1
|
Assenza MR, Gaggi G, Di Credico A, Ghinassi B, Barbagallo F. The effect of endocrine disruptors on the cardiovascular system: does sex matter? ENVIRONMENTAL RESEARCH 2025; 277:121612. [PMID: 40239736 DOI: 10.1016/j.envres.2025.121612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/28/2025] [Accepted: 04/13/2025] [Indexed: 04/18/2025]
Abstract
Endocrine disruptors (EDs) are environmental chemicals that interfere with hormone function, posing significant risks to human health, including the cardiovascular system. This review comprehensively examines the impact of EDs on cardiovascular health, with a specific focus on sex differences observed in various models. Utilizing in-vitro studies, in vivo animal models, and human clinical data, we delineate how sex-specific hormonal environments influence the cardiovascular effects of ED exposure. In vitro studies highlight cellular and molecular mechanisms that differ between male and female-derived cells. In vivo models reveal distinct physiological responses and susceptibilities to EDs, influenced by sex hormones. Human studies provide epidemiological evidence and clinical observations that underscore the variability in cardiovascular outcomes between men and women. This review underscores the necessity of considering sex as a critical factor in understanding the cardiovascular implications of ED exposure, advocating for gender-specific risk assessment and therapeutic strategies. The findings aim to enhance awareness and inform future research and policy-making to mitigate the adverse cardiovascular effects of EDs across different sexes.
Collapse
Affiliation(s)
- Maria Rita Assenza
- Department of Medicine and Surgery, University of Enna "Kore", 94100, Enna, Italy
| | - Giulia Gaggi
- Cell Reprogramming and Differentiation Lab, Center for Advanced Studies and Technology (CAST), 66100, Chieti, Italy; Department of Medicine and Aging Sciences, "G. D'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy; UdA-TechLab, "G. D'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
| | - Andrea Di Credico
- Cell Reprogramming and Differentiation Lab, Center for Advanced Studies and Technology (CAST), 66100, Chieti, Italy; Department of Medicine and Aging Sciences, "G. D'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy; UdA-TechLab, "G. D'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
| | - Barbara Ghinassi
- Cell Reprogramming and Differentiation Lab, Center for Advanced Studies and Technology (CAST), 66100, Chieti, Italy; Department of Innovative Technologies in Medicine and Dentistry, "G. D'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
| | - Federica Barbagallo
- Department of Medicine and Surgery, University of Enna "Kore", 94100, Enna, Italy.
| |
Collapse
|
2
|
Tian R, Li JX, Lu N. Bisphenol S induced endothelial dysfunction via mitochondrial pathway in the vascular endothelial cells, and detoxification effect of albumin binding. Chem Biol Interact 2025; 407:111382. [PMID: 39793866 DOI: 10.1016/j.cbi.2025.111382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/03/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
As a replacement of bisphenol A, bisphenol S (BPS) is commonly used in the wrappers and food containers of daily life. Epidemiological studies demonstrate a close link between BPS exposure and vascular diseases, where the biological activities of BPS remain scarcely known. Herein, the effects of BPS on endothelial function as well as the underlying mechanism were investigated in human umbilical vein endothelial cells (HUVECs) and mouse arteries. It was found that exposure of BPS dose-dependently induced endothelial dysfunction (i.e., decline of nitric oxide (NO) formation) in HUVECs, accompanied by the increase of reactive oxygen species (ROS) production and loss of mitochondria membrane potential. Mitochondria-specific antioxidant (Mito-Tempol) or superoxide scavenger (tiron) abolished the harmful effects of BPS, while superoxide dismutase (SOD)-specific siRNA exhibited negative influence, suggesting that mitochondrial ROS was responsible for BPS-induced endothelial dysfunction and SOD was a sensitive target of BPS. Consistently, plasma NO formation and endothelium-dependent vasodilation was significantly impaired in mice exposed to dietary BPS. In addition, the binding of bovine serum albumin (BSA, the most abundant protein in blood) to BPS considerably alleviated ROS formation and endothelial dysfunction in HUVECs. BPS primarily interacted with Sudlow site I of albumin to generate BSA-BPS complex through static mechanism, in which the hydrogen bonds and electrostatic forces played important roles. Altogether, dietary exposure to emerging BPS would disrupt vascular homeostasis via the induction of mitochondrial ROS formation and consequent endothelial dysfunction, highlighting the detoxification impact of albumin protein on the hazardous effects of environmental pollutants.
Collapse
Affiliation(s)
- Rong Tian
- College of Chemistry and Materials, Key Laboratory of Green Catalysis of Jiangxi Education Institutes, Jiangxi Normal University, Nanchang, 330022, China
| | - Jia-Xin Li
- College of Chemistry and Materials, Key Laboratory of Green Catalysis of Jiangxi Education Institutes, Jiangxi Normal University, Nanchang, 330022, China
| | - Naihao Lu
- College of Chemistry and Materials, Key Laboratory of Green Catalysis of Jiangxi Education Institutes, Jiangxi Normal University, Nanchang, 330022, China.
| |
Collapse
|
3
|
Jameekornkul P, Numsriskulrat N, Aroonyaparkmongkol S, Soongswang K, Supornsilchai V. Increased maternal urinary bisphenol F levels associated with reduced anogenital distance in male newborns. Pediatr Int 2025; 67:e70054. [PMID: 40277154 DOI: 10.1111/ped.70054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 11/27/2024] [Accepted: 01/17/2025] [Indexed: 04/26/2025]
Abstract
BACKGROUND Bisphenol exposure during pregnancy has been linked to a range of adverse reproductive outcomes. However, the full extent of the effects of bisphenol analogs, particularly bisphenol A (BPA), bisphenol S (BPS), and bisphenol F (BPF), on fetal development, especially anogenital distance (AGD), a sensitive marker of reproductive development, remains unclear. We conducted this research to investigate association among maternal and neonatal urinary bisphenol analogs (BPA, BPS, BPF) and AGD. METHODS This prospective cohort study enrolled 85 mother-newborn pairs in Bangkok, Thailand, from April 2023 to January 2024. Maternal and neonatal urine samples were collected and analyzed for BPA, BPF, and BPS concentrations by liquid chromatography-tandem mass spectrometry. Neonatal AGD measurements were obtained within 72 h of birth. Correlation was analyzed by Pearson's correlation test and linear regression analysis. RESULTS High maternal urinary BPF concentrations were negatively associated with ano-penile distance, ano-scrotal distance, and penile length in male newborns (r -0.963, -0.844 and - 0.900, respectively, p < 0.05). No significant associations were found for BPA or BPS. Frequent maternal consumption of carton drinks was associated with higher neonatal BPS levels, while maternal obesity was positively correlated with maternal BPA concentration. No significant correlation was observed between maternal and neonatal bisphenol concentrations, nor between neonatal bisphenol levels and AGD. CONCLUSIONS This study is the first to report a negative association between maternal BPF exposure and AGD in male newborns. These findings highlight the potential endocrine-disrupting effects of BPF on fetal development and emphasize the need for further research.
Collapse
Affiliation(s)
- Pongpol Jameekornkul
- Division of Neonatology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nattakarn Numsriskulrat
- Division of Pediatric Endocrinology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Division of Academic Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Suparb Aroonyaparkmongkol
- Division of Pediatric Endocrinology, Department of Pediatrics, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | | | - Vichit Supornsilchai
- Division of Pediatric Endocrinology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
4
|
Emanowicz P, Średnicka P, Wójcicki M, Roszko M, Juszczuk-Kubiak E. Mitigating Dietary Bisphenol Exposure Through the Gut Microbiota: The Role of Next-Generation Probiotics in Bacterial Detoxification. Nutrients 2024; 16:3757. [PMID: 39519589 PMCID: PMC11547510 DOI: 10.3390/nu16213757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Bisphenols, such as bisphenol A and its analogs, which include bisphenol S, bisphenol F, bisphenol AF, and tetramethyl bisphenol F, are chemical contaminants commonly found in food that raise serious health concerns. These xenobiotics can potentially have harmful effects on human health. The gut microbiota plays a crucial role in metabolizing and neutralizing these substances, which is essential for their detoxification and elimination. Probiotic supplementation has been studied for its ability to modulate the gut microbiota's composition and function, enhancing detoxification processes. Next-Generation Probiotics (NGPs) may exhibit better properties than traditional strains and are designed for targeted action on specific conditions, such as obesity. By modulating inflammatory responses and reducing the secretion of pro-inflammatory cytokines, they can significantly improve host health. Research on NGPs' ability to neutralize obesogenic bisphenols remains limited, but their potential makes this a promising area for future exploration. This review aims to understand the mechanisms of the chemical transformation of bisphenol through its interactions with the gut microbiota and the role of probiotics, particularly NGPs, in these processes. Understanding the interplay between bisphenols, gut microbiota, and NGPs may pave the way for strategies to counteract the negative health effects associated with daily and chronic exposure to bisphenols, which is crucial for food safety and consumer health protection.
Collapse
Affiliation(s)
- Paulina Emanowicz
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology–State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (P.Ś.); (M.W.); (E.J.-K.)
| | - Paulina Średnicka
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology–State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (P.Ś.); (M.W.); (E.J.-K.)
| | - Michał Wójcicki
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology–State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (P.Ś.); (M.W.); (E.J.-K.)
| | - Marek Roszko
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology–State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland;
| | - Edyta Juszczuk-Kubiak
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology–State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (P.Ś.); (M.W.); (E.J.-K.)
| |
Collapse
|
5
|
Ruebel ML, Borengasser SJ, Zhong Y, Kang P, Faske J, Shankar K. Maternal Exercise Prior to and during Gestation Induces Sex-Specific Alterations in the Mouse Placenta. Int J Mol Sci 2023; 24:16441. [PMID: 38003633 PMCID: PMC10671464 DOI: 10.3390/ijms242216441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
While exercise (EX) during pregnancy is beneficial for both mother and child, little is known about the mechanisms by which maternal exercise mediates changes in utero. Six-week-old female C57BL/6 mice were divided into two groups: with (exercise, EX; N = 7) or without (sedentary, SED; N = 8) access to voluntary running wheels. EX was provided via 24 h access to wheels for 10 weeks prior to conception until late pregnancy (18.5 days post coitum). Sex-stratified placentas and fetal livers were collected. Microarray analysis of SED and EX placentas revealed that EX affected gene transcript expression of 283 and 661 transcripts in male and female placentas, respectively (±1.4-fold, p < 0.05). Gene Set Enrichment and Ingenuity Pathway Analyses of male placentas showed that EX led to inhibition of signaling pathways, biological functions, and down-regulation of transcripts related to lipid and steroid metabolism, while EX in female placentas led to activation of pathways, biological functions, and gene expression related to muscle growth, brain, vascular development, and growth factors. Overall, our results suggest that the effects of maternal EX on the placenta and presumably on the offspring are sexually dimorphic.
Collapse
Affiliation(s)
- Meghan L. Ruebel
- Microbiome and Metabolism Research Unit, USDA-ARS, Southeast Area, Little Rock, AR 72202, USA;
- Arkansas Children’s Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA; (Y.Z.); (J.F.)
| | - Sarah J. Borengasser
- Tobacco Settlement Endowment Trust Health Promotion Research Center, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Pediatrics—Endocrinology & Diabetes, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Ying Zhong
- Arkansas Children’s Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA; (Y.Z.); (J.F.)
| | - Ping Kang
- Arkansas Children’s Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA; (Y.Z.); (J.F.)
| | - Jennifer Faske
- Arkansas Children’s Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA; (Y.Z.); (J.F.)
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Kartik Shankar
- Department of Pediatrics, Section of Nutrition, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
6
|
Algonaiman R, Almutairi AS, Al Zhrani MM, Barakat H. Effects of Prenatal Exposure to Bisphenol A Substitutes, Bisphenol S and Bisphenol F, on Offspring's Health: Evidence from Epidemiological and Experimental Studies. Biomolecules 2023; 13:1616. [PMID: 38002298 PMCID: PMC10669689 DOI: 10.3390/biom13111616] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Pregnancy and lactation are critical periods for human well-being and are sensitive windows for pollutant exposure. Bisphenol A (BPA) is well demonstrated as a toxicant and has been replaced in the plastic industry with other bisphenol analogs that share similarities in structure and characteristics, most commonly Bisphenol S (BPS) and Bisphenol F (BPF). Maternal exposure to BPS or BPF can result in their accumulation in the fetal compartment, leading to chronic exposure and potentially limiting normal fetal growth and development. This review summarizes considerable findings of epidemiological or experimental studies reporting associations between BPS or BPF and impaired fetal growth and development. Briefly, the available findings indicate that exposure to the two bisphenol analogs during pregnancy and lactation can result in multiple disturbances in the offspring, including fetal growth restrictions, neurological dysfunctions, and metabolic disorders with the potential to persist throughout childhood. The occurrence of premature births may also be attributed to exposure to the two bisphenols. The possible mechanisms of actions by which the two bisphenols can induce such effects can be attributed to a complex of interactions between the physiological mechanisms, including impaired placental functioning and development, dysregulation of gene expression, altered hormonal balance, and disturbances in immune responses as well as induced inflammations and oxidative stress. In conclusion, the available evidence suggests that BPS and BPF have a toxic potential in a compartment level to BPA. Future research is needed to provide more intensive information; long-term studies and epidemiological research, including a wide scale of populations with different settings, are recommended. Public awareness regarding the safety of BPA-free products should also be enhanced, with particular emphasis on educating individuals responsible for the well-being of children.
Collapse
Affiliation(s)
- Raya Algonaiman
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Abdulkarim S. Almutairi
- Al-Rass General Hospital, Qassim Health Cluster, Ministry of Health, Ibn Sina Street, King Khalid District, Al-Rass 58883, Saudi Arabia;
| | - Muath M. Al Zhrani
- Department of Applied Medical Science, Applied College, Bishah University, Bishah 67616, Saudi Arabia;
| | - Hassan Barakat
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia;
- Department of Food Technology, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
| |
Collapse
|
7
|
Easson S, Singh RD, Connors L, Scheidl T, Baker L, Jadli A, Zhu HL, Thompson J. Exploring oxidative stress and endothelial dysfunction as a mechanism linking bisphenol S exposure to vascular disease in human umbilical vein endothelial cells and a mouse model of postnatal exposure. ENVIRONMENT INTERNATIONAL 2022; 170:107603. [PMID: 36335898 DOI: 10.1016/j.envint.2022.107603] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/17/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Structural analogues used to replace bisphenol A (BPA) since the introduction of new regulatory restrictions are considered emerging environmental toxicants and remain understudied with respect to their biological actions and health effects. Studies reveal a link between BPA exposure and vascular disease in human populations, whereas the vascular effects of BPA substitutes remain largely unknown. OBJECTIVES To determine the effect of BPS, a commonly used BPA substitute, on redox balance, nitric oxide (NO) availability and microvascular NO-dependent dilation. METHODS In human umbilical vein endothelial cells (HUVEC), production of reactive oxygen species (ROS) and NO after exposure to BPS was measured using fluorescent probes for DCFDA and DAF-FM diacetate, respectively. The contribution of endothelial NO synthase (eNOS) uncoupling to ROS generation was determined by measuring ROS in the presence or absence of an eNOS inhibitor (L-NAME) or eNOS co-factor, BH4, while the contribution of mitochondria-derived ROS was determined by treating cells with mitochondria-specific antioxidants prior to BPS exposure. Bioenergetic profiles were assessed using Seahorse extracellular flux analysis and mitochondria membrane polarization was measured with TMRE and JC-1 assays. In a mouse model of low dose BPS exposure, NO-mediated endothelial function was assessed in pressurized microvessels by inducing endothelium-dependent dilation in the presence or absence of L-NAME. RESULTS BPS exposure (≥25 nM) reduced NO and increased ROS production in HUVEC, the latter corrected by treating cells with L-NAME or BH4. BPS exposure led to a loss of mitochondria membrane potential but had no impact on bioenergetic parameters except for a decrease in the spare respiratory capacity. Treatment of HUVEC with mitochondria-specific antioxidants abolished the effect of BPS on NO and ROS. NO-mediated vasodilation was impaired in male mice exposed to BPS. DISCUSSION Exposure to BPS may promote cardiovascular disease by perturbing NO-mediated vascular homeostasis through the induction of oxidative stress.
Collapse
Affiliation(s)
- Sarah Easson
- Department of Physiology and Pharmacology, University of Calgary, 3330 Hospital Dr. NW, Calgary, Alberta T2N 1N4, Canada
| | - Radha Dutt Singh
- Department of Physiology and Pharmacology, University of Calgary, 3330 Hospital Dr. NW, Calgary, Alberta T2N 1N4, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Canada
| | - Liam Connors
- Department of Physiology and Pharmacology, University of Calgary, 3330 Hospital Dr. NW, Calgary, Alberta T2N 1N4, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Canada
| | - Taylor Scheidl
- Department of Physiology and Pharmacology, University of Calgary, 3330 Hospital Dr. NW, Calgary, Alberta T2N 1N4, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Canada
| | - Larissa Baker
- Department of Physiology and Pharmacology, University of Calgary, 3330 Hospital Dr. NW, Calgary, Alberta T2N 1N4, Canada
| | - Anshul Jadli
- Department of Physiology and Pharmacology, University of Calgary, 3330 Hospital Dr. NW, Calgary, Alberta T2N 1N4, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Canada
| | - Hai-Lei Zhu
- Department of Physiology and Pharmacology, University of Calgary, 3330 Hospital Dr. NW, Calgary, Alberta T2N 1N4, Canada
| | - Jennifer Thompson
- Department of Physiology and Pharmacology, University of Calgary, 3330 Hospital Dr. NW, Calgary, Alberta T2N 1N4, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Canada.
| |
Collapse
|