1
|
Ishizawa Y. Preoperative Cognitive Optimization and Postoperative Cognitive Outcomes: A Narrative Review. Clin Interv Aging 2025; 20:395-402. [PMID: 40166756 PMCID: PMC11956728 DOI: 10.2147/cia.s505388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 03/18/2025] [Indexed: 04/02/2025] Open
Abstract
Background Perioperative neurocognitive disorder (PND) is a growing concern and affects millions of older adult surgical patients each year in the United States. However, the effective prevention of PND has yet to be established. Recently, preoperative brain exercise has been suggested to decrease postoperative delirium incidence in older patients. This review aims to interpret existing preoperative cognitive optimization research, determine if the research supports preoperative cognitive optimization, and identify gaps in the knowledge of the older surgical population. Methods A literature search was performed in Pub Med (1995-2024) using the keywords (Older Surgical Patients, Presurgical Assessment, Cognitive Optimization, Neurocognitive Disorder, Postoperative Cognitive Impairment, Postoperative Delirium, Dementia, Frailty Syndrome, Prehabilitation, and Brain Plasticity). The type of literature included clinical trials, case series, cohort studies, and reviews. Among these articles, I included the one in which full text is available in Pub Med and is identified that specifically investigates cognitive function in older adults. Results and Conclusion Evidence of the effect of preoperative cognitive optimization on postoperative cognitive functions in older adult surgical patients is still limited. Postoperative delirium was reduced by preoperative cognitive training. A limited number of clinical studies suggest the beneficial effect of preoperative cognitive training, but others show no effects. Further studies are needed on the cognitive training dosage, duration, and platform type. Studies are also required in presurgical patients with preexisting cognitive impairment or dementia.
Collapse
Affiliation(s)
- Yumiko Ishizawa
- Department of Anesthesia, Critical Care & Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Page CE, Ross DA. Adult Hippocampal Neurogenesis and the Landscape of Plasticity in the Human Brain. Biol Psychiatry 2025; 97:558-560. [PMID: 39971402 DOI: 10.1016/j.biopsych.2024.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 02/21/2025]
Affiliation(s)
- Chloe E Page
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| | - David A Ross
- Department of Psychiatry, University of Alberta Faculty of Medicine and Dentistry, Edmonton, Alberta, Canada
| |
Collapse
|
3
|
Bonfanti L, La Rosa C, Ghibaudi M, Sherwood CC. Adult neurogenesis and "immature" neurons in mammals: an evolutionary trade-off in plasticity? Brain Struct Funct 2024; 229:1775-1793. [PMID: 37833544 PMCID: PMC11485216 DOI: 10.1007/s00429-023-02717-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
Neuronal plasticity can vary remarkably in its form and degree across animal species. Adult neurogenesis, namely the capacity to produce new neurons from neural stem cells through adulthood, appears widespread in non-mammalian vertebrates, whereas it is reduced in mammals. A growing body of comparative studies also report variation in the occurrence and activity of neural stem cell niches between mammals, with a general trend of reduction from small-brained to large-brained species. Conversely, recent studies have shown that large-brained mammals host large amounts of neurons expressing typical markers of neurogenesis in the absence of cell division. In layer II of the cerebral cortex, populations of prenatally generated, non-dividing neurons continue to express molecules indicative of immaturity throughout life (cortical immature neurons; cINs). After remaining in a dormant state for a very long time, these cINs retain the potential of differentiating into mature neurons that integrate within the preexisting neural circuits. They are restricted to the paleocortex in small-brained rodents, while extending into the widely expanded neocortex of highly gyrencephalic, large-brained species. The current hypothesis is that these populations of non-newly generated "immature" neurons might represent a reservoir of developmentally plastic cells for mammalian species that are characterized by reduced stem cell-driven adult neurogenesis. This indicates that there may be a trade-off between various forms of plasticity that coexist during brain evolution. This balance may be necessary to maintain a "reservoir of plasticity" in brain regions that have distinct roles in species-specific socioecological adaptations, such as the neocortex and olfactory structures.
Collapse
Affiliation(s)
- Luca Bonfanti
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy.
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095, Turin, Grugliasco, Italy.
| | - Chiara La Rosa
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy
| | - Marco Ghibaudi
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095, Turin, Grugliasco, Italy
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, USA.
| |
Collapse
|
4
|
Pardo MC. Legal Personhood for Animals: Has Science Made Its Case? Animals (Basel) 2023; 13:2339. [PMID: 37508116 PMCID: PMC10376032 DOI: 10.3390/ani13142339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/22/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
The use of Latin in identifying an organism's genus and species is likely familiar to scientists and zoological professionals, but a traditional legal doctrine, known as habeas corpus (meaning "you have the body") may not have obvious applicability to nonhumans in the animal kingdom. In recent years, animal rights organizations have utilized the habeas corpus doctrine as a basis to bring legal challenges on behalf of nonhuman animals to expand "legal personhood" to them. These lawsuits, which have focused on species such as nonhuman primates and elephants, seek to challenge the "confinement" of animals in zoological institutions and by private owners, much like a prisoner or other detainee. The small but vocal animal legal personhood movement bases its argument on the fact that elephants and nonhuman primates are highly sentient and have complex cognitive characteristics. Proponents of legal personhood for animals have argued that the common law has progressed and expanded over the years as societal norms and conditions have changed and, much like the law has expanded to afford women and persons of color legal rights and protections, so should the law expand to treat animals the same as humans. Despite these efforts, to date, no court in the United States has accepted this invitation. This article summarizes key legal challenges and decisions to date in the United States, examines how science and societal conditions have influenced the law, and analyzes the reasons why legal personhood for animals so far has been viewed as a "bridge too far" in the American legal system.
Collapse
|
5
|
Allioux C, Achaintre L, Cheataini F, Balança B, Marinesco S. Animal welfare assessment after severe traumatic brain injury in rats. Lab Anim 2022; 56:528-539. [PMID: 35942536 DOI: 10.1177/00236772221107269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Severe traumatic brain injury (TBI) is a multifactorial injury process involving respiratory, cardiovascular and immune functions in addition to the brain. Thus, live animal models are needed to study the molecular, cellular and systemic mechanisms of TBI. The ethical use of laboratory animals requires that the benefits of approaches be carefully weighed against potential harm to animals. Welfare assessments adapted to severe TBI research are lacking. Here, we introduce a scoresheet to describe and monitor potential distress in animals, which includes general welfare (body weight, general appearance and spontaneous behaviour) and TBI-specific indices (respiratory function, pain, locomotor impairment, wound healing). Implementation of this scoresheet in Sprague-Dawley rats subjected to severe lateral fluid percussion TBI revealed a period of suffering limited to four days, followed by a recovery to normal welfare scores within 10-15 days, with females showing a worse impact than males. The scores indicate that animal suffering in this model is transitory compared with TBI consequences in humans. The scoresheet allows for the implementation of refinement measures including (1) analgesia during the initial period following TBI and (2) humane endpoints set (30% weight loss, score ≥90 and/or respiratory problems). This animal scoresheet tailored to TBI research provides a basis for further refinement of animal research paradigms aimed at understanding or treating the sequelae of severe TBI.
Collapse
Affiliation(s)
- Clélia Allioux
- Team TIGER, Lyon Neuroscience Research Centre, Inserm U1028, CNRS UMR 5292, Bron, France.,Claude Bernard Lyon 1 University, Villeurbanne, France
| | - Laëtitia Achaintre
- Neurocampus Animal Housing, Lyon Neuroscience Research Centre, Bron, France
| | - Fatima Cheataini
- Team TIGER, Lyon Neuroscience Research Centre, Inserm U1028, CNRS UMR 5292, Bron, France
| | - Baptiste Balança
- Team TIGER, Lyon Neuroscience Research Centre, Inserm U1028, CNRS UMR 5292, Bron, France.,Department of Neurological Anesthesiology and Intensive Care Medicine, Hospices Civils de Lyon, Hôpital Pierre Wertheimer, Bron, France
| | - Stéphane Marinesco
- Team TIGER, Lyon Neuroscience Research Centre, Inserm U1028, CNRS UMR 5292, Bron, France.,AniRA-BELIV Technological Platform, Lyon Neuroscience Research Centre, Bron, France
| |
Collapse
|
6
|
Immature excitatory neurons in the amygdala come of age during puberty. Dev Cogn Neurosci 2022; 56:101133. [PMID: 35841648 PMCID: PMC9289873 DOI: 10.1016/j.dcn.2022.101133] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/23/2022] [Accepted: 07/08/2022] [Indexed: 11/21/2022] Open
Abstract
The human amygdala is critical for emotional learning, valence coding, and complex social interactions, all of which mature throughout childhood, puberty, and adolescence. Across these ages, the amygdala paralaminar nucleus (PL) undergoes significant structural changes including increased numbers of mature neurons. The PL contains a large population of immature excitatory neurons at birth, some of which may continue to be born from local progenitors. These progenitors disappear rapidly in infancy, but the immature neurons persist throughout childhood and adolescent ages, indicating that they develop on a protracted timeline. Many of these late-maturing neurons settle locally within the PL, though a small subset appear to migrate into neighboring amygdala subnuclei. Despite its prominent growth during postnatal life and possible contributions to multiple amygdala circuits, the function of the PL remains unknown. PL maturation occurs predominately during late childhood and into puberty when sex hormone levels change. Sex hormones can promote developmental processes such as neuron migration, dendritic outgrowth, and synaptic plasticity, which appear to be ongoing in late-maturing PL neurons. Collectively, we describe how the growth of late-maturing neurons occurs in the right time and place to be relevant for amygdala functions and neuropsychiatric conditions.
Collapse
|
7
|
Bonfanti L, Charvet CJ. Brain Plasticity in Humans and Model Systems: Advances, Challenges, and Future Directions. Int J Mol Sci 2021; 22:9358. [PMID: 34502267 PMCID: PMC8431131 DOI: 10.3390/ijms22179358] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 12/20/2022] Open
Abstract
Plasticity, and in particular, neurogenesis, is a promising target to treat and prevent a wide variety of diseases (e.g., epilepsy, stroke, dementia). There are different types of plasticity, which vary with age, brain region, and species. These observations stress the importance of defining plasticity along temporal and spatial dimensions. We review recent studies focused on brain plasticity across the lifespan and in different species. One main theme to emerge from this work is that plasticity declines with age but that we have yet to map these different forms of plasticity across species. As part of this effort, we discuss our recent progress aimed to identify corresponding ages across species, and how this information can be used to map temporal variation in plasticity from model systems to humans.
Collapse
Affiliation(s)
- Luca Bonfanti
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095 Grugliasco, TO, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, 10043 Orbassano, TO, Italy
| | | |
Collapse
|
8
|
The One Medicine concept: its emergence from history as a systematic approach to re-integrate human and veterinary medicine. Emerg Top Life Sci 2021; 5:643-654. [PMID: 34355760 PMCID: PMC8718270 DOI: 10.1042/etls20200353] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/16/2022]
Abstract
The COVID-19 pandemic has resulted in the global recognition for greater inter-disciplinary and multi-disciplinary working, and the need for systematic approaches which recognise the interconnectedness and interactions between human, animal and environmental health. The notion of such a One Team/One science approach is perhaps best exemplified by the One Health concept, a systematic approach which is rapidly entering into the mainstream. However, the concept of One Health, as we presently know it, originated from One Medicine, a notion which is much older and which emerged to promote collaboration between the human and veterinary medicine professions and the allied health/scientific disciplines. Whilst One Medicine is perhaps better known by the veterinary community, some misconceptions of what One Medicine is have arisen. Therefore, this review introduces this emerging concept and how it can help to address overlapping (communicable and non-communicable disease) health challenges faced by both human and veterinary medicine.
Collapse
|
9
|
Lourbopoulos A, Mourouzis I, Xinaris C, Zerva N, Filippakis K, Pavlopoulos A, Pantos C. Translational Block in Stroke: A Constructive and "Out-of-the-Box" Reappraisal. Front Neurosci 2021; 15:652403. [PMID: 34054413 PMCID: PMC8160233 DOI: 10.3389/fnins.2021.652403] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Why can we still not translate preclinical research to clinical treatments for acute strokes? Despite > 1000 successful preclinical studies, drugs, and concepts for acute stroke, only two have reached clinical translation. This is the translational block. Yet, we continue to routinely model strokes using almost the same concepts we have used for over 30 years. Methodological improvements and criteria from the last decade have shed some light but have not solved the problem. In this conceptual analysis, we review the current status and reappraise it by thinking "out-of-the-box" and over the edges. As such, we query why other scientific fields have also faced the same translational failures, to find common denominators. In parallel, we query how migraine, multiple sclerosis, and hypothermia in hypoxic encephalopathy have achieved significant translation successes. Should we view ischemic stroke as a "chronic, relapsing, vascular" disease, then secondary prevention strategies are also a successful translation. Finally, based on the lessons learned, we propose how stroke should be modeled, and how preclinical and clinical scientists, editors, grant reviewers, and industry should reconsider their routine way of conducting research. Translational success for stroke treatments may eventually require a bold change with solutions that are outside of the box.
Collapse
Affiliation(s)
- Athanasios Lourbopoulos
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Department of Neurointensive Care Unit, Schoen Klinik Bad Aibling, Bad Aibling, Germany
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilian University, Munich, Germany
| | - Iordanis Mourouzis
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christodoulos Xinaris
- IRCCS – Istituto di Ricerche Farmacologiche ‘Mario Negri’, Centro Anna Maria Astori, Bergamo, Italy
- University of Nicosia Medical School, Nicosia, Cyprus
| | - Nefeli Zerva
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Filippakis
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Angelos Pavlopoulos
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Constantinos Pantos
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
10
|
Cozzi B, Bonfanti L, Canali E, Minero M. Brain Waste: The Neglect of Animal Brains. Front Neuroanat 2020; 14:573934. [PMID: 33304245 PMCID: PMC7693423 DOI: 10.3389/fnana.2020.573934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/14/2020] [Indexed: 01/29/2023] Open
Affiliation(s)
- Bruno Cozzi
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
| | - Luca Bonfanti
- Department of Veterinary Sciences, University of Torino, Torino, Italy.,Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy
| | - Elisabetta Canali
- Department of Veterinary Medicine, University of Milan, Milan, Italy
| | - Michela Minero
- Department of Veterinary Medicine, University of Milan, Milan, Italy
| |
Collapse
|
11
|
Conway CM. How does the brain learn environmental structure? Ten core principles for understanding the neurocognitive mechanisms of statistical learning. Neurosci Biobehav Rev 2020; 112:279-299. [PMID: 32018038 PMCID: PMC7211144 DOI: 10.1016/j.neubiorev.2020.01.032] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 01/22/2020] [Accepted: 01/25/2020] [Indexed: 10/25/2022]
Abstract
Despite a growing body of research devoted to the study of how humans encode environmental patterns, there is still no clear consensus about the nature of the neurocognitive mechanisms underpinning statistical learning nor what factors constrain or promote its emergence across individuals, species, and learning situations. Based on a review of research examining the roles of input modality and domain, input structure and complexity, attention, neuroanatomical bases, ontogeny, and phylogeny, ten core principles are proposed. Specifically, there exist two sets of neurocognitive mechanisms underlying statistical learning. First, a "suite" of associative-based, automatic, modality-specific learning mechanisms are mediated by the general principle of cortical plasticity, which results in improved processing and perceptual facilitation of encountered stimuli. Second, an attention-dependent system, mediated by the prefrontal cortex and related attentional and working memory networks, can modulate or gate learning and is necessary in order to learn nonadjacent dependencies and to integrate global patterns across time. This theoretical framework helps clarify conflicting research findings and provides the basis for future empirical and theoretical endeavors.
Collapse
Affiliation(s)
- Christopher M Conway
- Center for Childhood Deafness, Language, and Learning, Boys Town National Research Hospital, Omaha, NE, United States.
| |
Collapse
|
12
|
Lucassen PJ, Fitzsimons CP, Salta E, Maletic-Savatic M. Adult neurogenesis, human after all (again): Classic, optimized, and future approaches. Behav Brain Res 2020; 381:112458. [DOI: 10.1016/j.bbr.2019.112458] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 11/29/2019] [Accepted: 12/28/2019] [Indexed: 02/08/2023]
|
13
|
La Rosa C, Ghibaudi M, Bonfanti L. Newly Generated and Non-Newly Generated "Immature" Neurons in the Mammalian Brain: A Possible Reservoir of Young Cells to Prevent Brain Aging and Disease? J Clin Med 2019; 8:jcm8050685. [PMID: 31096632 PMCID: PMC6571946 DOI: 10.3390/jcm8050685] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 01/21/2023] Open
Abstract
Brain plasticity is important for translational purposes since most neurological disorders and brain aging problems remain substantially incurable. In the mammalian nervous system, neurons are mostly not renewed throughout life and cannot be replaced. In humans, the increasing life expectancy explains the increase in brain health problems, also producing heavy social and economic burden. An exception to the “static” brain is represented by stem cell niches leading to the production of new neurons. Such adult neurogenesis is dramatically reduced from fish to mammals, and in large-brained mammals with respect to rodents. Some examples of neurogenesis occurring outside the neurogenic niches have been reported, yet these new neurons actually do not integrate in the mature nervous tissue. Non-newly generated, “immature” neurons (nng-INs) are also present: Prenatally generated cells continuing to express molecules of immaturity (mostly shared with the newly born neurons). Of interest, nng-INs seem to show an inverse phylogenetic trend across mammals, being abundant in higher-order brain regions not served by neurogenesis and providing structural plasticity in rather stable areas. Both newly generated and nng-INs represent a potential reservoir of young cells (a “brain reserve”) that might be exploited for preventing the damage of aging and/or delay the onset/reduce the impact of neurological disorders.
Collapse
Affiliation(s)
- Chiara La Rosa
- Neuroscience Institute Cavalieri Ottolenghi (NICO), 10043 Orbassano, Italy.
- Department of Veterinary Sciences, University of Turin, 10095 Torino, Italy.
| | - Marco Ghibaudi
- Neuroscience Institute Cavalieri Ottolenghi (NICO), 10043 Orbassano, Italy.
| | - Luca Bonfanti
- Neuroscience Institute Cavalieri Ottolenghi (NICO), 10043 Orbassano, Italy.
- Department of Veterinary Sciences, University of Turin, 10095 Torino, Italy.
| |
Collapse
|
14
|
Bonfanti L, Amrein I. Editorial: Adult Neurogenesis: Beyond Rats and Mice. Front Neurosci 2018; 12:904. [PMID: 30564088 PMCID: PMC6288481 DOI: 10.3389/fnins.2018.00904] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/19/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Luca Bonfanti
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy.,Department of Veterinary Sciences, University of Turin, Torino, Italy
| | - Irmgard Amrein
- Division of Functional Neuroanatomy, Institute of Anatomy, University of Zurich, Zurich, Switzerland.,Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|