liu
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Jing Dai
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Qingli Yang
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Liangtao Lv
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, PR China.
| |
Collapse
|
3
|
Manzoor MF, Zeng XA, Waseem M, Siddique R, Javed MR, Verma DK, Ali M. Soy protein-polyphenols conjugates interaction mechanism, characterization, techno-functional and biological properties: An updated review. Food Chem 2024; 460:140571. [PMID: 39079358 DOI: 10.1016/j.foodchem.2024.140571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/06/2024] [Accepted: 07/21/2024] [Indexed: 09/05/2024]
Abstract
Soy protein is a promising nutritional source with improved functionality and bioactivities due to conjugation with polyphenols (PP)-the conjugates between soy protein and PP held by covalent and noncovalent bonds. Different approaches, including thermodynamics, spectroscopy, and molecular docking simulations, can demonstrate the outcomes and mechanism of these conjugates. The soy protein, PP structure, matrix properties (temperature, pH), and interaction mechanism alter the ζ-potential, secondary structure, thermal stability, and surface hydrophobicity of proteins and also improve the techno-functional properties such as gelling ability, solubility, emulsifying, and foaming properties. Soy protein-PP conjugates also reveal enhanced in vitro digestibility, anti-allergic, antioxidant, anticancer, anti-inflammatory, and antimicrobial activities. Thus, these conjugates may be employed as edible film additives, antioxidant emulsifiers, hydrogels, and nanoparticles in the food industry. Future research is needed to specify the structure-function associations of soy protein-PP conjugates that may affect their functionality and application in the food industry.
Collapse
Affiliation(s)
- Muhammad Faisal Manzoor
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, School of Food Science and Engineering, Foshan University, China; School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Xin-An Zeng
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, School of Food Science and Engineering, Foshan University, China; School of Food Science and Engineering, South China University of Technology, Guangzhou, China.
| | - Muhammad Waseem
- Faculty of Agriculture & Environment, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Rabia Siddique
- Department of Chemistry, Government College University Faisalabad, Pakistan
| | - Muhammad Rizwan Javed
- Faculty of Agriculture & Environment, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Deepak Kumar Verma
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Murtaza Ali
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, School of Food Science and Engineering, Foshan University, China; School of Food Science and Engineering, South China University of Technology, Guangzhou, China.
| |
Collapse
|
4
|
Sánchez-Elvira A, Hernández-Corroto E, García MC, Castro-Puyana M, Marina ML. Sustainable extraction of proteins from lime peels using ultrasound, deep eutectic solvents, and pressurized liquids, as a source of bioactive peptides. Food Chem 2024; 458:140139. [PMID: 38943952 DOI: 10.1016/j.foodchem.2024.140139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/19/2024] [Accepted: 06/14/2024] [Indexed: 07/01/2024]
Abstract
The aim of this work was to develop, for the first time, sustainable strategies, based on the use of Ultrasound-Assisted Extraction, Natural Deep Eutectic Solvents, and Pressurized Liquid Extraction, to extract proteins from lime (Citrus x latifolia) peels and to evaluate their potential to release bioactive peptides. PLE showed the largest extraction of proteins (66-69%), which were hydrolysed using three different enzymes (Alcalase 2.4 L FG, Alcalase®PURE 2.4 L, and Thermolysin). The in vitro antioxidant and antihypertensive activities of released peptides were evaluated. Although all hydrolysates showed antioxidant and antihypertensive activity, the hydrolysate obtained with Thermolysin showed the most significant values. Since the Total Phenolic Content in all hydrolysates was low, peptides were likely the main contributors to these bioactivities. Hydrolysates were analyzed by UHPLC-QTOF-MS and a total of 98 different peptides were identified. Most of these peptides were rich in amino acids associated with antioxidant activity.
Collapse
Affiliation(s)
- A Sánchez-Elvira
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares (Madrid), Spain
| | - E Hernández-Corroto
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares (Madrid), Spain
| | - M C García
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares (Madrid), Spain; Universidad de Alcalá, Instituto de Investigación Química "Andrés M. del Río" (IQAR), Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares (Madrid), Spain
| | - M Castro-Puyana
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares (Madrid), Spain; Universidad de Alcalá, Instituto de Investigación Química "Andrés M. del Río" (IQAR), Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares (Madrid), Spain
| | - M L Marina
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares (Madrid), Spain; Universidad de Alcalá, Instituto de Investigación Química "Andrés M. del Río" (IQAR), Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares (Madrid), Spain.
| |
Collapse
|
5
|
Oliveira BCRD, Martins CPDC, Soutelino MEM, Rocha RS, Cruz AG, Mársico ET, Silva ACO, Esmerino EA. An overview of the potential of select edible Amazonian fruits and their applications in dairy products. Crit Rev Food Sci Nutr 2024:1-15. [PMID: 39440531 DOI: 10.1080/10408398.2024.2417796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
BACKGROUND The Amazon forest produces a variety of fruits with strong biotechnological potential. However, their use in dairy products is restricted. SCOPE AND APPROACH This work aims to carry out a bibliographic survey on the technological applications of select edible Amazonian fruits and their residues in the elaboration and quality of dairy products. The Web of Science© (WOS), Science Direct®, PubMed®/MEDLINE, and Capes Periodicals databases were used. KEY FINDINGS AND CONCLUSIONS Adding Amazonian fruits to dairy products expands their nutritional and functional profile, presenting significant technological potential. Incorporating pulps from fruits such as "açaí" (Euterpe oleracea), "araçá-boi" (Eugenia stipitata), "bacuri" (Platonia insignis), "buriti" (Mauritia flexuosa), "camu-camu" (Myrciaria dubia), and "cupuaçu" (Theobroma grandiflorum) provides varied technological benefits, improving sensory aspects, positively influencing the growth and survival of relevant microorganisms, and increasing acceptance. In addition to the pulp, "camu-camu" residues (peel and seed) can be incorporated into dairy products as food additives or functional ingredients. This approach also diversifies the dairy market, promoting food security and sustainability for local and regional communities.
Collapse
Affiliation(s)
- Bianca Cristina R de Oliveira
- Department of Food Technology, Faculty of Veterinary, Fluminense Federal University (UFF) - Niterói, Rio de Janeiro, Brazil
| | | | - Maria Eduarda M Soutelino
- Department of Food Technology, Faculty of Veterinary, Fluminense Federal University (UFF) - Niterói, Rio de Janeiro, Brazil
| | - Ramon S Rocha
- Department of Food Technology, Faculty of Veterinary, Fluminense Federal University (UFF) - Niterói, Rio de Janeiro, Brazil
| | - Adriano G Cruz
- Department of Food, Federal Institute of Education, Science and Technology of Rio de Janeiro (IFRJ), Rio de Janeiro, Brazil
| | - Eliane T Mársico
- Department of Food Technology, Faculty of Veterinary, Fluminense Federal University (UFF) - Niterói, Rio de Janeiro, Brazil
| | - Adriana Cristina O Silva
- Department of Food Technology, Faculty of Veterinary, Fluminense Federal University (UFF) - Niterói, Rio de Janeiro, Brazil
| | - Erick A Esmerino
- Department of Food Technology, Faculty of Veterinary, Fluminense Federal University (UFF) - Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Farhan M, Rizvi A, Aatif M, Muteeb G, Khan K, Siddiqui FA. Dietary Polyphenols, Plant Metabolites, and Allergic Disorders: A Comprehensive Review. Pharmaceuticals (Basel) 2024; 17:670. [PMID: 38931338 PMCID: PMC11207098 DOI: 10.3390/ph17060670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/15/2024] [Accepted: 05/19/2024] [Indexed: 06/28/2024] Open
Abstract
Given the ongoing rise in the occurrence of allergic disorders, alterations in dietary patterns have been proposed as a possible factor contributing to the emergence and progression of these conditions. Currently, there is a significant focus on the development of dietary therapies that utilize natural compounds possessing anti-allergy properties. Dietary polyphenols and plant metabolites have been intensively researched due to their well-documented anti-inflammatory, antioxidant, and immunomodulatory characteristics, making them one of the most prominent natural bioactive chemicals. This study seeks to discuss the in-depth mechanisms by which these molecules may exert anti-allergic effects, namely through their capacity to diminish the allergenicity of proteins, modulate immune responses, and modify the composition of the gut microbiota. However, further investigation is required to fully understand these effects. This paper examines the existing evidence from experimental and clinical studies that supports the idea that different polyphenols, such as catechins, resveratrol, curcumin, quercetin, and others, can reduce allergic inflammation, relieve symptoms of food allergy, asthma, atopic dermatitis, and allergic rhinitis, and prevent the progression of the allergic immune response. In summary, dietary polyphenols and plant metabolites possess significant anti-allergic properties and can be utilized for developing both preventative and therapeutic strategies for targeting allergic conditions. The paper also discusses the constraints in investigating and broad usage of polyphenols, as well as potential avenues for future research.
Collapse
Affiliation(s)
- Mohd Farhan
- Department of Chemistry, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia
- Department of Basic Sciences, Preparatory Year, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Asim Rizvi
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India;
| | - Mohammad Aatif
- Department of Public Health, College of Applied Medical Sciences, King Faisal University, Al Ahsa 31982, Saudi Arabia;
| | - Ghazala Muteeb
- Department of Nursing, College of Applied Medical Sciences, King Faisal University, Al Ahsa 31982, Saudi Arabia;
| | - Kimy Khan
- Department of Dermatology, Almoosa Specialist Hospital, Dhahran Road, Al Mubarraz 36342, Al Ahsa, Saudi Arabia;
| | - Farhan Asif Siddiqui
- Department of Laboratory and Blood Bank, King Fahad Hospital, Prince Salman Street, Hofuf 36441, Saudi Arabia;
| |
Collapse
|
7
|
SHIMBO H, FUKAGAWA A, NAKAMURA O, MURAKAMI S, MIURA Y, HATTORI M, DE BEER D, JOUBERT E, YOSHIDA T. Anti-allergic effect of Cyclopia (honeybush) extracts via anti-degranulation activity in a murine allergy model for inhaled antigen. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2024; 43:241-249. [PMID: 38966058 PMCID: PMC11220329 DOI: 10.12938/bmfh.2023-105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/27/2024] [Indexed: 07/06/2024]
Abstract
The anti-allergic effects of extracts prepared from two species of honeybush, Cyclopia genistoides and Cyclopia subternata, were demonstrated in vivo in a murine allergy model for inhaled antigen induced with ovalbumin (OVA) inhalation to mimic pollen allergy. Intake of the extracts increased the production of OVA-specific immunoglobulin (Ig) E (IgE), IgG1, and IgG2a antibodies in serum and significantly suppressed anaphylactic reaction-induced body temperature decline. Moreover, the extracts significantly inhibited antigen-antibody-induced degranulation in RBL-2H3 cells. They also inhibited body temperature decline when the allergic mice were given them after antigen sensitization, indicating that anti-degranulation activity is the major mechanism underlying the anti-allergic effect of Cyclopia extracts. Despite their qualitative and quantitative differences in phenolic composition, the two extracts exhibited similar effects, suggesting that several active compounds might be involved in the activity. Therefore, oral administration of either Cyclopia extract potentially exerts a systemic anti-allergic effect, supporting the increased consumption of honeybush tea for general wellness and improved quality of life.
Collapse
Affiliation(s)
- Hitoshi SHIMBO
- Department of Applied Biological Science, Faculty of
Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi,
Tokyo 183-8509, Japan
| | - Ayumi FUKAGAWA
- Department of Applied Biological Science, Faculty of
Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi,
Tokyo 183-8509, Japan
| | - Oji NAKAMURA
- Department of Applied Biological Science, Faculty of
Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi,
Tokyo 183-8509, Japan
| | - Shiho MURAKAMI
- Department of Applied Biological Science, Faculty of
Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi,
Tokyo 183-8509, Japan
| | - Yutaka MIURA
- Department of Applied Biological Science, Faculty of
Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi,
Tokyo 183-8509, Japan
| | - Makoto HATTORI
- Department of Applied Biological Science, Faculty of
Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi,
Tokyo 183-8509, Japan
| | - Dalene DE BEER
- Plant Bioactives Group, Post-Harvest & Agro-Processing
Technologies Division, Agricultural Research Council, Stellenbosch 7599, South
Africa
- Department of Food Science, Stellenbosch University,
Stellenbosch 7602, South Africa
| | - Elizabeth JOUBERT
- Plant Bioactives Group, Post-Harvest & Agro-Processing
Technologies Division, Agricultural Research Council, Stellenbosch 7599, South
Africa
- Department of Food Science, Stellenbosch University,
Stellenbosch 7602, South Africa
| | - Tadashi YOSHIDA
- Department of Applied Biological Science, Faculty of
Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi,
Tokyo 183-8509, Japan
| |
Collapse
|
8
|
Simões R, Ribeiro AC, Dias R, Freitas V, Soares S, Pérez-Gregorio R. Unveiling the Immunomodulatory Potential of Phenolic Compounds in Food Allergies. Nutrients 2024; 16:551. [PMID: 38398875 PMCID: PMC10891931 DOI: 10.3390/nu16040551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Food allergies are becoming ever more prevalent around the world. This pathology is characterized by the breakdown of oral tolerance to ingested food allergens, resulting in allergic reactions in subsequent exposures. Due to the possible severity of the symptoms associated with this pathology, new approaches to prevent it and reduce associated symptoms are of utmost importance. In this framework, dietary phenolic compounds appear as a tool with a not fully explored potential. Some phenolic compounds have been pointed to with the ability to modulate food allergies and possibly reduce their symptoms. These compounds can modulate food allergies through many different mechanisms, such as altering the bioaccessibility and bioavailability of potentially immunogenic peptides, by modulating the human immune system and by modulating the composition of the human microbiome that resides in the oral cavity and the gastrointestinal tract. This review deepens the state-of-the-art of the modulation of these mechanisms by phenolic compounds. While this review shows clear evidence that dietary supplementation with foods rich in phenolic compounds might constitute a new approach to the management of food allergies, it also highlights the need for further research to delve into the mechanisms of action of these compounds and decipher systematic structure/activity relationships.
Collapse
Affiliation(s)
- Rodolfo Simões
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua Campo Alegre 687, s/n, 4169-007 Porto, Portugal
- Food and Health Omics Group, Food and Agroecology Institute, University of Vigo, Campus As Lagoas, s/n, 32004 Ourense, Spain
- Food and Health Omics Group, Department of Chemistry and Biochemistry, Galicia Sur Health Research Institute (IISGS), SERGAS-UVIGO, 32002 Ourense, Spain
| | - Ana Catarina Ribeiro
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua Campo Alegre 687, s/n, 4169-007 Porto, Portugal
| | - Ricardo Dias
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua Campo Alegre 687, s/n, 4169-007 Porto, Portugal
| | - Victor Freitas
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua Campo Alegre 687, s/n, 4169-007 Porto, Portugal
| | - Susana Soares
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua Campo Alegre 687, s/n, 4169-007 Porto, Portugal
| | - Rosa Pérez-Gregorio
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua Campo Alegre 687, s/n, 4169-007 Porto, Portugal
- Food and Health Omics Group, Food and Agroecology Institute, University of Vigo, Campus As Lagoas, s/n, 32004 Ourense, Spain
- Food and Health Omics Group, Department of Chemistry and Biochemistry, Galicia Sur Health Research Institute (IISGS), SERGAS-UVIGO, 32002 Ourense, Spain
| |
Collapse
|
9
|
Jia B, Zeng HL, Shang J, Wang X, Xu L, Fang M, Zeng F, Yang Q. Inhibitory effect of rosmarinic acid on IgE-trigged mast cell degranulation in vitro and in vivo. Mol Biol Rep 2024; 51:194. [PMID: 38270683 DOI: 10.1007/s11033-023-09164-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/14/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND Rosmarinic acid (RA), a polyphenol from edible-medical Lamiaceae herbs, is known to possess a variety of pharmacological activity, like anti-inflammatory, hepatoprotective and immunoregulation activities. METHODS AND RESULTS Hereon, we investigated the anti-allergic activity of RA on immunoglobulin E (IgE)-mediated anaphylaxis responses in rat basophilic leukemia (RBL)-2H3 mast cell. RA hindered the morphological changes of IgE-induced degranulated RBL-2H3 cells. The release of two key biomarkers (β-hexosaminidase (β-HEX) and histamine) of IgE-induced degranulated mast cells was also remarkably down-regulated by RA intervention in a dose dependent manner. Moreover, RA inhibited IgE-induced ROS overproduction and flux of intracellular Ca2+ in IgE-mediated degranulated mast cells. The q-PCR analysis showed that the expressions of genes (COX 2, PGD 2, LTC 4, HDC, Nrf2, HO-1 and NQO1) involved in MAPK and oxidative stress signaling pathways were significantly regulated by RA intervention. Moreover, the degranulation inhibitory effect of rosmarinic acid was investigated on the anti-DNP IgE/DNP-HSA induced passive cutaneous anaphylaxis (PCA) mice model in vivo. It showed that RA significantly inhibited the PCA reaction and allergic edema of ears in anti-DNP IgE/DNP-HSA stimulated mice. CONCLUSION These findings suggest that RA has the potential to be used as a therapeutic candidate for allergic diseases by inhibiting mast cell degranulation. This indicates a possible role for RA in managing allergic reactions and related conditions.
Collapse
Affiliation(s)
- Binmei Jia
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, 430023, China
- Food Safety Research Center, Key Research Institute of Humanities and Social of Hubei Province, Wuhan, 430023, China
| | - Hao-Long Zeng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jieli Shang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, 430023, China
- Food Safety Research Center, Key Research Institute of Humanities and Social of Hubei Province, Wuhan, 430023, China
| | - Xuanpei Wang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, 430023, China
- Food Safety Research Center, Key Research Institute of Humanities and Social of Hubei Province, Wuhan, 430023, China
| | - Lin Xu
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, 430023, China
- Food Safety Research Center, Key Research Institute of Humanities and Social of Hubei Province, Wuhan, 430023, China
| | - Min Fang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, 430023, China
- Food Safety Research Center, Key Research Institute of Humanities and Social of Hubei Province, Wuhan, 430023, China
| | - Fengbo Zeng
- Wuhan BioCSi Tech Laboratory Co., LTD, Wuhan, 430000, China
| | - Qing Yang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, 430023, China.
- Food Safety Research Center, Key Research Institute of Humanities and Social of Hubei Province, Wuhan, 430023, China.
| |
Collapse
|
10
|
Wróblewska B, Kuliga A, Wnorowska K. Bioactive Dairy-Fermented Products and Phenolic Compounds: Together or Apart. Molecules 2023; 28:8081. [PMID: 38138571 PMCID: PMC10746084 DOI: 10.3390/molecules28248081] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Fermented dairy products (e.g., yogurt, kefir, and buttermilk) are significant in the dairy industry. They are less immunoreactive than the raw materials from which they are derived. The attractiveness of these products is based on their bioactivity and properties that induce immune or anti-inflammatory processes. In the search for new solutions, plant raw materials with beneficial effects have been combined to multiply their effects or obtain new properties. Polyphenols (e.g., flavonoids, phenolic acids, lignans, and stilbenes) are present in fruit and vegetables, but also in coffee, tea, or wine. They reduce the risk of chronic diseases, such as cancer, diabetes, or inflammation. Hence, it is becoming valuable to combine dairy proteins with polyphenols, of which epigallocatechin-3-gallate (EGCG) and chlorogenic acid (CGA) show a particular predisposition to bind to milk proteins (e.g., α-lactalbumin β-lactoglobulin, αs1-casein, and κ-casein). Reducing the allergenicity of milk proteins by combining them with polyphenols is an essential issue. As potential 'metabolic prebiotics', they also contribute to stimulating the growth of beneficial bacteria and inhibiting pathogenic bacteria in the human gastrointestinal tract. In silico methods, mainly docking, assess the new structures of conjugates and the consequences of the interactions that are formed between proteins and polyphenols, as well as to predict their action in the body.
Collapse
Affiliation(s)
- Barbara Wróblewska
- Institute of Animal Reproduction and Food Research, Polish Academy of Science, 10-748 Olsztyn, Poland; (A.K.); (K.W.)
| | | | | |
Collapse
|
11
|
Dębińska A, Sozańska B. Dietary Polyphenols-Natural Bioactive Compounds with Potential for Preventing and Treating Some Allergic Conditions. Nutrients 2023; 15:4823. [PMID: 38004216 PMCID: PMC10674996 DOI: 10.3390/nu15224823] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
In light of the constantly increasing prevalence of allergic diseases, changes in dietary patterns have been suggested as a plausible environmental explanation for the development and progression of these diseases. Nowadays, much attention has been paid to the development of dietary interventions using natural substances with anti-allergy activities. In this respect, dietary polyphenols have been studied extensively as one of the most prominent natural bioactive compounds with well-documented anti-inflammatory, antioxidant, and immunomodulatory properties. This review aims to discuss the mechanisms underlying the potential anti-allergic actions of polyphenols related to their ability to reduce protein allergenicity, regulate immune response, and gut microbiome modification; however, these issues need to be elucidated in detail. This paper reviews the current evidence from experimental and clinical studies confirming that various polyphenols such as quercetin, curcumin, resveratrol, catechins, and many others could attenuate allergic inflammation, alleviate the symptoms of food allergy, asthma, and allergic rhinitis, and prevent the development of allergic immune response. Conclusively, dietary polyphenols are endowed with great anti-allergic potential and therefore could be used either for preventive approaches or therapeutic interventions in relation to allergic diseases. Limitations in studying and widespread use of polyphenols as well as future research directions are also discussed.
Collapse
Affiliation(s)
- Anna Dębińska
- Department and Clinic of Paediatrics, Allergology and Cardiology, Wrocław Medical University, ul. Chałubińskiego 2a, 50-368 Wrocław, Poland;
| | | |
Collapse
|
12
|
Zhong H, Li J, Cheng JH. Targeting different signaling pathways for food allergy regulation and potential therapy: a review. Crit Rev Food Sci Nutr 2023; 64:12860-12877. [PMID: 37707435 DOI: 10.1080/10408398.2023.2257798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
The rising incidence rate of food allergy is attracting more intention. The pathogenesis of food allergy is complex and its definite regulatory mechanism is not utterly understood. Exploring the molecular mechanism of food allergy to help find effective methods that can prevent or treat food allergy is widely necessary. Recently, targeting cellular signaling pathways have been employed as novel approaches to discover food allergy therapy. Supplementing probiotics and bioactive compounds with anti-allergic property are believed feasible approaches for food allergy therapy. These probiotics or bioactive compounds affect food allergy by regulating cellular signaling pathways, and ultimately alleviate food allergy. This review aims to report systematic information about the knowledge of signaling pathways participated in food allergy, the alterations of these signaling pathways during food allergy that treated with probiotics and bioactive compounds are discussed as well. Further studies on the mechanism of signaling pathway network regulating food allergy and the precise action mechanism of probiotics and bioactive compounds are in the urgent need to help develop efficient treatment or complete prevention. We hope to help scientists understand food allergy systematically.
Collapse
Affiliation(s)
- Hangyu Zhong
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Jilin Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
| |
Collapse
|
13
|
Wu H, Chen B, Wu Y, Gao J, Li X, Tong P, Wu Y, Meng X, Chen H. New Perspectives on Food Matrix Modulation of Food Allergies: Immunomodulation and Component Interactions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13181-13196. [PMID: 37646334 DOI: 10.1021/acs.jafc.3c03192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Food allergy is a multifactorial interplay process influenced not only by the structure and function of the allergen itself but also by other components of the food matrix. For food, before it is thoroughly digested and absorbed, numerous factors make the food matrix constantly change. This will also lead to changes in the chemistry, biochemical composition, and structure of the various components in the matrix, resulting in multifaceted effects on food allergies. In this review, we reveal the relationship between the food matrix and food allergies and outline the immune role of the components in the food matrix, while highlighting the ways and pathways in which the components in the food matrix interact and their impact on food allergies. The in-depth study of the food matrix will essentially explore the mechanism of food allergies and bring about new ideas and breakthroughs for the prevention and treatment of food allergies.
Collapse
Affiliation(s)
- Huan Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, People's Republic of China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, People's Republic of China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, 330047, People's Republic of China
| | - Bihua Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, People's Republic of China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, People's Republic of China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, 330047, People's Republic of China
| | - Yuhong Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, People's Republic of China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, People's Republic of China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, 330047, People's Republic of China
| | - Jinyan Gao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, People's Republic of China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, People's Republic of China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, 330047, People's Republic of China
| | - Xin Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, People's Republic of China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, People's Republic of China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, 330047, People's Republic of China
| | - Ping Tong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, People's Republic of China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, 330047, People's Republic of China
| | - Yong Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, People's Republic of China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, People's Republic of China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, 330047, People's Republic of China
| | - Xuanyi Meng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, People's Republic of China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, People's Republic of China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, 330047, People's Republic of China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, People's Republic of China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, People's Republic of China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, 330047, People's Republic of China
| |
Collapse
|
14
|
Wu T, Li Z, Wu Y, Yang X, Li L, Chen S, Qi B, Wang Y, Li C, Zhao Y. Exploring plant polyphenols as anti-allergic functional products to manage the growing incidence of food allergy. Front Nutr 2023; 10:1102225. [PMID: 37360292 PMCID: PMC10290203 DOI: 10.3389/fnut.2023.1102225] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/03/2023] [Indexed: 06/28/2023] Open
Abstract
The active substances derived from plants have received increasing attention owing to their wide range of pharmacological applications, including anti-tumor, anti-allergic, anti-viral, and anti-oxidative activities. The allergy epidemic is a growing global public health problem that threatens human health and safety. Polyphenols from plants have significant anti-allergic effects and are an important source of anti-allergic drug research and development. Here, we describe recent advances in the anti-allergic efficacy of plant polyphenols, including their comprehensive effects on cellular or animal models. The current issues and directions for future development in this field are discussed to provide a theoretical basis for the development and utilization of these active substances as anti-allergic products.
Collapse
Affiliation(s)
- Tianxiang Wu
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Food Safety Laboratory, Ocean University of China, Qingdao, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Zhenxing Li
- Food Safety Laboratory, Ocean University of China, Qingdao, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yanyan Wu
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Xianqing Yang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Laihao Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Shengjun Chen
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Bo Qi
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Yueqi Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Chunsheng Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yongqiang Zhao
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
15
|
Zeng J, Hao J, Yang Z, Ma C, Gao L, Chen Y, Li G, Li J. Anti-Allergic Effect of Dietary Polyphenols Curcumin and Epigallocatechin Gallate via Anti-Degranulation in IgE/Antigen-Stimulated Mast Cell Model: A Lipidomics Perspective. Metabolites 2023; 13:metabo13050628. [PMID: 37233669 DOI: 10.3390/metabo13050628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/23/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023] Open
Abstract
Polyphenol-rich foods exhibit anti-allergic/-inflammatory properties. As major effector cells of allergies, mast cells undergo degranulation after activation and then initiate inflammatory responses. Key immune phenomena could be regulated by the production and metabolism of lipid mediators by mast cells. Here, we analyzed the antiallergic activities of two representative dietary polyphenols, curcumin and epigallocatechin gallate (EGCG), and traced their effects on cellular lipidome rewiring in the progression of degranulation. Both curcumin and EGCG significantly inhibited degranulation as they suppressed the release of β-hexosaminidase, interleukin-4, and tumor necrosis factor-α from the IgE/antigen-stimulated mast cell model. A comprehensive lipidomics study involving 957 identified lipid species revealed that although the lipidome remodeling patterns (lipid response and composition) of curcumin intervention were considerably similar to those of EGCG, lipid metabolism was more potently disturbed by curcumin. Seventy-eight percent of significant differential lipids upon IgE/antigen stimulation could be regulated by curcumin/EGCG. LPC-O 22:0 was defined as a potential biomarker for its sensitivity to IgE/antigen stimulation and curcumin/EGCG intervention. The key changes in diacylglycerols, fatty acids, and bismonoacylglycerophosphates provided clues that cell signaling disturbances could be associated with curcumin/EGCG intervention. Our work supplies a novel perspective for understanding curcumin/EGCG involvement in antianaphylaxis and helps guide future attempts to use dietary polyphenols.
Collapse
Affiliation(s)
- Jun Zeng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China
| | - Jingwen Hao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Zhiqiang Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Chunyu Ma
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Longhua Gao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Yue Chen
- The Affiliated Stomatology Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Guiling Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China
| | - Jia Li
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| |
Collapse
|
16
|
Kumari M, Siddiqui MA, Gupta A. Recent Advancement and Novel Application of Natural Polyphenols for the Treatment of Allergy Asthma: From Phytochemistry to Biological Implications. Crit Rev Immunol 2023; 43:29-41. [PMID: 37830192 DOI: 10.1615/critrevimmunol.2023050289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Allergic diseases, primarily IgE-mediated, exert a substantial global health burden. A pivotal role in allergic reactions is played by mast cells, with histamine serving as a central mediator. Within this context, plant-based polyphenols, abundantly present in vegetables and fruits, show promising potential for allergy prevention. These natural compounds, particularly flavonoids, possess anti-inflammatory and anti-allergic properties, influencing dendritic cells, modulating macrophages, and fostering the proliferation of B cells and T cells. The potent anti-allergic effects of flavonoids are attributed to their ability to reduce the production of signaling factors, suppress cytokine production, and regulate signal transduction and gene expression in mast cells, basophils, and T cells. Notably, their benefits extend beyond allergy prevention, as they hold promise in the prevention and treatment of autoimmune illnesses such as diabetes, rheumatoid arthritis, and multiple sclerosis. In the context of allergic reactions and autoimmune diseases, polyphenols exhibit immunomodulatory effects by inhibiting autoimmune T cell proliferation and downregulating pro-inflammatory cytokines. In recent times, flavonoids, being the most prevalent polyphenols in food, have garnered significant attention from researchers due to their potential health advantages. This review compiles the latest scientific research to highlight the impact of flavonoids on allergic illnesses and their potential as a beneficial dietary component.
Collapse
Affiliation(s)
- Meera Kumari
- Goel Institute of Pharmacy & Sciences, Lucknow, India
| | | | - Amresh Gupta
- Goel Institute of Pharmacy & Sciences, Lucknow, India
| |
Collapse
|
17
|
Anti-Allergic and Antioxidant Potential of Polyphenol-Enriched Fractions from Cyclopia subternata (Honeybush) Produced by a Scalable Process. SEPARATIONS 2022. [DOI: 10.3390/separations9100278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Anti-allergic activity was previously demonstrated for extracts of Cyclopia subternata Vogel plant material, containing substantial amounts of xanthones, benzophenones, dihydrochalcones, flavanones and flavones. Fractionation of a hot water extract on macroporous resin was performed aiming to increase its potency. Operating conditions for scaled-up fractionation of the extract were determined, using small-scale static and dynamic sorption/desorption experiments. The anti-allergic potential of the fractions was assessed based on inhibition of β-hexosaminidase release from IgE-sensitized RBL-2H3 cells. Given the role of oxidative stress in allergic reactions, the extract and fractions were also tested for their ability to scavenge the superoxide anion radical and inhibit xanthine oxidase (XO), an enzyme involved in its generation. The routine DPPH and ORAC assays were used for determination of the antioxidant capacity of the fractions. 3-β-D-Glucopyranosyl-4-O-β-D-glucopyranosyliriflophenone (IDG) had the lowest affinity for the resin, dictating selection of the optimal separation conditions. The extract was separated into four fractions on XAD1180N, using step-wise gradient elution with EtOH-water solutions. The major phenolic compounds present in the fractions were IDG and 3-β-D-glucopyranosyliriflophenone (fraction 1), mangiferin, isomangiferin, 3′,5′-di-β-D-glucopyranosyl-3-hydroxyphloretin and vicenin-2 (fraction 2), 3′,5′-di-β-D-glucopyranosylphloretin, eriocitrin and scolymoside (fraction 3) and hesperidin and p-coumaric acid (fraction 4). Fractionation was only partially effective in increasing activity compared to the extract, i.e., fractions 2, 3 and 4 in the DPPH• and XO assays, fractions 1 and 2 in the ORAC assay and fraction 1 in the β-hexosaminidase release assay. In vivo testing will be required to determine whether the increased activity of fractions is worth the effort and expense of fractionation.
Collapse
|
18
|
Santhiravel S, Bekhit AEDA, Mendis E, Jacobs JL, Dunshea FR, Rajapakse N, Ponnampalam EN. The Impact of Plant Phytochemicals on the Gut Microbiota of Humans for a Balanced Life. Int J Mol Sci 2022; 23:ijms23158124. [PMID: 35897699 PMCID: PMC9332059 DOI: 10.3390/ijms23158124] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
The gastrointestinal tract of humans is a complex microbial ecosystem known as gut microbiota. The microbiota is involved in several critical physiological processes such as digestion, absorption, and related physiological functions and plays a crucial role in determining the host’s health. The habitual consumption of specific dietary components can impact beyond their nutritional benefits, altering gut microbiota diversity and function and could manipulate health. Phytochemicals are non-nutrient biologically active plant components that can modify the composition of gut microflora through selective stimulation of proliferation or inhibition of certain microbial communities in the intestine. Plants secrete these components, and they accumulate in the cell wall and cell sap compartments (body) for their development and survival. These compounds have low bioavailability and long time-retention in the intestine due to their poor absorption, resulting in beneficial impacts on gut microbiota population. Feeding diets containing phytochemicals to humans and animals may offer a path to improve the gut microbiome resulting in improved performance and/or health and wellbeing. This review discusses the effects of phytochemicals on the modulation of the gut microbiota environment and the resultant benefits to humans; however, the effect of phytochemicals on the gut microbiota of animals is also covered, in brief.
Collapse
Affiliation(s)
- Sarusha Santhiravel
- Postgraduate Institute of Agriculture, University of Peradeniya, Peradeniya 20400, Sri Lanka
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Alaa El-Din A Bekhit
- Department of Food Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Eresha Mendis
- Department of Food Science and Technology, Faculty of Agriculture, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Joe L Jacobs
- Animal Production Sciences, Agriculture Victoria Research, Department of Jobs, Precincts and Regions, Ellinbank, VIC 3821, Australia
- Centre for Agricultural Innovation, School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Frank R Dunshea
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Niranjan Rajapakse
- Department of Food Science and Technology, Faculty of Agriculture, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Eric N Ponnampalam
- Animal Production Sciences, Agriculture Victoria Research, Department of Jobs, Precincts and Regions, Bundoora, VIC 3083, Australia
| |
Collapse
|
19
|
Arslan AS, Seven I, Mutlu SI, Arkali G, Birben N, Seven PT. Potential ameliorative effect of dietary quercetin against lead-induced oxidative stress, biochemical changes, and apoptosis in laying Japanese quails. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 231:113200. [PMID: 35051762 DOI: 10.1016/j.ecoenv.2022.113200] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/04/2022] [Accepted: 01/12/2022] [Indexed: 05/26/2023]
Abstract
Lead (Pb) is a widespread environmental pollutant which is a toxic threat to human and animal health. The present study was designed to evaluate the ameliorative role of quercetin in laying quails exposed to Pb. A total of 112 birds were randomly divided into four groups. The control group was fed with basal diet, the Pb group was fed with ration supplemented with Pb at the dose of 100 mg/kg (as Pb (II) acetate trihydrate), the Quercetin group was fed with ration supplemented with quercetin at the dose of 400 mg/kg, and the Pb+ Quercetin group was fed with ration supplemented with Pb at the dose of 100 mg/kg and quercetin at dose of 400 mg/kg. Results showed that serum total protein, glucose, albumin, and blood urea nitrogen (BUN) values of the Pb + Quercetin group partially improved with quercetin supplementation. Meanwhile, serum creatinine values of the Pb + Quercetin group was found to be significantly lower than that of the Pb group. Aspartate aminotransferase (AST) and alanine transaminase (ALT) enzyme activities in the Quercetin and Pb + Quercetin groups were similar to those of the Control group, unlike the Pb group. Moreover, alkaline phosphatase (ALP) enzyme activity of the Pb + Quercetin group significantly improved with the addition of quercetin. We also found that malondialdehyde (MDA) levels of the kidney, liver, and heart were significantly reduced by quercetin supplementation. The glutathione, catalase, and glutathione peroxidase activities of the kidney, liver, and heart tissue were increased by quercetin supplementation. These results were in line with the observed apoptotic markers. The expression of caspase-3 and caspase-9 were significantly decreased by quercetin supplementation. It may be concluded that dietary supplementation with quercetin ameliorates the toxic effects of Pb exposure by alleviating oxidative stress, biochemical changes, and apoptosis in quails.
Collapse
Affiliation(s)
- Aslihan Sur Arslan
- Department of Veterinary Medicine, Vocational School of Kepsut, Balikesir University, Balikesir 10000, Turkey
| | - Ismail Seven
- Department of Plant and Animal Production, Vocational School of Sivrice, Firat University, Elazig 23119, Turkey
| | - Seda Iflazoglu Mutlu
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Firat University, Elazig 23119, Turkey.
| | - Gozde Arkali
- Department of Physiology, Faculty of Veterinary Medicine, Firat University, Elazig 23119, Turkey
| | - Nurgul Birben
- Ministry of Agriculture and Forestry, Veterinary Control Institute Office, Elazig 23119, Turkey
| | - Pinar Tatli Seven
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Firat University, Elazig 23119, Turkey
| |
Collapse
|
20
|
Pan T, Wu Y, He S, Wu Z, Jin R. Food allergenic protein conjugation with plant polyphenols for allergenicity reduction. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2021.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|