1
|
Mao Q, Ma S, Li S, Zhang Y, Li S, Wang W, Wang F, Guo Z, Wang C. PRRSV hijacks DDX3X protein and induces ferroptosis to facilitate viral replication. Vet Res 2024; 55:103. [PMID: 39155369 PMCID: PMC11331664 DOI: 10.1186/s13567-024-01358-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/16/2024] [Indexed: 08/20/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a severe disease with substantial economic consequences for the swine industry. The DEAD-box helicase 3 (DDX3X) is an RNA helicase that plays a crucial role in regulating RNA metabolism, immunological response, and even RNA virus infection. However, it is unclear whether it contributes to PRRSV infection. Recent studies have found that the expression of DDX3X considerably increases in Marc-145 cells when infected with live PRRSV strains Ch-1R and SD16; however, it was observed that inactivated viruses did not lead to any changes. By using the RK-33 inhibitor or DDX3X-specific siRNAs to reduce DDX3X expression, there was a significant decrease in the production of PRRSV progenies. In contrast, the overexpression of DDX3X in host cells substantially increased the proliferation of PRRSV. A combination of transcriptomics and metabolomics investigations revealed that in PRRSV-infected cells, DDX3X gene silencing severely affected biological processes such as ferroptosis, the FoxO signalling pathway, and glutathione metabolism. The subsequent transmission electron microscopy (TEM) imaging displayed the typical ferroptosis features in PRRSV-infected cells, such as mitochondrial shrinkage, reduction or disappearance of mitochondrial cristae, and cytoplasmic membrane rupture. Conversely, the mitochondrial morphology was unchanged in DDX3X-inhibited cells. Furthermore, silencing of the DDX3X gene changed the expression of ferroptosis-related genes and inhibited the virus proliferation, while the drug-induced ferroptosis inversely promoted PRRSV replication. In summary, these results present an updated perspective of how PRRSV infection uses DDX3X for self-replication, potentially leading to ferroptosis via various mechanisms that promote PRRSV replication.
Collapse
Affiliation(s)
- Qian Mao
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
| | - Shengming Ma
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, 455000, China
| | - Shuangyu Li
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
| | - Yuhua Zhang
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
| | - Shanshan Li
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
| | - Wenhui Wang
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
| | - Fang Wang
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
| | - Zekun Guo
- College of Life Science, Northwest Agriculture and Forestry University, Yangling, China.
| | - Chengbao Wang
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China.
| |
Collapse
|
2
|
Ren J, Tan S, Chen X, Wang X, Lin Y, Jin Y, Niu S, Wang Y, Gao X, Liang L, Li J, Zhao Y, Tian WX. Characterization of a novel recombinant NADC30‑like porcine reproductive and respiratory syndrome virus in Shanxi Province, China. Vet Res Commun 2024; 48:1879-1889. [PMID: 38349546 DOI: 10.1007/s11259-024-10319-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/27/2024] [Indexed: 06/04/2024]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important pathogens affecting the swine industry. In this report, a novel PRRSV strain SXht2012 was isolated from Shanxi province in China. To identify genetic characteristics of SXht2012, we conducted phylogenetic and homology analyses after sequencing its complete genome. The results revealed that SXht2012 belonged to NADC30-like strain and shared 91.3% nucleotide (nt) identity with strain NADC30. Notably, sequence alignment showed that a distinctive feature in the NSP2 region, where a 131-amino acid (aa) deletion was found in the hypervariable region (HVR). Additionally, variations were also detected in the GP5 protein, specifically in the decoy peptide, T cell peptide, and a potential glycosylation site (aa 32). Furthermore, we also found that SXht2012 was likely a recombination virus originating from NADC30-like and JXA1-like strains, and three recombination breakpoints were identified in the genome at nt positions 1516, 5280 and 6851, which correspond to the NSP2, NSP3, and NSP7 regions. Overall, these findings have significant implications for understanding the genetic variation and evolutionary dynamics of PRRSV strains.
Collapse
Affiliation(s)
- Jianle Ren
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, 1 Mingxian South Road, Taigu District, Jinzhong, 030801, China
| | - Shanshan Tan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, 1 Mingxian South Road, Taigu District, Jinzhong, 030801, China
| | - Xinxin Chen
- Beijing Solarbio Science & Technology Co., Ltd, Beijing, China
| | - Xizhen Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, 1 Mingxian South Road, Taigu District, Jinzhong, 030801, China
| | - Yiting Lin
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, 1 Mingxian South Road, Taigu District, Jinzhong, 030801, China
| | - Yi Jin
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, 1 Mingxian South Road, Taigu District, Jinzhong, 030801, China
| | - Sheng Niu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, 1 Mingxian South Road, Taigu District, Jinzhong, 030801, China
| | - Ying Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, 1 Mingxian South Road, Taigu District, Jinzhong, 030801, China
| | - Xiaolong Gao
- Beijing Animal Disease Prevention and Control Center, Beijing, China
| | - Libin Liang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, 1 Mingxian South Road, Taigu District, Jinzhong, 030801, China
| | - Junping Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, 1 Mingxian South Road, Taigu District, Jinzhong, 030801, China
| | - Yujun Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, 1 Mingxian South Road, Taigu District, Jinzhong, 030801, China
| | - Wen-Xia Tian
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, 1 Mingxian South Road, Taigu District, Jinzhong, 030801, China.
| |
Collapse
|
3
|
Pamornchainavakul N, Kikuti M, Paploski IAD, Corzo CA, VanderWaal K. Predicting Potential PRRSV-2 Variant Emergence through Phylogenetic Inference. Transbound Emerg Dis 2024; 2024:7945955. [PMID: 40303160 PMCID: PMC12017126 DOI: 10.1155/2024/7945955] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/04/2024] [Accepted: 01/23/2024] [Indexed: 05/02/2025]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a significant pig disease causing substantial annual losses exceeding half a billion dollars to the United States pork industry. The cocirculation and emergence of genetically distinct PRRSV-2 viruses hinder PRRS control, especially vaccine development. Similar to other viral infections like seasonal flu and SARS-CoV-2, predictive tools for identifying potential emerging viral variants may prospectively aid in preemptive disease mitigation. However, such predictions have not been made for PRRSV-2, despite the abundance of relevant data. In this study, we analyzed a decade's worth of virus ORF5 sequences (n = 20,700) and corresponding metadata to identify phylogenetic-based early indicators for short-term (12 months) and long-term (24 months) variant emergence. Our analysis focuses on PRRSV-2 Lineage 1, which was the predominant lineage within the U.S. during this period. We evaluated population expansion, spatial distribution, and genetic diversity as key success metrics for variant emergence. Our findings indicate that successful variants were best characterized as those that underwent population expansion alongside widespread geographical spread but had limited genetic diversification. Conditional logistic regression revealed the local branching index as the sole informative indicator for predicting population expansion (balanced accuracy (BA) = 0.75), while ancestral branch length was strongly linked to future genetic diversity (BA = 0.79). Predicting spatial dispersion relied on the branch length and putative antigenic difference (BA = 0.67), but their causal relationships remain unclear. Although the predictive models effectively captured most emerging variants (sensitivity = 0.58-0.81), they exhibited relatively low positive predictive value (PPV = 0.09-0.16). This initial step in PRRSV-2 prediction is a crucial step for more precise prevention strategies against PRRS in the future.
Collapse
Affiliation(s)
| | - Mariana Kikuti
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | | | - Cesar A. Corzo
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | | |
Collapse
|
4
|
Calderon-Rico F, Bravo-Patiño A, Mendieta I, Perez-Duran F, Zamora-Aviles AG, Franco-Correa LE, Ortega-Flores R, Hernandez-Morales I, Nuñez-Anita RE. Glycoprotein 5-Derived Peptides Induce a Protective T-Cell Response in Swine against the Porcine Reproductive and Respiratory Syndrome Virus. Viruses 2023; 16:14. [PMID: 38275949 PMCID: PMC10819526 DOI: 10.3390/v16010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024] Open
Abstract
We analyzed the T-cell responses induced by lineal epitopes of glycoprotein 5 (GP5) from PRRSV to explore the role of this protein in the immunological protection mediated by T-cells. The GP5 peptides were conjugated with a carrier protein for primary immunization and booster doses. Twenty-one-day-old pigs were allocated into four groups (seven pigs per group): control (PBS), vehicle (carrier), PTC1, and PTC2. Cytokine levels were measured at 2 days post-immunization (DPI) from serum samples. Cytotoxic T-lymphocytes (CTLs, CD8+) from peripheral blood were quantified via flow cytometry at 42 DPI. The cytotoxicity was evaluated by co-culturing primed lymphocytes with PRRSV derived from an infectious clone. The PTC2 peptide increased the serum concentrations of pro-inflammatory cytokines (i.e., TNF-α, IL-1β, IL-8) and cytokines that activate the adaptive cellular immunity associated with T-lymphocytes (i.e., IL-4, IL-6, IL-10, and IL-12). The concentration of CTLs (CD8+) was significantly higher in groups immunized with the peptides, which suggests a proliferative response in this cell population. Primed CTLs from immunized pigs showed cytolytic activity in PRRSV-infected cells in vitro. PTC1 and PTC2 peptides induced a protective T-cell-mediated response in pigs immunized against PRRSV, due to the presence of T epitopes in their sequences.
Collapse
Affiliation(s)
- Fernando Calderon-Rico
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolas de Hidalgo, Km. 9.5 S/N carretera Morelia-Zinapecuaro, La Palma, Tarimbaro PC 58893, Mexico; (F.C.-R.); (A.B.-P.); (F.P.-D.); (A.G.Z.-A.); (L.E.F.-C.); (R.O.-F.)
| | - Alejandro Bravo-Patiño
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolas de Hidalgo, Km. 9.5 S/N carretera Morelia-Zinapecuaro, La Palma, Tarimbaro PC 58893, Mexico; (F.C.-R.); (A.B.-P.); (F.P.-D.); (A.G.Z.-A.); (L.E.F.-C.); (R.O.-F.)
| | - Irasema Mendieta
- Posgrado en Ciencias Quimico-Biológicas, Facultad de Quimica, Universidad Autonoma de Queretaro, Cerro de las Campanas S/N, Querétaro PC 76010, Mexico;
| | - Francisco Perez-Duran
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolas de Hidalgo, Km. 9.5 S/N carretera Morelia-Zinapecuaro, La Palma, Tarimbaro PC 58893, Mexico; (F.C.-R.); (A.B.-P.); (F.P.-D.); (A.G.Z.-A.); (L.E.F.-C.); (R.O.-F.)
| | - Alicia Gabriela Zamora-Aviles
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolas de Hidalgo, Km. 9.5 S/N carretera Morelia-Zinapecuaro, La Palma, Tarimbaro PC 58893, Mexico; (F.C.-R.); (A.B.-P.); (F.P.-D.); (A.G.Z.-A.); (L.E.F.-C.); (R.O.-F.)
| | - Luis Enrique Franco-Correa
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolas de Hidalgo, Km. 9.5 S/N carretera Morelia-Zinapecuaro, La Palma, Tarimbaro PC 58893, Mexico; (F.C.-R.); (A.B.-P.); (F.P.-D.); (A.G.Z.-A.); (L.E.F.-C.); (R.O.-F.)
| | - Roberto Ortega-Flores
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolas de Hidalgo, Km. 9.5 S/N carretera Morelia-Zinapecuaro, La Palma, Tarimbaro PC 58893, Mexico; (F.C.-R.); (A.B.-P.); (F.P.-D.); (A.G.Z.-A.); (L.E.F.-C.); (R.O.-F.)
| | - Ilane Hernandez-Morales
- Escuela Nacional de Estudios Superiores Unidad Leon, Universidad Nacional Autonoma de Mexico, Blv. UNAM No. 2011, Leon PC 37684, Guanajuato, Mexico;
| | - Rosa Elvira Nuñez-Anita
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolas de Hidalgo, Km. 9.5 S/N carretera Morelia-Zinapecuaro, La Palma, Tarimbaro PC 58893, Mexico; (F.C.-R.); (A.B.-P.); (F.P.-D.); (A.G.Z.-A.); (L.E.F.-C.); (R.O.-F.)
| |
Collapse
|
5
|
Zhang Z, Zhang H, Luo Q, Zheng Y, Kong W, Huang L, Zhao M. Variations in NSP1 of Porcine Reproductive and Respiratory Syndrome Virus Isolated in China from 1996 to 2022. Genes (Basel) 2023; 14:1435. [PMID: 37510339 PMCID: PMC10379836 DOI: 10.3390/genes14071435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Since its successful isolation in China in 1995, the porcine reproductive and respiratory syndrome virus (PRRSV) has been mutating into highly pathogenic strains by constantly changing pathogenicity and genetic makeup. In this study, we investigated the prevalence and genetic variation of nonstructural protein 1 (NSP1) in PRRSV-2, the main strain prevalent in China. After formulating hypotheses regarding the biology of the NSP1 protein, the nucleotide and amino acid similarity of NSP1 were analyzed and compared in 193 PRRSV-2 strains. The results showed that NSP1 has a stable hydrophobic protein with a molecular weight of 43,060.76 Da. Although NSP1 lacked signal peptides, it could regulate host cell signaling. Furthermore, NSP1 of different strains had high nucleotide (79.6-100%) and amino acid similarity (78.6-100%). In the amino acid sequence comparison of 15 representative strains of PRRSV-2, multiple amino acid substitution sites were found in NSP1. Phylogenetic tree analysis showed that lineages 1 and 8 had different evolutionary branches with long genetic distances. This study lays the foundation for an in-depth understanding of the nature and genetic variation of NSP1 and the development of a safe and effective vaccine in the future.
Collapse
Affiliation(s)
- Zhiqing Zhang
- School of Life Science and Engineering, Foshan University, Foshan 528000, China; (Z.Z.); (Q.L.); (Y.Z.)
| | - Hang Zhang
- School of Life Science and Engineering, Foshan University, Foshan 528000, China; (Z.Z.); (Q.L.); (Y.Z.)
| | - Qin Luo
- School of Life Science and Engineering, Foshan University, Foshan 528000, China; (Z.Z.); (Q.L.); (Y.Z.)
| | - Yajie Zheng
- School of Life Science and Engineering, Foshan University, Foshan 528000, China; (Z.Z.); (Q.L.); (Y.Z.)
| | - Weili Kong
- Gladstone Institutes of Virology and Immunology, University of California, San Francisco, CA 94158, USA;
| | - Liangzong Huang
- School of Life Science and Engineering, Foshan University, Foshan 528000, China; (Z.Z.); (Q.L.); (Y.Z.)
| | - Mengmeng Zhao
- School of Life Science and Engineering, Foshan University, Foshan 528000, China; (Z.Z.); (Q.L.); (Y.Z.)
| |
Collapse
|
6
|
Mötz M, Stadler J, Kreutzmann H, Ladinig A, Lamp B, Auer A, Riedel C, Rümenapf T. A Conserved Stem-Loop Structure within ORF5 Is a Frequent Recombination Hotspot for Porcine Reproductive and Respiratory Syndrome Virus 1 (PRRSV-1) with a Particular Modified Live Virus (MLV) Strain. Viruses 2023; 15:258. [PMID: 36680298 PMCID: PMC9867337 DOI: 10.3390/v15010258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
The emergence of recombinant PRRSV strains has been observed for more than a decade. These recombinant viruses are characterized by a genome that contains genetic material from at least two different parental strains. Due to the advanced sequencing techniques and a growing number of data bank entries, the role of PRRSV recombinants has become increasingly important since they are sometimes associated with clinical outbreaks. Chimeric viruses observed more recently are products of PRRSV wild-type and vaccine strains. Here, we report on three PRRSV-1 isolates from geographically distant farms with differing clinical manifestations. A sequencing and recombination analysis revealed that these strains are crossovers between different wild-type strains and the same modified live virus vaccine strain. Interestingly, the recombination breakpoint of all analyzed isolates appears at the beginning of open reading frame 5 (ORF5). RNA structure predictions indicate a conserved stem loop in close proximity to the recombination hotspot, which is a plausible cause of a polymerase template switch during RNA replication. Further research into the mechanisms of the stem loop is needed to help understand the PRRSV recombination process and the role of MLVs as parental strains.
Collapse
Affiliation(s)
- Marlene Mötz
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Julia Stadler
- Clinic for Swine, Center for Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Sonnenstrasse 16, 85764 Oberschleissenheim, Germany
| | - Heinrich Kreutzmann
- Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Andrea Ladinig
- Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Benjamin Lamp
- Institute of Virology, Department of Veterinary Medicine, Justus-Liebig-University Giessen, Schubertstraße 81, 35392 Giessen, Germany
| | - Angelika Auer
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Christiane Riedel
- Département de Biologie, École Nationale Supérieure de Lyon, 46 Allée d’Italie, 69364 Lyon, France
- Centre International de Recherche en Infectiologie (CIRI), 46 Allée d’Italie, 69364 Lyon, France
| | - Till Rümenapf
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| |
Collapse
|
7
|
Zhou M, Li L, Suganuma K. Editorial: Epidemic status and prevention of swine infectious diseases. Front Vet Sci 2023; 10:1169644. [PMID: 36950539 PMCID: PMC10025533 DOI: 10.3389/fvets.2023.1169644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Affiliation(s)
- Mo Zhou
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, China
- *Correspondence: Mo Zhou
| | - Lianfeng Li
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Keisuke Suganuma
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| |
Collapse
|
8
|
Zhao J, Xu Z, Xu T, Zhou Y, Li J, Deng H, Li F, Xu L, Sun X, Zhu L. Molecular Characterization of the Nsp2 and ORF5s of PRRSV Strains in Sichuan China during 2012-2020. Animals (Basel) 2022; 12:ani12233309. [PMID: 36496830 PMCID: PMC9736255 DOI: 10.3390/ani12233309] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is an important pathogen that poses a serious threat to the global pig industry. Sichuan Province is one of the largest pig breeding provinces in China. There is a lack of reports on the continuous surveillance and systematic analysis of prevalent strains of PRRSV in Sichuan Province in recent years. To fill this gap, a total of 539 samples were collected from 13 breeding regions in Sichuan during 2012-2020. The detection result showed that the positive rate of PRRSV was 52.32% (282/539). The ORF5s and Nsp2 were obtained and further analyzed, with Chinese reference strains downloaded from the GenBank. Phylogenetic analysis showed that the PRRSV strains sequenced in this study belonged to PRRSV-1 and PRRSV-2 (lineage 1, 3, 5 and 8). In total, 168 PRRSV-2 strains were selected for ORF5 analyses, and these strains were classified into sub-lineage 8.7 (HP-PRRSV), sub-lineage 5.1 (classical PRRSV), sub-lineage 1.8 (NADC30-like), sub-lineage 1.5 (NADC34-like) and sub-lineage 3.5 (QYYZ-like), accounting for 60.71% (102/168), 11.31% (19/168), 18.45% (31/168), 2.97% (5/168) and 6.55% (11/168) of the total analyzed strains, respectively. The Nsp2 of identified PRRSV strains exhibited a nucleotide identity of 44.5-100%, and an amino acid identity of 46.82-100%. The ORF5 of the identified PRRSV strains exhibited a nucleotide identity of 81.3-100%, and an amino acid identity of 78.5-100%. A sequence analysis of ORF5 revealed that the mutation sites of GP5 were mainly concentrated in HVR1 and HVR2 and the virulence sites. In summary, the HP-PRRSV, NADC30-like PRRSV, Classic-PRRSV, QYYZ-like PRRSV, NADC34-like PRRSV and PRRSV-1 strains exist simultaneously in pigs in Sichuan. NADC30-like PRRSV was gradually becoming the most prevalent genotype currently in Sichuan province. This study suggested that PRRSV strains in Sichuan were undergoing genomic divergence.
Collapse
Affiliation(s)
- Jun Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Chia Tai Animal Husbandry Investment (Beijing) Co., Ltd., Beijing 101301, China
| | - Zhiwen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu 611130, China
| | - Tong Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuancheng Zhou
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610058, China
| | - Jiangling Li
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610058, China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Fengqing Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- College of Animal Science, Xichang University, Xichang 615012, China
| | - Lei Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiangang Sun
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Ling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu 611130, China
- Correspondence:
| |
Collapse
|
9
|
Sha H, Zhang H, Chen Y, Huang L, Zhao M, Wang N. Research Progress on the NSP9 Protein of Porcine Reproductive and Respiratory Syndrome Virus. Front Vet Sci 2022; 9:872205. [PMID: 35898550 PMCID: PMC9309524 DOI: 10.3389/fvets.2022.872205] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/20/2022] [Indexed: 11/24/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a contagious disease caused by the porcine reproductive and respiratory syndrome virus (PRRSV). PRRS is also called “blue ear disease” because of the characteristic blue ear in infected sows and piglets. Its main clinical features are reproductive disorders of sows, breathing difficulties in piglets, and fattening in pigs, which cause considerable losses to the swine industry. NSP9, a non-structural protein of PRRSV, plays a vital role in PRRSV replication and virulence because of its RNA-dependent RNA polymerase (RdRp) structure. The NSP9 sequence is highly conserved and contains T cell epitopes, which are beneficial for the development of future vaccines. NSP9 acts as the protein interaction hub between virus and host during PRRSV infection, especially in RNA replication and transcription. Herein, we comprehensively review the application of NSP9 in terms of genetic evolution analysis, interaction with host proteins that affect virus replication, interaction with other viral proteins, pathogenicity, regulation of cellular immune response, antiviral drugs, vaccines, and detection methods. This review can therefore provide innovative ideas and strategies for PRRSV prevention and control.
Collapse
Affiliation(s)
- Huiyang Sha
- Department of Veterinary Medicine, School of Life Science and Engineering, Foshan University, Foshan, China
- Veterinary Teaching Hospital, Foshan University, Foshan, China
| | - Hang Zhang
- Department of Veterinary Medicine, School of Life Science and Engineering, Foshan University, Foshan, China
- Veterinary Teaching Hospital, Foshan University, Foshan, China
| | - Yao Chen
- Department of Veterinary Medicine, School of Life Science and Engineering, Foshan University, Foshan, China
- Veterinary Teaching Hospital, Foshan University, Foshan, China
| | - Liangzong Huang
- Department of Veterinary Medicine, School of Life Science and Engineering, Foshan University, Foshan, China
- Veterinary Teaching Hospital, Foshan University, Foshan, China
- *Correspondence: Liangzong Huang
| | - Mengmeng Zhao
- Department of Veterinary Medicine, School of Life Science and Engineering, Foshan University, Foshan, China
- Veterinary Teaching Hospital, Foshan University, Foshan, China
- Mengmeng Zhao
| | - Nina Wang
- Department of Veterinary Medicine, School of Life Science and Engineering, Foshan University, Foshan, China
- Veterinary Teaching Hospital, Foshan University, Foshan, China
- Nina Wang
| |
Collapse
|
10
|
Liu J, Lai L, Xu Y, Yang Y, Li J, Liu C, Hunag C, Wei C. Evolutionary Analysis of Four Recombinant Viruses of the Porcine Reproductive and Respiratory Syndrome Virus From a Pig Farm in China. Front Vet Sci 2022; 9:933896. [PMID: 35812888 PMCID: PMC9270021 DOI: 10.3389/fvets.2022.933896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
The porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important pathogens causing substantial economic losses to the Chinese swine industry. In this study, we analyzed the complete genome sequences of four PRRSV isolates (PRRSV2/CN/SS0/2020, PRRSV2/CN/SS1/2021, PRRSV2/CN/L3/2021, and PRRSV2/CN/L4/2020) isolated from a single pig farm from 2020 to 2021. The genomes of the four isolates were 14,962–15,023 nt long, excluding the poly (A) tails. Comparative analysis of the genome sequences showed that the four isolates shared 93.2–98.1% homology and they had no close PRRSV relatives registered in the GenBank (<92%). Furthermore, PRRSV2/CN/SS0/2020 and PRRSV2/CN/SS1/2021 had characteristic 150-aa deletions (aa481+aa537-566 +aa628–747) that were identical to the live attenuated virus vaccine strain TJM-F92 (derived from the HP-PRRSV TJ). Further analysis of the full-length sequences suggests that the four isolates were natural recombinant strains between lineages 1 (NADC30-like), 3 (QYYZ-like), and 8.7 (JXA1-like). Animal experiments revealed discrepancies in virulence between PRRSV2/CN/SS0/2020 and PRRSV2/CN/L3/2021. The strain with high homology to HP-PRRSV demonstrates higher pathogenicity for pigs than the other isolate with low homology to HP-PRRSV. Taken together, our findings suggest that PRRSVs have undergone genome evolution by recombination among field strains/MLV-like strains of different lineages.
Collapse
Affiliation(s)
- Jiankui Liu
- College of Life Sciences, Longyan University, Longyan, China
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis, Fujian Province University, College of Life Science, Longyan University, Longyan, China
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Jiankui Liu
| | - Liling Lai
- College of Life Sciences, Longyan University, Longyan, China
| | - Ye Xu
- College of Life Sciences, Longyan University, Longyan, China
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuan Yang
- College of Life Sciences, Longyan University, Longyan, China
| | - Jiarui Li
- College of Life Sciences, Longyan University, Longyan, China
| | - Chen Liu
- College of Life Sciences, Longyan University, Longyan, China
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Cuiqin Hunag
- College of Life Sciences, Longyan University, Longyan, China
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis, Fujian Province University, College of Life Science, Longyan University, Longyan, China
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chunhua Wei
- College of Life Sciences, Longyan University, Longyan, China
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis, Fujian Province University, College of Life Science, Longyan University, Longyan, China
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Chunhua Wei
| |
Collapse
|
11
|
Mélade J, Piorkowski G, Bouzidi HS, Medawar A, Raffy C, de Lamballerie X, Nougairède A. Rapid reconstruction of porcine reproductive and respiratory syndrome virus using synthetic DNA fragments. Comput Struct Biotechnol J 2021; 19:5108-5116. [PMID: 34589186 PMCID: PMC8463744 DOI: 10.1016/j.csbj.2021.08.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/02/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most challenging infectious disease of pig populations causing devastating economic loss to swine industry. Reverse genetics allow to engineer modified viruses such attenuated strains for vaccine development. Some reverse genetic systems were described for PRRSVs but, due to genome complexity of PRRSVs, construction and modification of such systems remain laborious and time-consuming. In this study, we described a reverse genetics approach based on the "Infectious-Subgenomic Amplicons" (ISA) method to rescue infectious PRRSV particles. Permissive cells were transfected with 4 overlapping synthetic DNA fragments covering the entire genome of PRRSV which allowed the rapid reconstruction of the complete virus genome and the subsequent generation of infectious wild-type particles within days. The ISA method represent a rapid alternative of conventional reverse genetic systems. This method will help to generate genetically modified and attenuated strains for the development of sanitary countermeasures in the future.
Collapse
Affiliation(s)
- Julien Mélade
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207), Marseille, France
| | - Géraldine Piorkowski
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207), Marseille, France
| | - Hawa Sophia Bouzidi
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207), Marseille, France
- VIRBAC, 1e Avenue, 13ème rue, LID, BP27 - 06511 Carros, France
| | - Alain Medawar
- VIRBAC, 1e Avenue, 13ème rue, LID, BP27 - 06511 Carros, France
| | - Claudine Raffy
- VIRBAC, 1e Avenue, 13ème rue, LID, BP27 - 06511 Carros, France
| | - Xavier de Lamballerie
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207), Marseille, France
| | - Antoine Nougairède
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207), Marseille, France
| |
Collapse
|
12
|
Liu X, Zhang W, Wang D, Zhu X, Chen Y, Ouyang K, Wei Z, Liu H, Huang W. Establishment of a Multiplex RT-PCR Method for the Detection of Five Known Genotypes of Porcine Astroviruses. Front Vet Sci 2021; 8:684279. [PMID: 34212021 PMCID: PMC8239161 DOI: 10.3389/fvets.2021.684279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/14/2021] [Indexed: 01/08/2023] Open
Abstract
Porcine astroviruses (PAstVs) are prevalent in pigs worldwide, and five genotypes have been reported to circulate in China. However, little is known about the coinfection status of PAstVs. For differential and simultaneous diagnoses of these five genotypes of PAstVs, a multiplex RT-PCR method was established on the basis of the ORF2 gene of type 1 PAstV, and the ORF1ab genes of type two to five PAstVs. This quintuple PCR system was developed through optimization of multiplex PCR and detection sensitivity and specificity. The results showed that this multiplex RT-PCR method could specifically detect all the five PAstV genotypes without cross-reaction to any other major viruses circulating in Chinese pig farms. The detection limit of this method was as low as 10 pg of standard plasmids of each PAstV genotype. In addition, a total of 275 fecal samples collected from different districts of Guangxi, China, between April 2019 and November 2020, were tested by this newly established multiplex RT-PCR. Moreover, the sensitivity and specificity of monoplex and multiplex RT-PCR methods were compared by detecting the same set of clinical positive samples. The results revealed that PAstV1 (31/275), PAstV2 (49/275), PAstV3 (36/275), PAstV4 (41/275), and PAstV5 (22/275) were all detected, and dual (PAstV1+PAstV2, PAstV1+PAstV3, PAstV2+PAstV3, PAstV2+PAstV4, PAstV3+PAstV4, and PAstV4+PAstV5) or triple genotypes (PAstV1+PAstV2+PAstV3 and PAstV2+PAstV3+PAstV4) of coinfections were also unveiled in this study. The detection result of multiplex PCR was consistent with that of monoplex PCR. Compared with monoplex PCR, this multiplex PCR method showed obvious advantages such as time and cost efficiency and high sensitivity and specificity. This multiplex RT-PCR method offered a valuable tool for the rapid and accurate detection of PAstV genotypes circulating in pig herds and will facilitate the surveillance of PAstV coinfection status.
Collapse
Affiliation(s)
- Xin Liu
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Wenchao Zhang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Dongjing Wang
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa, China
| | - Xinyue Zhu
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Ying Chen
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Kang Ouyang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Zuzhang Wei
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Huan Liu
- Department of Scientific Research, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Weijian Huang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|