1
|
van Allen KA, Gang N, Hoyeck MP, Perera I, Zhang D, Atlas E, Lynn FC, Bruin JE. Characterizing the effects of Dechlorane Plus on β-cells: a comparative study across models and species. Islets 2024; 16:2361996. [PMID: 38833523 PMCID: PMC11152096 DOI: 10.1080/19382014.2024.2361996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024] Open
Abstract
Epidemiological studies consistently link environmental toxicant exposure with increased Type 2 diabetes risk. Our study investigated the diabetogenic effects of a widely used flame retardant, Dechlorane Plus (DP), on pancreatic β-cells using rodent and human model systems. We first examined pancreas tissues from male mice exposed daily to oral gavage of either vehicle (corn oil) or DP (10, 100, or 1000 μg/kg per day) and fed chow or high fat diet for 28-days in vivo. DP exposure did not affect islet size or endocrine cell composition in either diet group. Next, we assessed the effect of 48-hour exposure to vehicle (DMSO) or DP (1, 10, or 100 nM) in vitro using immortalized rat β-cells (INS-1 832/3), primary mouse and human islets, and human stem-cell derived islet-like cells (SC-islets). In INS-1 832/3 cells, DP did not impact glucose-stimulated insulin secretion (GSIS) but significantly decreased intracellular insulin content. DP had no effect on GSIS in mouse islets or SC-islets but had variable effects on GSIS in human islets depending on the donor. DP alone did not affect insulin content in mouse islets, human islets, or SC-islets, but mouse islets co-exposed to DP and glucolipotoxic (GLT) stress conditions (28.7 mM glucose + 0.5 mM palmitate) had reduced insulin content compared to control conditions. Co-exposure of mouse islets to DP + GLT amplified the upregulation of Slc30a8 compared to GLT alone. Our study highlights the importance and challenges of using different in vitro models for studying chemical toxicity.
Collapse
Affiliation(s)
- Kyle A. van Allen
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Noa Gang
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
- Diabetes Research Group, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Myriam P. Hoyeck
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Ineli Perera
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Dahai Zhang
- Diabetes Research Group, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Ella Atlas
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Francis C. Lynn
- Diabetes Research Group, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Jennifer E Bruin
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Ren X, Nicolas G, Frenoy P, Papier K, Moreno-Iribas C, Masala G, Dahm CC, Zhang J, Jannasch F, Schulze MB, Weiderpass E, Chiodini P, Vener C, Vineis P, Heath AK, Ricceri F, Colorado-Yohar SM, Marques C, Fiolet T, Severi G, Huybrechts I, Mancini FR. Non-dioxin-like polychlorinated biphenyls (NDL-PCBs) dietary exposure is associated with an increased risk of type 2 diabetes in the European prospective investigation into cancer and nutrition (EPIC) cohort. DIABETES & METABOLISM 2024; 50:101587. [PMID: 39521120 DOI: 10.1016/j.diabet.2024.101587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/04/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
AIMS/HYPOTHESIS The aim of the present study was to investigate the association between dietary exposures to dioxins, dioxin-like polychlorinated biphenyls (DL-PCBs) and non-dioxin-like polychlorinated biphenyls (NDL-PCBs) and the incidence of type 2 diabetes mellitus (T2DM) in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. METHODS This prospective cohort study with a median 11.7 years of follow-up, included 318,416 individuals recruited in 21 centers in eight countries. Dietary intake of dioxins and PCBs was calculated by combining EPIC food consumption data with food contamination data from the European Food Safety Authority (EFSA). To identify incident cases of T2DM, a thorough review of various sources including self-reported information, linkage to primary and secondary care registers, drug registers, hospital admissions, and mortality data was conducted. Associations between dietary intake of dioxins and PCBs and T2DM were evaluated using multivariable Cox regressions. RESULTS Higher T2DM risk was observed for higher estimated dietary intake of non-dioxin-like PCBs (NDL-PCBs; HR per 1 SD increment = 1.03 [95 %CI 1.01;1.04], and HR (Q4vs Q1) = 1.15 [1.08;1.22], P-trend < 0.001). The results were consistent in analyses stratified by gender, body mass index, country, median follow-up, or self-reported hypertension and hyperlipidemia, as well as when adjusting for fat intake. No consistent association was observed between dioxins+DL-PCBs intake and T2DM risk. CONCLUSION / INTERPRETATION Results obtained in this large European prospective study indicate a positive and linear association between dietary intake of NDL-PCBs and risk of T2DM. This association remained consistent across various stratified and sensitivity analyses. Further studies are warranted to better understand the biological mechanisms underlying this association.
Collapse
Affiliation(s)
- Xuan Ren
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, Villejuif, France.
| | - Geneviève Nicolas
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Pauline Frenoy
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, Villejuif, France
| | - Keren Papier
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Conchi Moreno-Iribas
- Instituto de Salud Pública y Laboral de Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Giovanna Masala
- Clinical Epidemiology Unit, Institute for cancer research, prevention and clinical network (ISPRO) Florence, Italy
| | | | - Jie Zhang
- Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Franziska Jannasch
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | | | - Paolo Chiodini
- Medical Statistics Unit, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Claudia Vener
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano Via Venezian, Milan, Italy
| | - Paolo Vineis
- Environmental Epidemiology MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Alicia K Heath
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Fulvio Ricceri
- Centre for Biostatistics, Epidemiology, and Public Health (C-BEPH), Department of Clinical and Biological Sciences, University of Turin, Orbassano (TO), Italy
| | - Sandra M Colorado-Yohar
- Department of Epidemiology, Murcia Regional Health Council, IMIB, Murcia, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain; Research Group on Demography and Health, National Faculty of Public Health, University of Antioquia, Medellín, Colombia
| | - Chloé Marques
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, Villejuif, France
| | - Thibault Fiolet
- European Food Safety Authority, unit Nutrition and food innovation, Parma, Italy
| | - Gianluca Severi
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, Villejuif, France; Department of Statistics, Computer Science, Applications "G. Parenti", University of Florence, Florence, Italy
| | - Inge Huybrechts
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | | |
Collapse
|
3
|
Mohd Efendy Goon MD, Zulkifli S, Abdullah Soheimi SS, Ab Rahim S, Abd Latip N, Hashim N, Kerisnan ND, E M Yahaya NK, Mohamed A, Sheikh Abdul Kadir SH. Association between polychlorinated biphenyl (PCB) and dioxin with metabolic syndrome (METS): a systematic review and meta-analysis. Sci Rep 2024; 14:17941. [PMID: 39095444 PMCID: PMC11297331 DOI: 10.1038/s41598-024-68369-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
Polychlorinated biphenyls (PCBs) and dioxin are persistent endocrine disrupting chemicals (EDCs) and have been associated with an increased risk of metabolic syndrome (MetS). The aim of this systematic review and meta-analysis was to assess the associations of PCBs and dioxin with MetS and its risk factors, including obesity, hypertriglyceridaemia (HTG), hypertension (HTN) and diabetes mellitus (DM). We searched three electronic databases for epidemiological studies concerning PCBs and dioxin with MetS published up to the end of 2023. Meta-analysis was performed for MetS itself and each of the MetS risks based on a random-effects meta-analysis model, and odds ratios (ORs) with 95% confidence intervals (CIs) were obtained. Publication bias was assessed based on Egger's test. Eleven studies were included from three databases up to 2023. There were 40,528 participants aged 18-89, where 18-100% of them were males, included in our meta-analysis. The meta-analysis results showed a strong association between PCB exposure and DM (OR = 3.593, 95% CI 2.566, 5.031), while most of the risk factors for MetS, including obesity (OR = 1.875, 95% CI 0.883, 3.979), HTN (OR = 1.335, 95% CI 0.902, 1.976) and HTG (OR = 1.611, 95% CI 0.981, 2.643), were weakly associated with PCB. Furthermore, both PCBs (OR = 1.162, 95% CI 0.994, 1.357) and dioxin (OR = 2.742, 95% CI 1.936, 3.883) were found to be weakly and strongly associated with MetS, respectively. Meta-regression analysis showed that DM in the Asian population is associated with PCB exposure, while HTG in the Northern American population is associated with PCB exposure. Our meta-analysis has demonstrated a strong relationship between DM and PCBs, while the relationship between PCBs with MetS and other risk factors is less pronounced. Additionally, MetS is weakly associated with dioxin exposure. To improve primary care outcomes, healthcare providers should consider incorporating the assessment of patients' risk of exposure to PCBs and dioxins into their evaluation procedures for more targeted medical interventions.
Collapse
Affiliation(s)
- Mohd Danial Mohd Efendy Goon
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerFoRM), Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, 47000, Sungai Buloh, Selangor, Malaysia
| | - Sarah Zulkifli
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerFoRM), Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, 47000, Sungai Buloh, Selangor, Malaysia
- Institute of Molecular Medicine Biotechnology (IMMB), Faculty of Medicine, Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, 47000, Sungai Buloh, Selangor, Malaysia
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, 47000, Sungai Buloh, Selangor, Malaysia
| | - Siti Suhana Abdullah Soheimi
- Institute of Molecular Medicine Biotechnology (IMMB), Faculty of Medicine, Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, 47000, Sungai Buloh, Selangor, Malaysia
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, 47000, Sungai Buloh, Selangor, Malaysia
| | - Sharaniza Ab Rahim
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, 47000, Sungai Buloh, Selangor, Malaysia
| | - Normala Abd Latip
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA (UiTM), Puncak Alam Campus, Puncak Alam, 40450, Shah Alam, Selangor, Malaysia
| | - Norbaya Hashim
- National Water Research Institute of Malaysia (NAHRIM), Lot 5377, Jalan Putra Permai, 43300, Seri Kembangan, Selangor, Malaysia
| | - Nirmala Devi Kerisnan
- Sewerage Service Department (JPP), Block B, Level 2 and 3, Atmosphere PjH No 2, Jalan Tun Abdul Razak, Precinct 2, 62100, Federal Territory of Putrajaya, Malaysia
| | - Nasehir Khan E M Yahaya
- National Water Research Institute of Malaysia (NAHRIM), Lot 5377, Jalan Putra Permai, 43300, Seri Kembangan, Selangor, Malaysia
| | - Alias Mohamed
- Sewerage Service Department (JPP), Block B, Level 2 and 3, Atmosphere PjH No 2, Jalan Tun Abdul Razak, Precinct 2, 62100, Federal Territory of Putrajaya, Malaysia
| | - Siti Hamimah Sheikh Abdul Kadir
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerFoRM), Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, 47000, Sungai Buloh, Selangor, Malaysia.
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, 47000, Sungai Buloh, Selangor, Malaysia.
| |
Collapse
|
4
|
Seewoo BJ, Wong EV, Mulders YR, Goodes LM, Eroglu E, Brunner M, Gozt A, Toshniwal P, Symeonides C, Dunlop SA. Impacts associated with the plastic polymers polycarbonate, polystyrene, polyvinyl chloride, and polybutadiene across their life cycle: A review. Heliyon 2024; 10:e32912. [PMID: 39022097 PMCID: PMC11253235 DOI: 10.1016/j.heliyon.2024.e32912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/23/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024] Open
Abstract
Polymers are the main building blocks of plastic, with the annual global production volume of fossil carbon-based polymers reaching over 457 million metric tons in 2019 and this figure is anticipated to triple by 2060. There is potential for environmental harm and adverse human health impacts associated with plastic, its constituent polymers and the chemicals therein, at all stages of the plastic life cycle, from extraction of raw materials, production and manufacturing, consumption, through to ultimate disposal and waste management. While there have been considerable research and policy efforts in identifying and mitigating the impacts associated with problematic plastic products such as single-use plastics and hazardous chemicals in plastics, with national and/or international regulations to phase out their use, plastic polymers are often overlooked. In this review, the polymer dimension of the current knowledge on environmental release, human exposure and health impacts of plastic is discussed across the plastic life cycle, including chemicals used in production and additives commonly used to achieve the properties needed for applications for which the polymers are generally used. This review focuses on polycarbonate, polystyrene, polyvinyl chloride, and polybutadiene, four common plastic polymers made from the hazardous monomers, bisphenol, styrene, vinyl chloride and 1,3-butadiene, respectively. Potential alternative polymers, chemicals, and products are considered. Our findings emphasise the need for a whole system approach to be undertaken for effective regulation of plastics whereby the impacts of plastics are assessed with respect to their constituent polymers, chemicals, and applications and across their entire life cycle.
Collapse
Affiliation(s)
- Bhedita J. Seewoo
- Minderoo Foundation, 171 - 173 Mounts Bay Road, Perth, WA 6000, Australia
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Enoch V.S. Wong
- Minderoo Foundation, 171 - 173 Mounts Bay Road, Perth, WA 6000, Australia
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Yannick R. Mulders
- Minderoo Foundation, 171 - 173 Mounts Bay Road, Perth, WA 6000, Australia
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Louise M. Goodes
- Minderoo Foundation, 171 - 173 Mounts Bay Road, Perth, WA 6000, Australia
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Ela Eroglu
- Minderoo Foundation, 171 - 173 Mounts Bay Road, Perth, WA 6000, Australia
| | - Manuel Brunner
- Minderoo Foundation, 171 - 173 Mounts Bay Road, Perth, WA 6000, Australia
| | - Aleksandra Gozt
- Minderoo Foundation, 171 - 173 Mounts Bay Road, Perth, WA 6000, Australia
| | - Priyanka Toshniwal
- Minderoo Foundation, 171 - 173 Mounts Bay Road, Perth, WA 6000, Australia
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Christos Symeonides
- Minderoo Foundation, 171 - 173 Mounts Bay Road, Perth, WA 6000, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville, VIC 3052, Australia
| | - Sarah A. Dunlop
- Minderoo Foundation, 171 - 173 Mounts Bay Road, Perth, WA 6000, Australia
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
5
|
Ewald JD, Lu Y, Ellis CE, Worton J, Kolic J, Sasaki S, Zhang D, dos Santos T, Spigelman AF, Bautista A, Dai XQ, Lyon JG, Smith NP, Wong JM, Rajesh V, Sun H, Sharp SA, Rogalski JC, Moravcova R, Cen HH, Manning Fox JE, HI-DAS Consortium, Atlas E, Bruin JE, Mulvihill EE, Verchere CB, Foster LJ, Gloyn AL, Johnson JD, Pepper AR, Lynn FC, Xia J, MacDonald PE. HumanIslets: An integrated platform for human islet data access and analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.19.599613. [PMID: 38948734 PMCID: PMC11212983 DOI: 10.1101/2024.06.19.599613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Comprehensive molecular and cellular phenotyping of human islets can enable deep mechanistic insights for diabetes research. We established the Human Islet Data Analysis and Sharing (HI-DAS) consortium to advance goals in accessibility, usability, and integration of data from human islets isolated from donors with and without diabetes at the Alberta Diabetes Institute (ADI) IsletCore. Here we introduce HumanIslets.com, an open resource for the research community. This platform, which presently includes data on 547 human islet donors, allows users to access linked datasets describing molecular profiles, islet function and donor phenotypes, and to perform various statistical and functional analyses at the donor, islet and single-cell levels. As an example of the analytic capacity of this resource we show a dissociation between cell culture effects on transcript and protein expression, and an approach to correct for exocrine contamination found in hand-picked islets. Finally, we provide an example workflow and visualization that highlights links between type 2 diabetes status, SERCA3b Ca2+-ATPase levels at the transcript and protein level, insulin secretion and islet cell phenotypes. HumanIslets.com provides a growing and adaptable set of resources and tools to support the metabolism and diabetes research community.
Collapse
Affiliation(s)
- Jessica D. Ewald
- Institute of Parasitology, McGill University, Montreal, QC
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yao Lu
- Institute of Parasitology, McGill University, Montreal, QC
| | - Cara E. Ellis
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB
- Department of Pharmacology, University of Alberta, Edmonton, AB
| | - Jessica Worton
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB
- Department of Surgery, University of Alberta, Edmonton, AB
| | - Jelena Kolic
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC
| | - Shugo Sasaki
- Diabetes Research Group, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Surgery, School of Biomedical Engineering, University of British Columbia, Vancouver, BC
| | - Dahai Zhang
- Diabetes Research Group, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Surgery, School of Biomedical Engineering, University of British Columbia, Vancouver, BC
| | - Theodore dos Santos
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB
- Department of Pharmacology, University of Alberta, Edmonton, AB
| | - Aliya F. Spigelman
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB
- Department of Pharmacology, University of Alberta, Edmonton, AB
| | - Austin Bautista
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB
| | - Xiao-Qing Dai
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB
- Department of Pharmacology, University of Alberta, Edmonton, AB
| | - James G. Lyon
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB
| | - Nancy P. Smith
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB
- Department of Pharmacology, University of Alberta, Edmonton, AB
| | - Jordan M. Wong
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB
- Department of Surgery, University of Alberta, Edmonton, AB
| | - Varsha Rajesh
- Department of Pediatrics, Division of Endocrinology, Stanford School of Medicine, Stanford, CA
- Stanford Diabetes Research Center, Stanford School of Medicine, Stanford, CA
| | - Han Sun
- Department of Pediatrics, Division of Endocrinology, Stanford School of Medicine, Stanford, CA
- Stanford Diabetes Research Center, Stanford School of Medicine, Stanford, CA
| | - Seth A. Sharp
- Department of Pediatrics, Division of Endocrinology, Stanford School of Medicine, Stanford, CA
- Stanford Diabetes Research Center, Stanford School of Medicine, Stanford, CA
| | - Jason C. Rogalski
- Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, Life Sciences Institute, University of British Columbia, Vancouver, BC
| | - Renata Moravcova
- Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, Life Sciences Institute, University of British Columbia, Vancouver, BC
| | - Haoning H Cen
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC
| | - Jocelyn E. Manning Fox
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB
- Department of Pharmacology, University of Alberta, Edmonton, AB
| | | | - Ella Atlas
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON
| | - Jennifer E. Bruin
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, ON
| | - Erin E. Mulvihill
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, ON
- University of Ottawa Heart Institute, Ottawa, ON
| | - C. Bruce Verchere
- Department of Surgery, BC Children’s Hospital Research Institute and University of British Columbia, Vancouver, BC
- Department of Pathology and Laboratory Medicine, BC Children’s Hospital Research Institute and University of British Columbia, Vancouver, BC
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC
| | - Leonard J. Foster
- Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, Life Sciences Institute, University of British Columbia, Vancouver, BC
| | - Anna L. Gloyn
- Department of Pediatrics, Division of Endocrinology, Stanford School of Medicine, Stanford, CA
- Stanford Diabetes Research Center, Stanford School of Medicine, Stanford, CA
| | - James D. Johnson
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC
| | - Andrew R. Pepper
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB
- Department of Surgery, University of Alberta, Edmonton, AB
| | - Francis C. Lynn
- Diabetes Research Group, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Surgery, School of Biomedical Engineering, University of British Columbia, Vancouver, BC
| | - Jianguo Xia
- Institute of Parasitology, McGill University, Montreal, QC
| | - Patrick E. MacDonald
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB
- Department of Pharmacology, University of Alberta, Edmonton, AB
| |
Collapse
|
6
|
Shan Q, Liu J, Qu F, Chen A, He W. Polychlorinated biphenyls exposure and type 2 diabetes: Molecular mechanism that causes insulin resistance and islet damage. ENVIRONMENTAL TOXICOLOGY 2024; 39:2466-2476. [PMID: 38305644 DOI: 10.1002/tox.24094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/18/2023] [Accepted: 12/01/2023] [Indexed: 02/03/2024]
Abstract
Polychlorinated biphenyls (PCBs) are typical persistent organic pollutants that have been associated with type 2 diabetes (T2DM) in cohort studies. This review aims to comprehensively assess the molecular mechanisms of PCBs-induced T2DM. Recent progress has been made in the research of PCBs in liver tissue, adipose tissue, and other tissues. By influencing the function of nuclear receptors, such as the aryl hydrocarbon receptor (AhR), pregnancy X receptor (PXR), and peroxisome proliferator activated receptor γ (PPARγ), as well as the inflammatory response, PCBs disrupt the balance of hepatic glucose and lipid metabolism. This is associated with insulin resistance (IR) in the target organ of insulin. Through androgen receptor (AR), estrogen receptor α/β (ERα/β), and pancreato-duodenal-homeobox gene-1 (PDX-1), PCBs affect the secretion of insulin and increase blood glucose. Thus, this review is a discussion on the relationship between PCBs exposure and the pathogenesis of T2DM. It is hoped to provide basic concepts for diabetes research and disease treatment.
Collapse
Affiliation(s)
- Qiuli Shan
- College of Biological Science and Technology, University of Jinan, Jinan, China
| | - Jingyu Liu
- College of Biological Science and Technology, University of Jinan, Jinan, China
| | - Fan Qu
- College of Biological Science and Technology, University of Jinan, Jinan, China
| | - Anhui Chen
- Jiangsu Key Laboratory of Food Resource Development and Quality Safe, Xuzhou University of Technology, Xuzhou, China
| | - Wenxing He
- College of Biological Science and Technology, University of Jinan, Jinan, China
| |
Collapse
|
7
|
Mannino GC, Mancuso E, Sbrignadello S, Morettini M, Andreozzi F, Tura A. Chemical Compounds and Ambient Factors Affecting Pancreatic Alpha-Cells Mass and Function: What Evidence? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16489. [PMID: 36554367 PMCID: PMC9778390 DOI: 10.3390/ijerph192416489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
The exposure to different substances present in the environment can affect the ability of the human body to maintain glucose homeostasis. Some review studies summarized the current evidence about the relationships between environment and insulin resistance or beta-cell dysfunction. Instead, no reviews focused on the relationships between the environment and the alpha cell, although in recent years clear indications have emerged for the pivotal role of the alpha cell in glucose regulation. Thus, the aim of this review was to analyze the studies about the effects of chemical, biological, and physical environmental factors on the alpha cell. Notably, we found studies focusing on the effects of different categories of compounds, including air pollutants, compounds of known toxicity present in common objects, pharmacological agents, and compounds possibly present in food, plus studies on the effects of physical factors (mainly heat exposure). However, the overall number of relevant studies was limited, especially when compared to studies related to the environment and insulin sensitivity or beta-cell function. In our opinion, this was likely due to the underestimation of the alpha-cell role in glucose homeostasis, but since such a role has recently emerged with increasing strength, we expect several new studies about the environment and alpha-cell in the near future.
Collapse
Affiliation(s)
- Gaia Chiara Mannino
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Elettra Mancuso
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | | | - Micaela Morettini
- Department of Information Engineering, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Francesco Andreozzi
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Andrea Tura
- CNR Institute of Neuroscience, 35127 Padova, Italy
| |
Collapse
|
8
|
Hoyeck MP, Matteo G, MacFarlane EM, Perera I, Bruin JE. Persistent organic pollutants and β-cell toxicity: a comprehensive review. Am J Physiol Endocrinol Metab 2022; 322:E383-E413. [PMID: 35156417 PMCID: PMC9394781 DOI: 10.1152/ajpendo.00358.2021] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/20/2021] [Accepted: 02/07/2022] [Indexed: 01/09/2023]
Abstract
Persistent organic pollutants (POPs) are a diverse family of contaminants that show widespread global dispersion and bioaccumulation. Humans are continuously exposed to POPs through diet, air particles, and household and commercial products; POPs are consistently detected in human tissues, including the pancreas. Epidemiological studies show a modest but consistent correlation between exposure to POPs and increased diabetes risk. The goal of this review is to provide an overview of epidemiological evidence and an in-depth evaluation of the in vivo and in vitro evidence that POPs cause β-cell toxicity. We review evidence for six classes of POPs: dioxins, polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), organophosphate pesticides (OPPs), flame retardants, and per- and polyfluoroalkyl substances (PFAS). The available data provide convincing evidence implicating POPs as a contributing factor driving impaired glucose homeostasis, β-cell dysfunction, and altered metabolic and oxidative stress pathways in islets. These findings support epidemiological data showing that POPs increase diabetes risk and emphasize the need to consider the endocrine pancreas in toxicity assessments. Our review also highlights significant gaps in the literature assessing islet-specific endpoints after both in vivo and in vitro POP exposure. In addition, most rodent studies do not consider the impact of biological sex or secondary metabolic stressors in mediating the effects of POPs on glucose homeostasis and β-cell function. We discuss key gaps and limitations that should be assessed in future studies.
Collapse
Affiliation(s)
- Myriam P Hoyeck
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Geronimo Matteo
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Erin M MacFarlane
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Ineli Perera
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Jennifer E Bruin
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|