1
|
Eweda MA, Jalil S, Rashwan AK, Tsago Y, Hassan U, Jin X. Molecular and physiological characterizations of roots under drought stress in rice: A comprehensive review. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 225:110012. [PMID: 40388855 DOI: 10.1016/j.plaphy.2025.110012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 05/05/2025] [Accepted: 05/10/2025] [Indexed: 05/21/2025]
Abstract
Drought stress poses a major challenge to rice (Oryza sativa L.) production, significantly threatening global food security, especially in the context of climate change. Root architecture plays a key role in drought resistance, as rice plants require substantial water throughout their growth. The genetic diversity of rice root systems exhibits various growth patterns and adaptive traits that enable plants to endure water-deficient conditions. Harnessing this diversity to improve drought resilience demands a thorough understanding of critical root traits and adaptive mechanisms. This review explores rice roots' anatomical, physiological, and biochemical responses to drought, emphasizing important traits such as root architecture, xylem vessel modifications, root cortical aerenchyma (RCA), and water transport mechanisms. The role of biochemical regulators, including phytohormones, sugars, lipids, and reactive oxygen species (ROS), in root adaptation to drought is also explored. Additionally, the genetic and molecular pathways influencing root development under drought stress are discussed, with a focus on key genes and transcription factors (TFs) such as NAC, bZIP, AP2/ERF, and others that contribute to enhanced drought tolerance. Understanding these complex interactions is crucial for breeding drought-tolerant rice varieties, ultimately improving crop productivity under challenging environmental conditions.
Collapse
Affiliation(s)
- Mohamed Ali Eweda
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China; Zhejiang Key Laboratory of Crop Germplasm Innovation and Utilization, Hangzhou, Zhejiang, 310058, China; Department of Plant Production, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications, SRTA-City, Alexandria, Egypt
| | - Sanaullah Jalil
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Ahmed K Rashwan
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Yohannes Tsago
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Umair Hassan
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China; Zhejiang Key Laboratory of Crop Germplasm Innovation and Utilization, Hangzhou, Zhejiang, 310058, China
| | - Xiaoli Jin
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China; Zhejiang Key Laboratory of Crop Germplasm Innovation and Utilization, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
2
|
Nawaz AF, Gargiulo S, Pichierri A, Casolo V. Exploring the Role of Non-Structural Carbohydrates (NSCs) Under Abiotic Stresses on Woody Plants: A Comprehensive Review. PLANTS (BASEL, SWITZERLAND) 2025; 14:328. [PMID: 39942890 PMCID: PMC11820143 DOI: 10.3390/plants14030328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/14/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025]
Abstract
Global climate change has increased the severity and frequency of abiotic stresses, posing significant challenges to the survival and growth of woody plants. Non-structural carbohydrates (NSCs), including starch and sugars, play a vital role in enabling plants to withstand these stresses, helping to stabilize cellular functions by buffering plant energy demands and facilitating recovery on the alleviation of stress. Despite the recognized multiple functions of NSCs, the contrasting effects of multiple abiotic stresses on NSCs dynamics in woody plants remain poorly understood. This review aims to explore the current knowledge of the contrasting effects of abiotic stress conditions including drought, salinity, heat, water logging, and cold on NSCs dynamics. The roles of NSCs in regulating stress-resilience responses in woody plants are also discussed, along with the challenges in NSC measurement, and options for future research directions are explored. This review is based on comprehensive literature research across different search engines like Scopus, Web of Science, and Google Scholar (2000-2024) using targeted keywords. This study compiles the current research on NSCs functions and provides insights into the adaptive strategies of woody plants in response to changing climate conditions, providing groundwork for future research to improve stress tolerance in woody plants.
Collapse
Affiliation(s)
- Ayesha Fazal Nawaz
- Department of Life Sciences, University of Trieste, via L. Giorgieri 10, 34127 Trieste, Italy; (A.F.N.); (A.P.)
- Dipartimento di Scienze Agroalimentari, Ambientali ed Animali, Università di Udine, via delle Scienze 206, 33100 Udine, Italy;
| | - Sara Gargiulo
- Dipartimento di Scienze Agroalimentari, Ambientali ed Animali, Università di Udine, via delle Scienze 206, 33100 Udine, Italy;
| | - Alessandro Pichierri
- Department of Life Sciences, University of Trieste, via L. Giorgieri 10, 34127 Trieste, Italy; (A.F.N.); (A.P.)
- Dipartimento di Scienze Agroalimentari, Ambientali ed Animali, Università di Udine, via delle Scienze 206, 33100 Udine, Italy;
| | - Valentino Casolo
- Dipartimento di Scienze Agroalimentari, Ambientali ed Animali, Università di Udine, via delle Scienze 206, 33100 Udine, Italy;
| |
Collapse
|
3
|
Dempsey M, Thavarajah D. Low molecular weight carbohydrates and abiotic stress tolerance in lentil ( Lens culinaris Medikus): a review. FRONTIERS IN PLANT SCIENCE 2024; 15:1408252. [PMID: 39421141 PMCID: PMC11484031 DOI: 10.3389/fpls.2024.1408252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024]
Abstract
Lentil (Lens culinaris Medikus) is a nutrient-rich, cool-season food legume that is high in protein, prebiotic carbohydrates, vitamins, and minerals. It is a staple food in many parts of the world, but crop performance is threatened by climate change, where increased temperatures and less predictable precipitation can reduce yield and nutritional quality. One mechanism that many plant species use to mitigate heat and drought stress is the production of disaccharides, oligosaccharides and sugar alcohols, collectively referred to as low molecular weight carbohydrates (LMWCs). Recent evidence indicates that lentil may also employ this mechanism - especially raffinose family oligosaccharides and sugar alcohols - and that these may be suitable targets for genomic-assisted breeding to improve crop tolerance to heat and drought stress. While the genes responsible for LMWC biosynthesis in lentil have not been fully elucidated, single nucleotide polymorphisms and putative genes underlying biosynthesis of LMWCs have been identified. Yet, more work is needed to confirm gene identity, function, and response to abiotic stress. This review i) summarizes the diverse evidence for how LMWCs are utilized to improve abiotic stress tolerance, ii) highlights current knowledge of genes that control LMWC biosynthesis in lentil, and iii) explores how LMWCs can be targeted using diverse genomic resources and markers to accelerate lentil breeding efforts for improved stress tolerance.
Collapse
Affiliation(s)
| | - Dil Thavarajah
- Plant and Environmental Sciences, Pulse Quality and Nutritional Breeding, Biosystems Research Complex, Clemson University, Clemson, SC, United States
| |
Collapse
|
4
|
Cheng X, Liu X, Jordan KW, Yu J, Whitworth RJ, Park Y, Chen MS. Frequent Acquisition of Glycoside Hydrolase Family 32 (GH32) Genes from Bacteria via Horizontal Gene Transfer Drives Adaptation of Invertebrates to Diverse Sources of Food and Living Habitats. Int J Mol Sci 2024; 25:8296. [PMID: 39125866 PMCID: PMC11311677 DOI: 10.3390/ijms25158296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Glycoside hydrolases (GHs, also called glycosidases) catalyze the hydrolysis of glycosidic bonds in polysaccharides. Numerous GH genes have been identified from various organisms and are classified into 188 families, abbreviated GH1 to GH188. Enzymes in the GH32 family hydrolyze fructans, which are present in approximately 15% of flowering plants and are widespread across microorganisms. GH32 genes are rarely found in animals, as fructans are not a typical carbohydrate source utilized in animals. Here, we report the discovery of 242 GH32 genes identified in 84 animal species, ranging from nematodes to crabs. Genetic analyses of these genes indicated that the GH32 genes in various animals were derived from different bacteria via multiple, independent horizontal gene transfer events. The GH32 genes in animals appear functional based on the highly conserved catalytic blades and triads in the active center despite the overall low (35-60%) sequence similarities among the predicted proteins. The acquisition of GH32 genes by animals may have a profound impact on sugar metabolism for the recipient organisms. Our results together with previous reports suggest that the acquired GH32 enzymes may not only serve as digestive enzymes, but also may serve as effectors for manipulating host plants, and as metabolic enzymes in the non-digestive tissues of certain animals. Our results provide a foundation for future studies on the significance of horizontally transferred GH32 genes in animals. The information reported here enriches our knowledge of horizontal gene transfer, GH32 functions, and animal-plant interactions, which may result in practical applications. For example, developing crops via targeted engineering that inhibits GH32 enzymes could aid in the plant's resistance to animal pests.
Collapse
Affiliation(s)
- Xiaoyan Cheng
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA; (X.C.); (X.L.); (R.J.W.); (Y.P.)
| | - Xuming Liu
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA; (X.C.); (X.L.); (R.J.W.); (Y.P.)
- Hard Winter Wheat Genetics Research Unit, Center for Grain and Animal Health Research, US Department of Agriculture, Agricultural Research Services, 4008 Throckmorton Hall, Kansas State University, Manhattan, KS 66506, USA;
| | - Katherine W. Jordan
- Hard Winter Wheat Genetics Research Unit, Center for Grain and Animal Health Research, US Department of Agriculture, Agricultural Research Services, 4008 Throckmorton Hall, Kansas State University, Manhattan, KS 66506, USA;
| | - Jingcheng Yu
- Department of Biochemistry and Molecular Biophysics, 141 Chalmers Hall, Kansas State University, Manhattan, KS 66506, USA;
| | - Robert J. Whitworth
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA; (X.C.); (X.L.); (R.J.W.); (Y.P.)
| | - Yoonseong Park
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA; (X.C.); (X.L.); (R.J.W.); (Y.P.)
| | - Ming-Shun Chen
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA; (X.C.); (X.L.); (R.J.W.); (Y.P.)
- Hard Winter Wheat Genetics Research Unit, Center for Grain and Animal Health Research, US Department of Agriculture, Agricultural Research Services, 4008 Throckmorton Hall, Kansas State University, Manhattan, KS 66506, USA;
| |
Collapse
|
5
|
Radosavljević M, Belović M, Cvetanović Kljakić A, Torbica A. Production, modification and degradation of fructans and fructooligosacharides by enzymes originated from plants. Int J Biol Macromol 2024; 269:131668. [PMID: 38649077 DOI: 10.1016/j.ijbiomac.2024.131668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/04/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
Non-starch polysaccharides exhibit numerous beneficial health effects but compounds belonging to FODMAP (Fermentable Oligo- Di- and Monosaccharides and Polyols) has been recently connected to several gastrointestinal disorders. This review presents integrated literature data on the occurrence and types of fructans and fructooligosaccharids (classified as FODMAPs) as well as their degrading enzymes present in plants. Plants from the family Asteraceae and many monocotyledones, including families Poaceae and Liliaceae, are the most abundant sources of both fructans and fructan-degrading enzymes. So far, vast majority of publications concerning the application of these specific plants in production of bakery products is related to increase of dietary fibre content in these products. However, there is limited research on their effect on FODMAP content and fibre balance. The authors emphasize the possibility of application of enzyme rich plant extract in food production casting light on the new scientific approach to fibre modification.
Collapse
Affiliation(s)
- Miloš Radosavljević
- University of Novi Sad, Faculty of Technology, Bulevar cara Lazara 1, 21102 Novi Sad, Serbia.
| | - Miona Belović
- University of Novi Sad, Institute of Food Technology, Bulevar cara Lazara 1, 21102 Novi Sad, Serbia
| | | | - Aleksandra Torbica
- University of Novi Sad, Institute of Food Technology, Bulevar cara Lazara 1, 21102 Novi Sad, Serbia
| |
Collapse
|
6
|
Jayarathna S, Jin Y, Dotsenko G, Fei M, Andersson M, Andersson AAM, Sun C, Andersson R. High fructan barley lines produced by selective breeding may alter β-glucan and amylopectin molecular structure. Carbohydr Polym 2023; 316:121030. [PMID: 37321727 DOI: 10.1016/j.carbpol.2023.121030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/08/2023] [Accepted: 05/14/2023] [Indexed: 06/17/2023]
Abstract
Six cross-bred barley lines developed by a breeding strategy with the target to enhance the fructan synthesis activity and reduce the fructan hydrolysis activity were analyzed together with their parental lines, and a reference line (Gustav) to determine whether the breeding strategy also affected the content and molecular structure of amylopectin and β-glucan. The highest fructan and β-glucan content achieved in the novel barley lines was 8.6 % and 12 %, respectively (12.3-fold and 3.2-fold higher than in Gustav). The lines with low fructan synthesis activity had higher starch content, smaller building blocks in amylopectin, and smaller structural units of β-glucans than the lines with high-fructan synthesis activity. Correlation analysis confirmed that low starch content was associated with high amylose, fructan, and β-glucan content, and larger building blocks in amylopectin.
Collapse
Affiliation(s)
- Shishanthi Jayarathna
- Department of Molecular Sciences, BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden.
| | - Yunkai Jin
- Department of Plant Biology, BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7080, SE-750 07 Uppsala, Sweden.
| | - Gleb Dotsenko
- Department of Molecular Sciences, BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden
| | - Mingliang Fei
- Department of Plant Biology, BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7080, SE-750 07 Uppsala, Sweden; Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Education Department of Hunan Province on Plant Genetics and Molecular Biology, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Mariette Andersson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 190, SE-234 22 Lomma, Sweden.
| | - Annica A M Andersson
- Department of Molecular Sciences, BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden.
| | - Chuanxin Sun
- Department of Plant Biology, BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7080, SE-750 07 Uppsala, Sweden.
| | - Roger Andersson
- Department of Molecular Sciences, BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden.
| |
Collapse
|
7
|
Boonmahome P, Namwongsa J, Vorasoot N, Jogloy S, Riddech N, Boonlue S, Mongkolthanaruk W. Single and co-inoculum of endophytic bacteria promote growth and yield of Jerusalem artichoke through upregulation of plant genes under drought stress. PLoS One 2023; 18:e0286625. [PMID: 37267258 DOI: 10.1371/journal.pone.0286625] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 05/20/2023] [Indexed: 06/04/2023] Open
Abstract
Helianthus tuberosus L. (Jerusalem artichoke) produce inulin, a type of fructan, which possesses several biotechnology applications, e.g., sugar syrup, prebiotics, fiber in diabetic food, enabling blood sugar and cholesterol reduction. Drought reduces inulin accumulation in the tubers of Jerusalem artichoke as the plants protect themselves from this stress by induction of stress gene responses, effecting growth reduction. Endophytic bacteria are promising candidates to promote plant growth and yield particularly under abiotic stress. Therefore, three endophytic bacteria with plant growth promoting properties were examined for their ability to improve Jerusalem artichoke growth and yield under both well-watered and drought conditions when inoculated individually or in combinations in pot experiments with 2 factorial random complete block design. The interactions of the endophytic bacteria and plant host determined the differential gene expression in response to drought as revealed by quantitative polymerase chain reaction. Single inoculum of the endophytic bacteria increased the height, weight, root traits, and harvest index of Jerusalem artichoke compared to co-inocula under both well-watered and drought conditions. However, the co-inocula of Rossellomorea aquimaris strain 3.13 and Bacillus velezensis strain 5.18 proved to be a synergistic combination leading to high inulin accumulation; while the co-inocula of B. velezensis strain 5.18 and Micrococcus luteus strain 4.43 were not beneficial when used in combination. The genes, dehydrin like protein and ethylene responsive element binding factor, were upregulated in the plants inoculated with single inoculum and co-inocula of all endophytic bacteria during drought stress. Moreover, the gene expression of indole-3-acetic acid (IAA) amido synthetase were up-regulated in Jerusalem artichoke inoculated with M. luteus strain 4.43 during drought stress. The fructan:fructan 1-fructosyltransferase (1-FFT) was also stimulated by the endophytic bacteria particularly in drought condition; the results of this study could explain the relationship between endophytic bacteria and plant host for growth and yield promotion under well-watered and drought conditions.
Collapse
Affiliation(s)
- Patcha Boonmahome
- Faculty of Science, Department of Microbiology, Khon Kaen University, Khon Kaen, Thailand
| | - Junthima Namwongsa
- Faculty of Science, Department of Microbiology, Khon Kaen University, Khon Kaen, Thailand
| | - Nimitr Vorasoot
- Faculty of Agriculture, Department of Plant Science and Agricultural Resources, Khon Kaen University, Khon Kaen, Thailand
| | - Sanun Jogloy
- Faculty of Agriculture, Department of Plant Science and Agricultural Resources, Khon Kaen University, Khon Kaen, Thailand
| | - Nuntavan Riddech
- Faculty of Science, Department of Microbiology, Khon Kaen University, Khon Kaen, Thailand
| | - Sophon Boonlue
- Faculty of Science, Department of Microbiology, Khon Kaen University, Khon Kaen, Thailand
| | - Wiyada Mongkolthanaruk
- Faculty of Science, Department of Microbiology, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
8
|
Habuš Jerčić I, Bošnjak Mihovilović A, Matković Stanković A, Lazarević B, Goreta Ban S, Ban D, Major N, Tomaz I, Banjavčić Z, Kereša S. Garlic Ecotypes Utilise Different Morphological, Physiological and Biochemical Mechanisms to Cope with Drought Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091824. [PMID: 37176881 PMCID: PMC10180593 DOI: 10.3390/plants12091824] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Drought negatively affects plants by altering morphological, physiological and metabolic processes and ultimately reducing yields. Garlic (Allium sativum L.), an important member of the Alliaceae family, is also sensitive to drought and maximizing the yield of garlic bulbs is largely dependent on water availability. The objective of this study was to determine the effects of drought stress on morphological and physiological characteristics, as well as on phenolic, sugar, inulin and free amino acid content and antioxidant activity in two Croatian garlic ecotypes, 'Istarski crveni' (IC) and Istarski bijeli (IB). Drought was induced by using polyethylene glycol 8000 (PEG) solution (-0.6 MPa) starting 21 days after clove planting and lasted for 20 days. Drought reduced plant height, number of leaves and plant weight, but increased root length in both ecotypes compared to the control treatment. Among the physiological parameters, significant differences were observed between the two ecotypes studied in the spectral characteristics of the leaves, namely reflection in red, green and blue, VAL, values of the vegetation indices related to the chlorophyll content (CHI, GI), and the anthocyanin content (ARI). Ecotype IC showed higher antioxidant activity in the control treatment due to higher total phenolic content (TPC), but under drought conditions higher DPPH radical scavenging activity was determined in ecotype IB and higher values of FRAP in IC. Sucrose and glucose generally decreased under drought, while inulin increased in IB but decreased in IC. Total free amino acid content increased under drought in both ecotypes. In conclusion, drought tolerance of IB might be associated with increased accumulation of inulin and higher levels of amino acids, especially those shown to contribute to drought resistance. In IC, drought tolerance is associated with an increase in some amino acid compounds and better root growth in depth, probably due to a more efficient translocation of sucrose to the underground part of the plant.
Collapse
Affiliation(s)
- Ivanka Habuš Jerčić
- Department of Plant Breeding, Genetics and Biometrics, Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| | - Anita Bošnjak Mihovilović
- Department of Plant Breeding, Genetics and Biometrics, Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| | - Ana Matković Stanković
- Department of Plant Breeding, Genetics and Biometrics, Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| | - Boris Lazarević
- Department of Plant Nutrition, Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| | - Smiljana Goreta Ban
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia
| | - Dean Ban
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia
| | - Nikola Major
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| | - Ivana Tomaz
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| | - Zrinka Banjavčić
- Department of Plant Breeding, Genetics and Biometrics, Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| | - Snježana Kereša
- Department of Plant Breeding, Genetics and Biometrics, Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| |
Collapse
|
9
|
Mechanisms of Kale (Brassica oleracea var. acephala) Tolerance to Individual and Combined Stresses of Drought and Elevated Temperature. Int J Mol Sci 2022; 23:ijms231911494. [PMID: 36232818 PMCID: PMC9570052 DOI: 10.3390/ijms231911494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Rising temperatures and pronounced drought are significantly affecting biodiversity worldwide and reducing yields and quality of Brassica crops. To elucidate the mechanisms of tolerance, 33 kale accessions (B. oleracea var. acephala) were evaluated for individual (osmotic and elevated temperature stress) and combined stress (osmotic + temperature). Using root growth, biomass and proline content as reliable markers, accessions were evaluated for stress responses. Four representatives were selected for further investigation (photosynthetic performance, biochemical markers, sugar content, specialized metabolites, transcription level of transcription factors NAC, HSF, DREB and expression of heat shock proteins HSP70 and HSP90): very sensitive (392), moderately sensitive (395), tolerant (404) and most tolerant (411). Accessions more tolerant to stress conditions were characterized by higher basal content of proline, total sugars, glucosinolates and higher transcription of NAC and DREB. Under all stress conditions, 392 was characterized by a significant decrease in biomass, root growth, photosynthesis performance, fructan content, especially under osmotic and combined stress, a significant increase in HSF transcription and HSP accumulation under temperature stress and a significant decrease in NAC transcription under all stresses. The most tolerant accession under all applied stresses, 411 showed the least changes in all analyzed parameters compared with the other accessions.
Collapse
|