1
|
Adade E, Tawiah PO, Roos C, Chuma IS, Lubinza CC, Mfinanga SGM, Knauf S, Sylverken AA. Antimicrobial susceptibility profile of oral and rectal microbiota of non-human primate species in Ghana: A threat to human health. Vet Med Sci 2023; 10:e1271. [PMID: 37733757 PMCID: PMC10804077 DOI: 10.1002/vms3.1271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND The potential for the transfer of zoonotic diseases, including bacteria between human and non-human primates (NHPs), is expected to rise. It is posited that NHPs that live in close contact with humans serve as sentinels and reservoirs for antibiotic-resistant bacteria. OBJECTIVES The objective was to characterize the oral and rectal bacteria in Ghanaian NHPs and profile the antimicrobial susceptibility of the isolated bacteria. METHODS Oral and rectal swabs were obtained from 40 immobilized wild and captive NHPs from 7 locations in Ghana. Standard bacteriological procedures were used in the isolation, preliminary identification, automated characterization and antimicrobial susceptibility test (AST) of bacteria using the Vitek 2 Compact system. RESULTS Gram-negative bacteria dominated isolates from the rectal swabs (n = 76, 85.4%), whereas Gram-positive bacteria were more common in the oral swabs (n = 41, 82%). Staphylococcus haemolyticus (n = 7, 14%) was the most occurring bacterial species isolated from the oral swabs, whereas Escherichia coli (n = 32, 36%) dominated bacteria isolates from rectal swabs. Enterobacter spp. had the highest (39%) average phenotypic resistance to antimicrobials that were used for AST, whereas a trend of high resistance was recorded against norfloxacin, Ampicillin and Tetracycline in Gram-negative bacteria. Similarly, among Gram-positive bacteria, Staphylococcus spp. had the highest (25%) average phenotypic resistance to antimicrobials used for AST, and a trend of high resistance was recorded against penicillin G and oxacillin. CONCLUSIONS This study has established that apparently healthy NHPs that live in anthropized environments in Ghana harbour zoonotic and antimicrobial resistant bacteria.
Collapse
Affiliation(s)
- Eugene Adade
- Department of Theoretical and Applied BiologyKwame Nkrumah University of Science and TechnologyKumasiGhana
- Kumasi Centre for Collaborative Research in Tropical MedicineKwame Nkrumah University of Science and TechnologyKumasiGhana
| | - Patrick Ofori Tawiah
- Department of Theoretical and Applied BiologyKwame Nkrumah University of Science and TechnologyKumasiGhana
- Kumasi Centre for Collaborative Research in Tropical MedicineKwame Nkrumah University of Science and TechnologyKumasiGhana
| | - Christian Roos
- Gene Bank of Primates and Primate Genetics LaboratoryGerman Primate CenterLeibniz Institute for Primate ResearchGöttingenGermany
| | | | - Clara Clavery Lubinza
- National Institute for Medical ResearchMuhimbili Medical Research CentreDar es SalaamTanzania
| | | | - Sascha Knauf
- Institute of International Animal Health/One HealthFriedrich‐Loeffler‐InstitutFederal Institute for Animal HealthGreifswald – Insel RiemsGermany
| | - Augustina Angelina Sylverken
- Department of Theoretical and Applied BiologyKwame Nkrumah University of Science and TechnologyKumasiGhana
- Kumasi Centre for Collaborative Research in Tropical MedicineKwame Nkrumah University of Science and TechnologyKumasiGhana
| |
Collapse
|
2
|
Qi M, Wang Q, Wang Y, Chen Y, Hu C, Yang W, Wu F, Huang T, Dawood AS, Zubair M, Li X, Chen J, Robertson ID, Chen H, Guo A. Epidemiological Survey and Risk Factor Analysis of 14 Potential Pathogens in Golden Snub-Nosed Monkeys at Shennongjia National Nature Reserve, China. Pathogens 2023; 12:pathogens12030483. [PMID: 36986405 PMCID: PMC10051804 DOI: 10.3390/pathogens12030483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Golden snub-nosed monkeys (Rhinopithecus roxellanae) belong to Class A, the highest level of endangered primate species. Exploring the infection status of potential pathogens in golden snub-nosed monkeys is important for controlling associated diseases and protecting this species. The objective of this study was to investigate the seroprevalence for a number of potential pathogens and the prevalence of fecal adenovirus and rotavirus. A total of 283 fecal samples were collected from 100 golden snub-nosed monkeys in December 2014, June 2015, and January 2016; 26 blood samples were collected from 26 monkeys in June 2014, June 2015, January 2016 and November 2016 at Shennongjia National Reserve in Hubei, China. The infection of 11 potential viral diseases was examined serologically using an Indirect Enzyme-linked Immunosorbent Assay (iELISA) and Dot Immunobinding Assays (DIA), while the whole blood IFN-γ in vitro release assay was used to test tuberculosis (TB). In addition, fecal Adenovirus and Rotavirus were detected using Polymerase Chain Reaction (PCR). As a result, the Macacine herpesvirus-1 (MaHV-1), Golden snub-nosed monkey cytomegalovirus (GsmCMV), Simian foamy virus (SFV) and Hepatitis A virus (HAV) were detected with the seroprevalence of 57.7% (95% CI: 36.9, 76.6), 38.5% (95% CI: 20.2, 59.4), 26.9% (95% CI: 11.6, 47.8), and 7.7% (95% CI: 0.0, 84.2), respectively. Two fecal samples tested positive for Adenovirus (ADV) by PCR, with a prevalence of 0.7% (95% CI: 0.2, 2.5), and further, the amplification products were sequenced. Phylogenetic analysis revealed that they belonged to the HADV-G group. However, other pathogens, such as Coxsackievirus (CV), Measles virus (MeV), Rotavirus (RV), Simian immunodeficiency virus (SIV), Simian type D retroviruses (SRV), Simian-T-cell lymphotropic virus type 1 (STLV-1), Simian varicella virus (SVV), Simian virus 40 (SV40) and Mycobacterium tuberculosis complex (TB) were negative in all samples. In addition, a risk factor analysis indicated that the seroprevalence of MaHV-1 infection was significantly associated with old age (≥4 years). These results have important implications for understanding the health status and conservation of the endangered golden snub-nosed monkey population at Shennongjia Nature Reserve.
Collapse
Affiliation(s)
- Mingpu Qi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiankun Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- EpiCentre, School of Veterinary Science, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand
| | - Yingyu Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
- National Professional Laboratory for Animal Tuberculosis (Wuhan) of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan 430070, China
| | - Changmin Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Wanji Yang
- Key Laboratory of Conservation Biology for Shennongjia Golden Monkey, Shennongjia Forest District 442411, China
| | - Feng Wu
- Key Laboratory of Conservation Biology for Shennongjia Golden Monkey, Shennongjia Forest District 442411, China
| | - Tianpeng Huang
- Key Laboratory of Conservation Biology for Shennongjia Golden Monkey, Shennongjia Forest District 442411, China
| | - Ali Sobhy Dawood
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt
| | - Muhammad Zubair
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210000, China
| | - Xiang Li
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianguo Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Ian Duncan Robertson
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
- National Professional Laboratory for Animal Tuberculosis (Wuhan) of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan 430070, China
- School of Veterinary Medicine, Murdoch University, Murdoch 6150, Australia
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Aizhen Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
- National Professional Laboratory for Animal Tuberculosis (Wuhan) of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan 430070, China
| |
Collapse
|
3
|
Zhao G, Qi M, Wang Q, Hu C, Li X, Chen Y, Yang J, Yu H, Chen H, Guo A. Gut microbiome variations in Rhinopithecus roxellanae caused by changes in the environment. BMC Genomics 2023; 24:62. [PMID: 36737703 PMCID: PMC9896789 DOI: 10.1186/s12864-023-09142-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The snub-nosed monkey (Rhinopithecus roxellanae) is an endangered animal species mainly distributed in China and needs to be protected. Gut microbiome is an important determinant of animal health and population survival as it affects the adaptation of the animals to different foods and environments under kinetic changes of intrinsic and extrinsic factors. Therefore, this study aimed to elucidate gut fecal microbiome profiles of snub-nosed monkeys affected by several extrinsic and intrinsic factors, including raising patterns (captive vs. wild), age, sex, and diarrheal status to provide a reference for making protection strategies. RESULTS The 16S rRNA gene sequencing was firstly used to pre-check clustering of 38 fecal samples from the monkeys including 30 wild and 8 captive (5 healthy and 3 diarrheal) from three Regions of Shennongjia Nature Reserve, Hubei Province, China. Then the 24 samples with high-quality DNA from 18 wild and 6 captive (4 healthy and 2 diarrheal) monkeys were subjected to shotgun metagenomic sequencing to characterize bacterial gut microbial communities. We discovered that the raising pattern (captive and wild) rather than age and sex was the predominant factor attributed to gut microbiome structure and proportionality. Wild monkeys had significantly higher bacterial diversity and lower Bacteroidetes/Firmicutes ratios than captive animals. Moreover, the gut microbiomes in wild healthy monkeys were enriched for the genes involved in fatty acid production, while in captive animals, genes were enriched for vitamin biosynthesis and metabolism and amino acid biosynthesis from carbohydrate intermediates. Additionally, a total of 37 antibiotic resistant genes (ARG) types were detected. Unlike the microbiome diversity, the captive monkeys have a higher diversity of ARG than the wild animals. CONCLUSION Taken together, we highlight the importance of self-reprogramed metabolism in the snub-nosed monkey gut microbiome to help captive and wild monkeys adapt to different intrinsic and extrinsic environmental change.
Collapse
Affiliation(s)
- Gang Zhao
- State Key Laboratory of Agricultural Microbiology, Wuhan, 430070 Hubei China ,grid.35155.370000 0004 1790 4137College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 Hubei China ,grid.35155.370000 0004 1790 4137Hubei Hongshan Laboratory, Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070 Hubei China ,grid.35155.370000 0004 1790 4137Shennongjia Science & Technology Innovation Center, Huazhong Agricultural University, Wuhan, 430070 China ,grid.35155.370000 0004 1790 4137National Professional Laboratory for Animal Tuberculosis (Wuhan), Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Mingpu Qi
- State Key Laboratory of Agricultural Microbiology, Wuhan, 430070 Hubei China ,grid.35155.370000 0004 1790 4137College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Qiankun Wang
- State Key Laboratory of Agricultural Microbiology, Wuhan, 430070 Hubei China ,grid.35155.370000 0004 1790 4137College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Changmin Hu
- grid.35155.370000 0004 1790 4137College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Xiang Li
- grid.35155.370000 0004 1790 4137Shennongjia Science & Technology Innovation Center, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yingyu Chen
- State Key Laboratory of Agricultural Microbiology, Wuhan, 430070 Hubei China ,grid.35155.370000 0004 1790 4137College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 Hubei China ,grid.35155.370000 0004 1790 4137Hubei Hongshan Laboratory, Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070 Hubei China ,grid.35155.370000 0004 1790 4137Shennongjia Science & Technology Innovation Center, Huazhong Agricultural University, Wuhan, 430070 China ,grid.35155.370000 0004 1790 4137National Professional Laboratory for Animal Tuberculosis (Wuhan), Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Jingyuan Yang
- Hubei Key Laboratory of Conservation Biology of Shennongjia Golden Monkey (Shennongjia National Park Administration), Shennongjia Forest Ecosystem Research Station, Shennongjia, 442411 China
| | - Huiliang Yu
- Hubei Key Laboratory of Conservation Biology of Shennongjia Golden Monkey (Shennongjia National Park Administration), Shennongjia Forest Ecosystem Research Station, Shennongjia, 442411 China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Wuhan, 430070 Hubei China ,grid.35155.370000 0004 1790 4137College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 Hubei China ,grid.35155.370000 0004 1790 4137Hubei Hongshan Laboratory, Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070 Hubei China ,grid.35155.370000 0004 1790 4137Shennongjia Science & Technology Innovation Center, Huazhong Agricultural University, Wuhan, 430070 China ,grid.35155.370000 0004 1790 4137National Professional Laboratory for Animal Tuberculosis (Wuhan), Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Aizhen Guo
- State Key Laboratory of Agricultural Microbiology, Wuhan, 430070 Hubei China ,grid.35155.370000 0004 1790 4137College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 Hubei China ,grid.35155.370000 0004 1790 4137Hubei Hongshan Laboratory, Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070 Hubei China ,grid.35155.370000 0004 1790 4137Shennongjia Science & Technology Innovation Center, Huazhong Agricultural University, Wuhan, 430070 China ,grid.35155.370000 0004 1790 4137National Professional Laboratory for Animal Tuberculosis (Wuhan), Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| |
Collapse
|
4
|
Jia T, Chang WS, Marcelino VR, Zhao S, Liu X, You Y, Holmes EC, Shi M, Zhang C. Characterization of the Gut Microbiome and Resistomes of Wild and Zoo-Captive Macaques. Front Vet Sci 2022; 8:778556. [PMID: 35141306 PMCID: PMC8819141 DOI: 10.3389/fvets.2021.778556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
Rhesus macaques (Macaca mulatta) are the most widely distributed species of Old World monkey and are frequently used as animal models to study human health and disease. Their gastrointestinal microbial community likely plays a major role in their physiology, ecology and evolution. Herein, we compared the fecal microbiome and antibiotic resistance genes in 15 free-ranging and 81 zoo-captive rhesus macaques sampled from two zoos in China, using both 16S amplicon sequencing and whole genome shotgun DNA sequencing approaches. Our data revealed similar levels of microbial diversity/richness among the three groups, although the composition of each group differed significantly and were particularly marked between the two zoo-captive and one wild groups. Zoo-captive animals also demonstrated a greater abundance and diversity of antibiotic genes. Through whole genome shotgun sequencing we also identified a mammalian (simian) associated adenovirus. Overall, this study provides a comprehensive analysis of resistomes and microbiomes in zoo-captive and free-ranging monkeys, revealing that semi-captive wildlife might harbor a higher diversity of antimicrobial resistant genes.
Collapse
Affiliation(s)
- Ting Jia
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | - Wei-Shan Chang
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
- *Correspondence: Wei-Shan Chang
| | - Vanessa R. Marcelino
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Sufen Zhao
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | - Xuefeng Liu
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | - Yuyan You
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | - Edward C. Holmes
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Mang Shi
- School of Medicine, Sun Yat-sen University, Guangzhou, China
- Mang Shi
| | - Chenglin Zhang
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
- Chenglin Zhang
| |
Collapse
|
5
|
van Overbeek LS, Wichers JH, van Amerongen A, van Roermund HJW, van der Zouwen P, Willemsen PTJ. Circulation of Shiga Toxin-Producing Escherichia coli Phylogenetic Group B1 Strains Between Calve Stable Manure and Pasture Land With Grazing Heifers. Front Microbiol 2020; 11:1355. [PMID: 32714297 PMCID: PMC7340143 DOI: 10.3389/fmicb.2020.01355] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/27/2020] [Indexed: 12/31/2022] Open
Abstract
Escherichia coli strains carrying Shiga toxins 1 and 2 (stx1 and stx2), intimin (eae), and hemolysin (ehxA) production genes were found in grass shoot, rhizosphere soil, and stable manure samples from a small-scale cattle farm located at the center of Netherlands, using cultivation-dependent and -independent microbiological detection techniques. Pasture land with grazing heifers in the first year of sampling in 2014 and without grazing cattle in 2015 was physically separated from the stable that housed rose calves during both years. Manure from the stable was applied to pasture via injection into soil once per year in early spring. Among a variety of 35 phylogenetic distinctly related E. coli strains, one large group consisting of 21 closely resembling E. coli O150:H2 (18), O98:H21 (2), and O84:H2 (1) strains, all belonging to phylogenetic group B1 and carrying all screened virulence traits, was found present on grass shoots (10), rhizosphere soil (3), and stable manure (8) in 2014, but not anymore in 2015 when grazing heifers were absent. Presence and absence of these strains, obtained via enrichments, were confirmed via molecular detection using PCR-NALFIA in all ecosystems in both years. We propose that this group of Shiga toxin-producing E. coli phylogenetic group B1 strains was originally introduced via stable manure injection into the pasture. Upon grazing, these potential pathogens proliferated in the intestinal track systems of the heifers resulting in defecation with higher loads of the STEC strain onto the grass cover. The STEC strain was further smeared over the field via the hooves of the heifers resulting in augmentation of the potential pathogen in the pasture in 2014, whereas in 2015, in the absence of heifers, no augmentation occurred and only a more diverse group of potentially mild virulent E. coli phylogenetic group A and B1 strains, indigenous to pasture plants, remained present. Via this model, it was postulated that human pathogens can circulate between plants and farm animals, using the plant as an alternative ecosystem. These data indicate that grazed pasture must be considered as a potential carrier of human pathogenic E. coli strains and possibly also of other pathogens.
Collapse
Affiliation(s)
- Leonard S van Overbeek
- Wageningen University and Research (WUR), Wageningen Research (WR), Wageningen, Netherlands
| | - Jan H Wichers
- Wageningen University and Research (WUR), Wageningen Research (WR), Wageningen, Netherlands
| | - Aart van Amerongen
- Wageningen University and Research (WUR), Wageningen Research (WR), Wageningen, Netherlands
| | | | | | - Peter T J Willemsen
- Wageningen University and Research (WUR), Wageningen Research (WR), Wageningen, Netherlands
| |
Collapse
|
6
|
Xing H, Zhang L, Ma J, Liu Z, Song C, Liu Y. Fructus mume Extracts Alleviate Diarrhea in Breast Cancer Patients Receiving the Combination Therapy of Lapatinib and Capecitabine. Front Pharmacol 2018; 9:516. [PMID: 29875660 PMCID: PMC5974171 DOI: 10.3389/fphar.2018.00516] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/30/2018] [Indexed: 12/12/2022] Open
Abstract
Lapatinib and capecitabine have been widely used in the therapy of breast cancer. However, long-term use of lapatinib and capecitabine often causes the most common side effect diarrhea, which limit the medicine use. Fructus mume (F. mume) has been proved to be effective to treat chronic diarrhea with few side effects. The compounds from F. mume were extracted by using an ethanol method. Extracts of F. mume (EFM) were analyzed by HPLC. We investigated the protective effects of EFM on the diarrhea caused by lapatinib and capecitabine. From March 1st, 2016 to June 1st, 2017, 208 breast cancer patients with diarrhea caused by lapatinib and capecitabine were recruited. The patients were evenly assigned into two groups: EG group (the patients took 100 mg EFM daily) and CG group (the patients took placebo daily). The effects of EFM on diarrhea and gastrointestinal symptoms were measured by a semiquantitative method seven-point Likert scale. Overall quality of life was measured by SF-36 questionnaire and Hospital Anxiety and Depression Scale (HADS). The HPLC analysis showed that there were three components in EFM, including citric acid, 5-hydroxymethylfurfural (5-HMF), and chlorogenic acid. Breast cancer types were observed by using Hematoxylin and eosin (H&E) stain. The breast cancer can be divided into leaflet, gland and fibroblast types. Patient age, skin metastases, treatment, and grade 1 diarrhea were significant risk factors associated with for grade 2 diarrhea. EFM reduced diarrhea and gastrointestinal symptoms by reducing the average scores of the diarrhea symptom and seven-point Likert scale, and improved life quality of patients significantly by improving SF-36 scores and reducing HADS scores when compared to that in the CG group after 6-week therapy and further 4-week follow-up (P < 0.05). EFM may be a potential choice for the diarrhea therapy in breast cancer patients.
Collapse
Affiliation(s)
- Hua Xing
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Lirong Zhang
- Department of Pathology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jinshu Ma
- Department of Pathology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhen Liu
- Pediatrics, Liuhe District Hospital of Nanjing, Nanjing, China
| | - Changlong Song
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yuxia Liu
- Archives Center, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|