1
|
Craenen K, Kosiaras P, Hellsten K. A reference list of neurotoxicants based on CLP harmonised classifications. Neurotoxicology 2025; 109:11-26. [PMID: 40398565 DOI: 10.1016/j.neuro.2025.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/24/2025] [Accepted: 05/16/2025] [Indexed: 05/23/2025]
Abstract
With the societal interest to decrease experimental animal testing for regulatory purposes, the need for reliable new approach methods (NAMs) has become evident. To ensure the continued safe use of chemicals, NAMs should perform ideally at a comparable or better level of sensitivity and specificity as the in vivo modalities that they aim to replace, especially if they are to be used for hazard assessment. The use of relevant reference substances, selected with transparent criteria, forms a cornerstone of developing and validating (in silico and in vitro) NAMs. Claims on sensitivity and specificity should be based on results generated with reference chemicals that were previously scrutinised by independent expert panels on whether the substance has a hazardous property. CLP (Regulation (EC) No 1272/2008 on the classification, labelling and packaging of substances and mixtures) forms a key pillar in EU chemicals management. The evaluation of all available information by the Committee for Risk Assessment (RAC) and their comparison to CLP classification criteria creates the opportunity to objectively compile lists of positive reference substances. We collated a reference list of neurotoxic substances to aid in the development of neurotoxicity NAMs. We screened CLP Annex VI and reflected on existing reference lists and mode of action data. The identified substances included industrial chemicals and active substances in plant protection products and biocidal products. This list of neurotoxicants is not an exhaustive consensus list, which ideally would be the result of combining this list with those generated by other authorities or expert groups.
Collapse
Affiliation(s)
- Kai Craenen
- European Chemicals Agency (ECHA), Telakkakatu 6, Helsinki FI-00150, Finland.
| | | | - Kati Hellsten
- European Chemicals Agency (ECHA), Telakkakatu 6, Helsinki FI-00150, Finland
| |
Collapse
|
2
|
Chen S, Fu P, Rastegar-Kashkooli Y, Zhu L, Zong Y, Huang M, Gao C, Wang J, Zhang J, Wang J, Jiang C. AX-024 Inhibits Antigen-Specific T-Cell Response and Improves Intracerebral Hemorrhage Outcomes in Mice. Stroke 2025; 56:1253-1265. [PMID: 40143825 DOI: 10.1161/strokeaha.124.048507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/26/2024] [Accepted: 02/03/2025] [Indexed: 03/28/2025]
Abstract
BACKGROUND Stroke-induced opposite T-cell responses in the peri-lesion area and periphery worsen stroke outcomes by aggravating brain injury or increasing infectious complications, respectively. Despite their well-known role in T lymphocyte activation, the impact of TCRs (T-cell receptors) on stroke remains poorly understood. In this study, we investigated the causal link between TCRs and the opposite T-cell responses observed in intracerebral hemorrhage (ICH). METHODS We established the ICH model by injecting the collagenase VII-S into the left striatum of young adult (10-12 weeks) male and female and aged (18-20 months) male C57BL/6 mice. We intraperitoneally administered AX-024, a small molecule inhibitor of TCR signaling, and evaluated the results using flow cytometry, Western blotting, immunofluorescence staining, histological staining, bacterial culture, and behavioral tests. RESULTS Our findings in young adult male mice indicate that administering AX-024 within 48 hours suppressed the activation of nonspecific and antigen-specific CD3 (cluster of differentiation 3)+CD4+ and CD3+CD8+ cells in the brain 36 hours and 3 days after ICH but not 7 days after. Additionally, it temporarily inhibited antigen-specific T-cell activation in the periphery at the above 2 time points. It also reduced molecular and cellular neuroinflammation in the hemorrhagic brain early after ICH. These effects in the brain and periphery of young adult male mice ultimately improved ICH outcomes while having no impact on lung bacterial loads. This can be further supported by similar findings in young adult female and aged male mice with ICH. CONCLUSIONS AX-024 may represent a promising option for mitigating the detrimental effects of T cells entering the damaged brain without increasing bacterial loads in the lung in ICH. The potential of AX-024 as a potent immunosuppressive treatment for ICH is an exciting prospect that warrants further investigation.
Collapse
Affiliation(s)
- Shuai Chen
- Department of Neurology, The People's Hospital of Zhengzhou University and Henan Provincial People's Hospital, People's Republic of China (S.C., P.F., Y.Z., M.H., C.G., J.Z., C.J.)
- Department of Neurology (S.C., P.F., L.Z., Y.Z., M.H., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, People's Republic of China
- The Laboratory of Cerebrovascular Diseases and Neuroimmunology (S.C., P.F., L.Z., Y.Z., M.H., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, People's Republic of China
| | - Peiji Fu
- Department of Neurology, The People's Hospital of Zhengzhou University and Henan Provincial People's Hospital, People's Republic of China (S.C., P.F., Y.Z., M.H., C.G., J.Z., C.J.)
- Department of Neurology (S.C., P.F., L.Z., Y.Z., M.H., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, People's Republic of China
- The Laboratory of Cerebrovascular Diseases and Neuroimmunology (S.C., P.F., L.Z., Y.Z., M.H., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, People's Republic of China
| | - Yousef Rastegar-Kashkooli
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, People's Republic of China (Y.R.-K., Junmin Wang, Jian Wang)
| | - Li Zhu
- Department of Neurology (S.C., P.F., L.Z., Y.Z., M.H., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, People's Republic of China
- The Laboratory of Cerebrovascular Diseases and Neuroimmunology (S.C., P.F., L.Z., Y.Z., M.H., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, People's Republic of China
| | - Yan Zong
- Department of Neurology, The People's Hospital of Zhengzhou University and Henan Provincial People's Hospital, People's Republic of China (S.C., P.F., Y.Z., M.H., C.G., J.Z., C.J.)
- Department of Neurology (S.C., P.F., L.Z., Y.Z., M.H., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, People's Republic of China
- The Laboratory of Cerebrovascular Diseases and Neuroimmunology (S.C., P.F., L.Z., Y.Z., M.H., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, People's Republic of China
| | - Maosen Huang
- Department of Neurology, The People's Hospital of Zhengzhou University and Henan Provincial People's Hospital, People's Republic of China (S.C., P.F., Y.Z., M.H., C.G., J.Z., C.J.)
- Department of Neurology (S.C., P.F., L.Z., Y.Z., M.H., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, People's Republic of China
- The Laboratory of Cerebrovascular Diseases and Neuroimmunology (S.C., P.F., L.Z., Y.Z., M.H., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, People's Republic of China
| | - Chenhao Gao
- Department of Neurology, The People's Hospital of Zhengzhou University and Henan Provincial People's Hospital, People's Republic of China (S.C., P.F., Y.Z., M.H., C.G., J.Z., C.J.)
| | - Junmin Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, People's Republic of China (Y.R.-K., Junmin Wang, Jian Wang)
| | - Jiewen Zhang
- Department of Neurology, The People's Hospital of Zhengzhou University and Henan Provincial People's Hospital, People's Republic of China (S.C., P.F., Y.Z., M.H., C.G., J.Z., C.J.)
| | - Jian Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, People's Republic of China (Y.R.-K., Junmin Wang, Jian Wang)
| | - Chao Jiang
- Department of Neurology, The People's Hospital of Zhengzhou University and Henan Provincial People's Hospital, People's Republic of China (S.C., P.F., Y.Z., M.H., C.G., J.Z., C.J.)
- Department of Neurology (S.C., P.F., L.Z., Y.Z., M.H., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, People's Republic of China
- The Laboratory of Cerebrovascular Diseases and Neuroimmunology (S.C., P.F., L.Z., Y.Z., M.H., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, People's Republic of China
| |
Collapse
|
3
|
Hasani F, Baumann L. Immunotoxicity of thyroid hormone system disrupting compounds in fish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 282:107309. [PMID: 40048840 DOI: 10.1016/j.aquatox.2025.107309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/19/2025] [Accepted: 03/02/2025] [Indexed: 04/05/2025]
Abstract
Endocrine disrupting compounds (EDCs) are among the most studied environmental pollutants in the field of (eco)toxicology, and different fish species are commonly used as model organisms, especially for studying reprotoxic effects. Despite the scientific and regulatory importance of EDCs, little attention has been given to their immunotoxic effects in fish. Basic knowledge and test systems for immune-related outcomes in fish are limited. For example, while the impact of estrogenic EDCs on the fish immune system has raised some attention in the last decade, thyroid hormone system disrupting compounds (THSDCs) and their impact on the fish immune system are less well studied. Thus, this literature review is aimed at describing the immunomodulatory roles of thyroid hormones (THs), as well as summarizing the existing research on the immunotoxicity of THSDCs in fish. A simplified potential adverse outcome pathway (AOP) was created, explaining the key events between THSD and lowered survival of fish experiencing pathogen infections along with chemical exposure. This AOP demonstrates that THSDCs can alter immune system functioning on a molecular, cellular, and organism level and, therefore, lead to reduced survival by lowering pathogen resistance of fish. However, available data were mainly limited to molecular analyses of immune-related biomarkers and included only few studies that conducted experiments demonstrating immunotoxic effects at organism level that can inform about population-relevant outcomes. Our putatively developed and simplified AOP can support the incorporation of immune-related endpoints in EDC testing guidelines and aid the development of risk assessments for THSDCs for human and environmental health.
Collapse
Affiliation(s)
- Florentina Hasani
- Amsterdam University College, Science Park 113, Amsterdam 1098 XG, the Netherlands; Vrije Universiteit Amsterdam, Amsterdam Institute for Life and Environment, Section Environmental Health & Toxicology, De Boelelaan 1085, Amsterdam 1081 HV, the Netherlands
| | - Lisa Baumann
- Vrije Universiteit Amsterdam, Amsterdam Institute for Life and Environment, Section Environmental Health & Toxicology, De Boelelaan 1085, Amsterdam 1081 HV, the Netherlands.
| |
Collapse
|
4
|
Rivera AB, Stephens AB, Conrow KD, Griffith ST, Jameson LE, Cahill TM, Sammi SR, Swinburne MR, Cannon JR, Leung MCK. Regulatory trends of organophosphate and pyrethroid pesticides in cannabis and applications of the Comparative Toxicogenomics Database and Caenorhabditis elegans. Toxicol Sci 2025; 204:218-227. [PMID: 39836634 PMCID: PMC11979763 DOI: 10.1093/toxsci/kfaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025] Open
Abstract
Organophosphate and pyrethroid pesticides are common contaminants in cannabis. Due to the status of cannabis as an illicit Schedule I substance at the federal level, there are no unified national guidelines in the United States to mitigate the health risk of pesticide exposure in cannabis. Here, we examined the change in the state-level regulations of organophosphate and pyrethroid pesticides in cannabis. The medians of pyrethroid and organophosphate pesticides specified by each state-level jurisdiction increased from zero pesticide in 2019 to 4.5 pyrethroid and 7 organophosphate pesticides in 2023, respectively. Next, we evaluated the potential connections between pyrethroids, organophosphates, cannabinoids, and Parkinson's disease using the Comparative Toxicogenomics Database (CTD). Eleven pyrethroids, 30 organophosphates, and 14 cannabinoids were associated with 95 genes to form 3,237 inferred and curated Chemical-Gene-Phenotype-Disease tetramers. Using a behavioral repulsion assay with the whole organism model Caenorhabditis elegans, we examined the effect of cannabinoids and insecticides on depleting dopamine synthesis. Exposure to chlorpyrifos and permethrin, but not Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), results in dose-dependent effects on 1-nonanol repulsive behaviors in C. elegans, indicating dopaminergic neurotoxicity (P < 0.01). Dose-dependent effects of chlorpyrifos are different in the presence of Δ9-THC and CBD (P < 0.001). As a proof of concept, this study demonstrated how to use new approach methodologies such as C. elegans and the CTD to inform further testing and pesticide regulations in cannabis by chemical class.
Collapse
Affiliation(s)
- Albert B Rivera
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, United States
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ 85281, United States
| | - Ariell B Stephens
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, United States
| | - Kendra D Conrow
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, United States
| | - Symone T Griffith
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ 85281, United States
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, United States
| | - Laura E Jameson
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, United States
| | - Thomas M Cahill
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, United States
| | - Shreesh R Sammi
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI 49503, United States
| | - Mathew R Swinburne
- Francis King Carey School of Laws, University of Maryland, Baltimore, MD 21201, United States
| | - Jason R Cannon
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, United States
| | - Maxwell C K Leung
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, United States
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ 85281, United States
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, United States
| |
Collapse
|
5
|
Smyth T, Payton A, Hickman E, Rager JE, Jaspers I. Leveraging a comprehensive unbiased RNAseq database to characterize human monocyte-derived macrophage gene expression profiles within commonly employed in vitro polarization methods. Sci Rep 2024; 14:26753. [PMID: 39500943 PMCID: PMC11538326 DOI: 10.1038/s41598-024-78000-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
Macrophages are pivotal innate immune cells which exhibit high phenotypic plasticity and can exist in different polarization states dependent on exposure to external stimuli. Numerous methods have been employed to simulate macrophage polarization states to test their function in vitro. However, limited research has explored whether these polarization methods yield comparable populations beyond key gene, cytokine, and cell surface marker expression. Here, we employ an unbiased comprehensive analysis using data organized through the all RNA-seq and ChIP-seq sample and signature search (ARCHS4) database, which compiles all RNAseq data deposited into the National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA). In silico analyses were carried out demonstrating that commonly employed macrophage polarization methods generate distinct gene expression profiles in macrophage subsets that remained poorly described until now. Our analyses confirm existing knowledge on broad macrophage polarization, while expanding nuanced differences between M2a and M2c subsets, suggesting non-interchangeable stimuli for M2a polarization. Furthermore, we characterize divergent gene expression patterns in M1 macrophages following standard polarization protocols, indicating significant subset distinctions. Consequently, equivalence cannot be assumed among polarization regimens for in vitro macrophage studies, particularly in simulating diverse pathogen responses.
Collapse
Affiliation(s)
- Timothy Smyth
- Curriculum in Toxicology & Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for Environmental Medicine, Asthma, and Lung Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexis Payton
- Center for Environmental Medicine, Asthma, and Lung Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Elise Hickman
- Curriculum in Toxicology & Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Environmental Sciences and Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Julia E Rager
- Curriculum in Toxicology & Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for Environmental Medicine, Asthma, and Lung Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Environmental Sciences and Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ilona Jaspers
- Curriculum in Toxicology & Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Center for Environmental Medicine, Asthma, and Lung Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- , 116 Manning Drive, Campus Box 7310, Chapel Hill, NC, 27599-7310, USA.
| |
Collapse
|
6
|
Johnson VJ, Luster MI, Maier A, Boles C, Miller EW, Arrieta DE. Application and interpretation of immunophenotyping data in safety and risk assessment. FRONTIERS IN TOXICOLOGY 2024; 6:1409365. [PMID: 39430110 PMCID: PMC11486759 DOI: 10.3389/ftox.2024.1409365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/12/2024] [Indexed: 10/22/2024] Open
Abstract
The use of immunophenotyping during immunotoxicity investigations was first popularized in the 1980 s and has since become more integrated into diagnostic and non-clinical assessments. The data provided from immunophenotyping can serve as an initial source of information to guide decisions for additional, more advanced, immunotoxicity testing as well as for human health safety and risk assessment of drugs and chemicals. However, comprehensive guidance describing applications of immunophenotyping data in immunotoxicity investigations is lacking, particularly among regulatory bodies. Therefore, a critical examination is needed for the appropriate interpretations and potential misinterpretations of such data during the assessment of drug safety and chemical risk. As such, the current uses and implications of immunophenotyping data in human health safety and risk assessments has been evaluated to provide additional context for the application of current methodologies and guidelines. In addition, case studies are presented to highlight the challenges of interpreting immunophenotyping results along with incorporating the findings into immunotoxicity investigations. Based on the analyses of current approaches and methodologies, a decision flow is presented for use of immunophenotyping data during risk informed decision making.
Collapse
Affiliation(s)
- Victor J. Johnson
- Burleson Research Technologies, Inc., Morrisville, NC, United States
| | | | - Andrew Maier
- Stantec ChemRisk, Cincinnati, OH, United States
- Integral Consulting, Inc., Cincinnati, OH, United States
| | - Corey Boles
- Stantec ChemRisk, Raleigh, NC, United States
- Insight Exposure and Risk Sciences Group, Raleigh, NC, United States
| | | | - Daniel E. Arrieta
- Chevron Phillips Chemical Company LP, The Woodlands, TX, United States
| |
Collapse
|
7
|
Franko N, Sollner Dolenc M. Evaluation of THP-1 and Jurkat Cell Lines Coculture for the In Vitro Assessment of the Effects of Immunosuppressive Substances. TOXICS 2024; 12:607. [PMID: 39195709 PMCID: PMC11358983 DOI: 10.3390/toxics12080607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/10/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024]
Abstract
The strong appeal to reduce animal testing calls for the development and validation of in vitro, in chemico and in silico models that would replace the need for in vivo testing and ex vivo materials. A category that requires such new approach methods is the assessment of immunosuppression that can be induced by chemicals including environmental pollutants. To assess the immunosuppressive action on monocytes and lymphocytes, we mimicked the whole-blood cytokine-release assay by preparing an in vitro coculture of THP-1 and Jurkat cell lines. We optimised its activation and investigated the effects of known immunosuppressive drugs with different mechanisms of action on the release of proinflammatory cytokines. Decreased secretion of IL-8 was achieved by several immunosuppressive mechanisms and was therefore selected as an appropriate marker of immunosuppression. A set of environmentally occurring bisphenols, BPA, BPAP, BPP, BPZ, BPE, TCBPA and BPS-MAE, were then applied to the model and BPP and BPZ were found to act as potent immunosuppressants at micromolar concentrations.
Collapse
Affiliation(s)
| | - Marija Sollner Dolenc
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
| |
Collapse
|