1
|
Wilms L, Hamidi D, Lüntzel CHU, Hamidi M, Komainda M, Palme R, Isselstein J, Waiblinger S, Egerbacher M. Assessing learning, behaviour, and stress level in goats while testing a virtual fencing training protocol. Animal 2025; 19:101413. [PMID: 39862570 DOI: 10.1016/j.animal.2024.101413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/27/2025] Open
Abstract
Virtual fencing (VF) is a modern fencing technology using Global Positioning System-enabled collars which emit acoustic signals and, if the animal does not respond, electric pulses. Studies with cattle indicate successful learning and no distinct negative impact on the animals' behaviours and stress level. However, the number of studies testing VF with goats is relatively small. In this study, we used VF collars to test a VF training protocol recently applied to heifers to assess the development of goats' learning to avoid the electric pulse, their behaviour, and faecal cortisol metabolites (FCMs) as an indicator for physiological stress in a grazing experiment. Twenty adult 'Blobe' goats with offspring were divided into two groups and assigned to the VF or physical fencing treatment in a cross-over design with two periods of 12 days each. The VF treatment involved a virtual fence at one side of the paddock, to which the goats were gradually introduced over the first 2 days (additional physical fence or posts as visual support). On day eight, the grazing areas were enlarged by shifting the virtual fence and one side of the physical fencing treatment. The experiment lasted 4 h per day. During this time, the following behaviours were recorded via instantaneous scan sampling of all goats every 2 min: grazing, lying, standing, standing vigilant, walking, and running. Additionally, faecal samples were collected once, or twice daily and FCM concentrations were measured. The VF collars delivered the number of acoustic signals and electric pulses and the duration of the acoustic signals. The daily number of acoustic signals and electric pulses of each goat was used to calculate a 'success ratio'. A significant increase in the success ratio and a general decrease in the signal duration indicate the successful association of acoustic signals and electric pulses at the group level. Behavioural analyses revealed no clear influence of the VF treatment except for standing vigilant. Virtually fenced goats stood significantly more vigilant than physically fenced ones. However, free-moving kids could have had an influence. The VF treatment had no significant effect on the FCM concentrations, which decreased significantly over time. In summary, goats showed signs of learning when avoiding receiving electric pulses by responding appropriately to the acoustic signals. A higher occurrence of vigilance behaviour may suggest insecurity, but FCM concentrations did not indicate increased physiological stress. Future research needs to confirm these results and test VF with goats under practical conditions.
Collapse
Affiliation(s)
- L Wilms
- Department of Crop Sciences, Grassland Science, Georg-August-University of Göttingen, Von-Siebold-Str. 8, 37075 Göttingen, Germany.
| | - D Hamidi
- Department of Crop Sciences, Grassland Science, Georg-August-University of Göttingen, Von-Siebold-Str. 8, 37075 Göttingen, Germany
| | - C H U Lüntzel
- Department of Crop Sciences, Grassland Science, Georg-August-University of Göttingen, Von-Siebold-Str. 8, 37075 Göttingen, Germany
| | - M Hamidi
- Heisterholz-Mühle 1, D-30916 Isernhagen, Germany
| | - M Komainda
- Department of Crop Sciences, Grassland Science, Georg-August-University of Göttingen, Von-Siebold-Str. 8, 37075 Göttingen, Germany
| | - R Palme
- Department of Biological Sciences and Pathobiology, Unit of Experimental Endocrinology, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| | - J Isselstein
- Department of Crop Sciences, Grassland Science, Georg-August-University of Göttingen, Von-Siebold-Str. 8, 37075 Göttingen, Germany
| | - S Waiblinger
- Centre of Animal Nutrition and Welfare, Clinical Department for Farm Animals and Security of Food Systems, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| | - M Egerbacher
- Venn Research Association for the Promotion of Virtual Fencing in Tyrol and the Alpine region. Brixnerstraße 1, 6020 Innsbruck, Austria
| |
Collapse
|
2
|
Lecorps B, Weary D. Animal affect, welfare and the Bayesian brain. Anim Welf 2024; 33:e39. [PMID: 39464389 PMCID: PMC11503760 DOI: 10.1017/awf.2024.44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/04/2024] [Accepted: 06/25/2024] [Indexed: 10/29/2024]
Abstract
According to the Bayesian brain hypothesis, the brain can be viewed as a predictive machine, such that predictions (or expectations) affect how sensory inputs are integrated. This means that in many cases, affective responses may depend more on the subject's perception of the experience (driven by expectations built on past experiences) rather than on the situation itself. Little research to date has applied this concept to affective states in animals. The aim of this paper is to explore how the Bayesian brain hypothesis can be used to understand the affective experiences of animals and to develop a basis for novel predictions regarding animal welfare. Drawing from the literature illustrating how predictive processes are important to human well-being, and are often impaired in affective disorders, we explore whether the Bayesian brain theories may help understanding animals' affective responses and whether deficits in predictive processes may lead to previously unconsidered welfare consequences. We conclude that considering animals as predictive entities can improve our understanding of their affective responses, with implications for basic research and for how to provide animals a better life.
Collapse
Affiliation(s)
- Benjamin Lecorps
- Bristol Veterinary School, University of Bristol, Bristol BS40 5DU, UK
| | - Daniel Weary
- Animal Welfare Program, Faculty of Land and Food Systems, 2357 Main Mall, University of British Columbia, Vancouver BC V6T 1Z6, Canada
| |
Collapse
|
3
|
Verdon M, Hunt I, Rawnsley R. The effectiveness of a virtual fencing technology to allocate pasture and herd cows to the milking shed. J Dairy Sci 2024; 107:6161-6177. [PMID: 38642655 DOI: 10.3168/jds.2023-24537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/17/2024] [Indexed: 04/22/2024]
Abstract
Virtual fencing technology provides an opportunity to rethink the management of intensive grazing systems in general, yet most studies have used products developed and applied to more extensive livestock systems. This research aimed to assess the application of a virtual fencing technology developed for the intensive pastoral dairy industry. The Halter system uses 2 primary cues (sound and vibration) and one aversive secondary cue (a low-energy electrical pulse) to confine cows to a pasture allocation and remotely herd cows. We studied 2 groups of 40 mid-lactation multiparous dairy cows (Bos taurus, predominantly Friesian and Friesian × Jersey, parity 1-8). Cows were milked twice per day and provided 9 kg of pasture DM/d in a 24-h allocation, supplemented with 7 kg of silage and 6 kg of grain DM/d. Training to the Halter system occurred over 10 d, after which cows were managed with the technology for a further 28 d. The type and time of cues delivered were recorded by each collar and communicated via a base station to cloud data storage. Cows took less than a day to start responding to the sound cues delivered while held on a pasture allocation and were moving to the milking parlor without human intervention by d 4 of training. On training d 1, at least 60% of sound cues resulted in an electrical pulse. Across training d 2 to 10, 6.4% of sound cues resulted in a pulse. After the 10-d training period, 2.6% of sound cues resulted in a pulse. During the management period, 90% of cows spent ≤1.7 min/d beyond the virtual fence, received ≤0.71 pulses/d in the paddock and received ≤1 pulse/d during virtual herding to the parlor. By the final week of the management period, 50% of cows received 0 pulses/week in the paddock and 35% received 0 pulses/week during virtual herding. The number of pulses delivered per day and the pulse/sound cue ratio was lower in this study than that previously reported using other virtual fencing technologies. We conclude that the Halter technology is successful at containing lactating dairy cows in an intensive grazing system as well as at remotely herding animals to the milking parlor.
Collapse
Affiliation(s)
- Megan Verdon
- Tasmanian Institute of Agriculture, College of Sciences and Engineering, University of Tasmania, Burnie TAS 7320, Australia.
| | - Ian Hunt
- Tasmanian Institute of Agriculture, College of Sciences and Engineering, University of Tasmania, Burnie TAS 7320, Australia
| | - Richard Rawnsley
- Tasmanian Institute of Agriculture, College of Sciences and Engineering, University of Tasmania, Burnie TAS 7320, Australia
| |
Collapse
|
4
|
Fuchs P, Stachowicz J, Schneider MK, Probo M, Bruckmaier RM, Umstätter C. Stress indicators in dairy cows adapting to virtual fencing. J Anim Sci 2024; 102:skae024. [PMID: 38271563 PMCID: PMC10889741 DOI: 10.1093/jas/skae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/24/2024] [Indexed: 01/27/2024] Open
Abstract
Virtual fencing (VF) enables livestock grazing without physical fences by conditioning animals to a virtual boundary delimited with an audio tone (AT) and an electric pulse (EP). The present study followed the adaptation process of lactating dairy cows to a VF system with changing virtual boundaries and investigated its impact on animal welfare. Twenty cows were divided into stratified groups (2× VF; 2× electric fencing, EF) of five individuals. Each group grazed half-days in a separate EF paddock of comparable size during 3 d of acclimation (P0), followed by 21, 14, 14, and 7 d of experimental treatment (P1 to P4). At the start of the trial, all cows were equipped with an IceQube pedometer (Peacock Technology Ltd, Stirling, UK) and a VF collar (Nofence AS, Batnfjordsøra, Norway). During P0, cows were accustomed to their first paddock with a deactivated virtual boundary and wearing the sensors. In P1 to P4, an active virtual boundary for the VF groups, and a second EF for the EF groups was set up parallel to an outer EF within their paddock. Throughout the trial, the sensors continuously tracked cow positions and activity behavior at 15-min intervals. From P1 onwards, the VF collars additionally recorded each AT and EP per cow with a georeferenced time stamp. During P0 to P4, daily feed intake, body weight, and milk yield were recorded in the barn. A total of 26 milk samples were collected per cow to determine milk cortisol levels. Behavioral observations were conducted for 2 h on day 23 to record agonistic behaviors, vocalizations, and excretions. The total number of stimuli per cow ranged from 37 to 225 ATs (mean ± SD: 1.9 ± 3.3 per day) and 3 to 11 EPs (mean ± SD: 0.1 ± 0.7 per day) throughout the trial. The maximum number of EPs per day was 8 for an individual cow and occurred once on D1. Mean EP/AT decreased by 55% during the first three half-days of grazing and with each paddock change from 0.2 EP/AT in week 1 to 0.03, 0.02, and 0 EP/AT in weeks 4, 6, and 8, respectively. Linear and generalized mixed effects models revealed that milk yield and cortisol, feed intake, body weight, and activity and lying behavior did not significantly differ between VF and EF groups. A higher number of agonistic behaviors were observed in the VF groups when the VF system was activated. However, due to the short observation periods only few contacts were observed in total. Overall, all cows adapted to the VF system without evidence of lasting adverse effects on animal welfare.
Collapse
Affiliation(s)
- Patricia Fuchs
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
- Agroscope, Research Division Animal Production Systems and Animal Health, Grazing Systems, 1725 Posieux, Switzerland
| | - Joanna Stachowicz
- Johann Heinrich von Thünen-Institute, Institute of Agricultural Technology, 38116 Braunschweig, Germany
| | - Manuel K Schneider
- Agroscope, Research Division Animal Production Systems and Animal Health, Forage Production and Grassland Systems, 8046 Zurich, Switzerland
| | - Massimiliano Probo
- Agroscope, Research Division Animal Production Systems and Animal Health, Grazing Systems, 1725 Posieux, Switzerland
| | - Rupert M Bruckmaier
- Veterinary Physiology, Department of Clinical Research and Public Health, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | - Christina Umstätter
- Johann Heinrich von Thünen-Institute, Institute of Agricultural Technology, 38116 Braunschweig, Germany
| |
Collapse
|
5
|
Confessore A, Schneider MK, Pauler CM, Aquilani C, Fuchs P, Pugliese C, Dibari C, Argenti G, Accorsi PA, Probo M. A matter of age? How age affects the adaptation of lactating dairy cows to virtual fencing. J Anim Sci 2024; 102:skae137. [PMID: 38743503 PMCID: PMC11141297 DOI: 10.1093/jas/skae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024] Open
Abstract
Virtual Fencing (VF) can be a helpful technology in managing herds in pasture-based systems. In VF systems, animals wear a VF collar using global positioning, and physical boundaries are replaced by virtual ones. The Nofence (Nofence AS, Batnfjordsøra, Norway) collars used in this study emit an acoustic warning when an animal approaches the virtual boundaries, followed by an aversive electrical pulse if the animal does not return to the defined area. The stimuli sequence is repeated up to three times if the animal continues to walk forward. Although it has been demonstrated that animals successfully learn to adapt to the system, it is unknown if this adaptation changes with animal age and thus has consequences for VF training and animal welfare. This study compared the ability of younger and older dairy cows to adapt to a VF system and whether age affected activity behavior, milk yield, and animal long-term stress under VF management. The study was conducted on four comparable strip-grazing paddocks. Twenty lactating Holstein-Friesian cows, divided into four groups of five animals each, were equipped with VF collars and pedometers. Groups differed in age: two groups of older cows (>4 lactations) and two groups of younger ones (first lactation). After a 7-d training, paddock sizes were increased by successively moving the virtual fence during four consecutive grazing periods. Throughout the study, the pedometers recorded daily step count, time spent standing, and time spent lying. For the determination of long-term stress, hair samples were collected on the first and last day of the trial and the hair cortisol content was assessed. Data were analyzed by generalized mixed-effect models. Overall, age had no significant impact on animal responses to VF, but there were interaction effects of time: the number of acoustic warnings in the last period was higher in younger cows (P < 0.001), and the duration of acoustic warnings at training was shorter for older cows (P < 0.01). Moreover, younger cows walked more per day during the training (P < 0.01). Finally, no effects on milk yield or hair cortisol content were detected. In conclusion, all cows, regardless of age, adapted rapidly to the VF system without compromising their welfare according to the indicators measured.
Collapse
Affiliation(s)
- Andrea Confessore
- Department of Agriculture, Food, Environment, and Forestry (DAGRI), Università di Firenze, Via delle Cascine 5, Firenze, 50144, FI, Italy
| | - Manuel K Schneider
- Agroscope, Research Division Animal Production Systems and Animal Healt, Forage Production and Grassland Systems, 8046 Zurich, Switzerland
- Agroscope, Research Division Animal Production Systems and Animal Healt, Grazing Systems, 1725 Posieux, Switzerland
| | - Caren M Pauler
- Agroscope, Research Division Animal Production Systems and Animal Healt, Forage Production and Grassland Systems, 8046 Zurich, Switzerland
- Agroscope, Research Division Animal Production Systems and Animal Healt, Grazing Systems, 1725 Posieux, Switzerland
| | - Chiara Aquilani
- Department of Agriculture, Food, Environment, and Forestry (DAGRI), Università di Firenze, Via delle Cascine 5, Firenze, 50144, FI, Italy
| | - Patricia Fuchs
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
- Agroscope, Research Division Animal Production Systems and Animal Healt, Grazing Systems, 1725 Posieux, Switzerland
| | - Carolina Pugliese
- Department of Agriculture, Food, Environment, and Forestry (DAGRI), Università di Firenze, Via delle Cascine 5, Firenze, 50144, FI, Italy
| | - Camilla Dibari
- Department of Agriculture, Food, Environment, and Forestry (DAGRI), Università di Firenze, Via delle Cascine 5, Firenze, 50144, FI, Italy
| | - Giovanni Argenti
- Department of Agriculture, Food, Environment, and Forestry (DAGRI), Università di Firenze, Via delle Cascine 5, Firenze, 50144, FI, Italy
| | - Pier Attilio Accorsi
- Dipartimento di Scienze Mediche Veterinarie, Università di Bologna, Ozzano Emilia, 40064, BO, Italy
| | - Massimiliano Probo
- Agroscope, Research Division Animal Production Systems and Animal Healt, Grazing Systems, 1725 Posieux, Switzerland
| |
Collapse
|
6
|
Nyamuryekung’e S, Cox A, Perea A, Estell R, Cibils AF, Holland JP, Waterhouse T, Duff G, Funk M, McIntosh MM, Spiegal S, Bestelmeyer B, Utsumi S. Behavioral Adaptations of Nursing Brangus Cows to Virtual Fencing: Insights from a Training Deployment Phase. Animals (Basel) 2023; 13:3558. [PMID: 38003174 PMCID: PMC10668737 DOI: 10.3390/ani13223558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Virtual fencing systems have emerged as a promising technology for managing the distribution of livestock in extensive grazing environments. This study provides comprehensive documentation of the learning process involving two conditional behavioral mechanisms and the documentation of efficient, effective, and safe animal training for virtual fence applications on nursing Brangus cows. Two hypotheses were examined: (1) animals would learn to avoid restricted zones by increasing their use of containment zones within a virtual fence polygon, and (2) animals would progressively receive fewer audio-electric cues over time and increasingly rely on auditory cues for behavioral modification. Data from GPS coordinates, behavioral metrics derived from the collar data, and cueing events were analyzed to evaluate these hypotheses. The results supported hypothesis 1, revealing that virtual fence activation significantly increased the time spent in containment zones and reduced time in restricted zones compared to when the virtual fence was deactivated. Concurrently, behavioral metrics mirrored these findings, with cows adjusting their daily travel distances, exploration area, and cumulative activity counts in response to the allocation of areas with different virtual fence configurations. Hypothesis 2 was also supported by the results, with a decrease in cueing events over time and increased reliance with animals on audio cueing to avert receiving the mild electric pulse. These outcomes underscore the rapid learning capabilities of groups of nursing cows in responding to virtual fence boundaries.
Collapse
Affiliation(s)
- Shelemia Nyamuryekung’e
- Division of Food Production and Society, Norwegian Institute of Bioeconomy Research (NIBIO), PB 115, N-1431 Ås, Norway
| | - Andrew Cox
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM 88003, USA; (A.C.); (A.P.); (G.D.); (M.F.)
| | - Andres Perea
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM 88003, USA; (A.C.); (A.P.); (G.D.); (M.F.)
| | - Richard Estell
- United States Department of Agriculture-Agriculture Research Service, Jornada Experimental Range, Las Cruces, NM 88003, USA; (R.E.); (M.M.M.); (S.S.); (B.B.)
| | - Andres F. Cibils
- United States Department of Agriculture Southern Plains Climate Hub, United States Department of Agriculture-Agriculture Research Service, Oklahoma and Central Plains Agricultural Research Center, El Reno, OK 73036, USA;
| | - John P. Holland
- SRUC Hill and Mountain Research Centre, Scotland’s Rural College, Kirkton Farm, Crianlarich, Perthshire FK20 8RU, UK; (J.P.H.); (T.W.)
| | - Tony Waterhouse
- SRUC Hill and Mountain Research Centre, Scotland’s Rural College, Kirkton Farm, Crianlarich, Perthshire FK20 8RU, UK; (J.P.H.); (T.W.)
| | - Glenn Duff
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM 88003, USA; (A.C.); (A.P.); (G.D.); (M.F.)
| | - Micah Funk
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM 88003, USA; (A.C.); (A.P.); (G.D.); (M.F.)
| | - Matthew M. McIntosh
- United States Department of Agriculture-Agriculture Research Service, Jornada Experimental Range, Las Cruces, NM 88003, USA; (R.E.); (M.M.M.); (S.S.); (B.B.)
| | - Sheri Spiegal
- United States Department of Agriculture-Agriculture Research Service, Jornada Experimental Range, Las Cruces, NM 88003, USA; (R.E.); (M.M.M.); (S.S.); (B.B.)
| | - Brandon Bestelmeyer
- United States Department of Agriculture-Agriculture Research Service, Jornada Experimental Range, Las Cruces, NM 88003, USA; (R.E.); (M.M.M.); (S.S.); (B.B.)
| | - Santiago Utsumi
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM 88003, USA; (A.C.); (A.P.); (G.D.); (M.F.)
| |
Collapse
|
7
|
McCormick IA, Stokes JE. Stakeholder Challenges and Opportunities of GPS Shock Collars to Achieve Optimum Welfare in a Conservation or Farm Setting. Animals (Basel) 2023; 13:3084. [PMID: 37835690 PMCID: PMC10572034 DOI: 10.3390/ani13193084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/02/2023] [Accepted: 09/06/2023] [Indexed: 10/15/2023] Open
Abstract
Virtual fences for livestock facilitated by a GPS shock collar (GPS-SC) and phone app were introduced to the UK in cattle herd trials in 2020. Technology which uses aversive shocks to control livestock movement on farms and in other settings poses a significant risk to livestock welfare. There are currently no welfare protocols in place in the UK to ensure the ethical use of GPS-SCs. The objective of this study was to understand how GPS-SCs were being used in practice in the UK and gather data to assist researchers and policymakers in the future research and development of a welfare protocol for the UK. We studied how the technology performs in terms of welfare challenges and opportunities, covering extensive livestock production, conservation settings, "rewilding", and regenerative farming practices, where the technology is currently being applied. Semistructured interviews were conducted with key stakeholders. In-depth interviews (n = 8) supported the previous literature that the use of GPS-SCs in restricted grazing settings poses a risk to animal welfare. This is due to the wavering virtual fence boundary line (which is affected by satellite movements), a lack of visual markers, and, in some "rewilding" and conservation settings, livestock keepers, which require training and support to enable optimal welfare in practice and prevent misuse of the technology. Results also indicated that there are opportunities for enhancing livestock welfare with GPS-SCs in very extensive farm settings, where targeted care can be facilitated by using the data to monitor and track livestock using GPS-SCs, and which can also prevent cattle injury or fatality through virtual pastures designed to protect livestock from hazards such as roads or bogs. Future research is needed to focus on minimising shocks in the training period and to better understand the value of visual electric fences in the training process.
Collapse
Affiliation(s)
- Iris Alexandra McCormick
- School of Agriculture, Food and the Environment, Royal Agricultural University, Cirencester GL7 6JS, UK;
| | | |
Collapse
|
8
|
Cabral de Mel SJ, Seneweera S, Dangolla A, Weerakoon DK, Maraseni T, Allen BL. Attitudes towards the Potential Use of Aversive Geofencing Devices to Manage Wild Elephant Movement. Animals (Basel) 2023; 13:2657. [PMID: 37627448 PMCID: PMC10451760 DOI: 10.3390/ani13162657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Aversive geofencing devices (AGDs) or animal-borne satellite-linked shock collars might become a useful tool to mitigate human-elephant conflict (HEC). AGDs have the potential to condition problem elephants to avoid human-dominated landscapes by associating mild electric shocks with preceding audio warnings given as they approach virtual boundaries. We assessed the opinions of different stakeholders (experts, farmers, and others who have and have not experienced HEC; n = 611) on the potential use of AGDs on Asian elephants. Most respondents expressed positive opinions on the potential effectiveness of AGDs in managing elephant movement (62.2%). About 62.8% respondents also provided positive responses for the acceptability of AGDs if pilot studies with captive elephants have been successful in managing their movements. Some respondents perceived AGDs to be unacceptable because they are unethical or harmful and would be unsuccessful given wild elephants may respond differently to AGDs than captive elephants. Respondents identified acceptability, support and awareness of stakeholders, safety and wellbeing of elephants, logistical difficulties, durability and reliable functionality of AGDs, and uncertainties in elephants' responses to AGDs as potential challenges for implementing AGDs. These issues need attention when developing AGDs to increase support from stakeholders and to effectively reduce HEC incidents in the future.
Collapse
Affiliation(s)
- Surendranie J. Cabral de Mel
- Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, QLD 4350, Australia; (S.J.C.d.M.); (T.M.)
- National Institute of Fundamental Studies, Kandy 20000, Sri Lanka;
| | - Saman Seneweera
- National Institute of Fundamental Studies, Kandy 20000, Sri Lanka;
- School of Agriculture and Food, Faculty of Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Ashoka Dangolla
- Department of Veterinary Clinical Sciences, University of Peradeniya, Peradeniya 20400, Sri Lanka;
| | - Devaka K. Weerakoon
- Department of Zoology and Environmental Sciences, University of Colombo, Colombo 00300, Sri Lanka;
| | - Tek Maraseni
- Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, QLD 4350, Australia; (S.J.C.d.M.); (T.M.)
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Benjamin L. Allen
- Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, QLD 4350, Australia; (S.J.C.d.M.); (T.M.)
- Centre for African Conservation Ecology, Nelson Mandela University, Port Elizabeth 6034, South Africa
| |
Collapse
|
9
|
Campbell DLM, Belson S, Lea JM, Ouzman J, Lee C, Kalinowski T, Mowat D, Llewellyn RS. Automated Virtual Fencing Can Effectively Contain Sheep: Field Trials and Prospects. Animals (Basel) 2023; 13:ani13040619. [PMID: 36830406 PMCID: PMC9951726 DOI: 10.3390/ani13040619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Virtual fencing technology uses on-animal devices to communicate boundaries via a warning audio tone and electrical pulse signals. There is currently limited validation work on sheep. This study used modified cattle eShepherd® virtual fencing neckbands on reduced-wool sheep with clipped necks to enable automated trials with small groups across both day and night. The first 5-day trial with six Dorper crossbred sheep was conducted in an experimental paddock setting, with a second 5-day trial conducted with 10 Ultra White sheep on a commercial farm. The animals across both trials were contained in the inclusion zone for 99.8% and 92.2% of the trial period, with a mean percentage (±SD) of total audio cues as audio only (i.e., not followed by an electrical pulse) being 74.9% ± 4.6 in the first trial, and 83.3% ± 20.6 for the second trial. In the second trial, sheep crossed over into the exclusion zone on the third night and remained there until they were walked out for their daily yard check in the morning. These preliminary trial results are promising for the use of automated technology on sheep, but suitable devices and algorithms still need to be designed specifically for sheep in the long term.
Collapse
Affiliation(s)
- Dana L. M. Campbell
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Armidale, NSW 2350, Australia
| | - Sue Belson
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Armidale, NSW 2350, Australia
| | - Jim M. Lea
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Armidale, NSW 2350, Australia
| | - Jackie Ouzman
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Glen Osmond, SA 5064, Australia
| | - Caroline Lee
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Armidale, NSW 2350, Australia
- Correspondence: (C.L.); (R.S.L.)
| | - Troy Kalinowski
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Armidale, NSW 2350, Australia
| | - Damian Mowat
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Glen Osmond, SA 5064, Australia
| | - Rick S. Llewellyn
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Glen Osmond, SA 5064, Australia
- Correspondence: (C.L.); (R.S.L.)
| |
Collapse
|
10
|
Chrzanowska A, Modlinska K, Goncikowska K, Pisula W. Rat's response to a novelty and increased complexity of the environment resulting from the introduction of movable vs. stationary objects in the free exploration test. PLoS One 2022; 17:e0279006. [PMID: 36538520 PMCID: PMC9767355 DOI: 10.1371/journal.pone.0279006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Most animals, including rats, show a preference for more complex environments. This is demonstrated particularly well when complexity increases due to the addition of new elements to the environment. The aim of the study was to investigate the reaction to novelty, understood as a change in environmental properties that involve both changes in complexity and controllability. Controllability may allow for dealing with challenges of an environment of low predictability in a way that the animal's own activity reduces the uncertainty of environmental events. In our study, the animals underwent a spontaneous exploration test in low-stress conditions. After a period of habituation to the experimental arena, additional stationary (increased complexity) and/or movable (increased complexity and controllability) tunnels were introduced, and the reaction of the rats to the novel objects was measured. The results of the study confirmed that an increase in the complexity of the environment through the addition of objects triggers a more intensive exploratory activity in rats. However, an increased spatial complexity combined with the movability of the novel objects seems to result in increased caution towards the novelty after an initial inspection of the changed objects. It suggests that the complexity of the novelty may trigger both neophilia and neophobia depending on the level of the predictability of the novel environment and that the movability of newly introduced objects is not independent of other parameters of the environment.
Collapse
Affiliation(s)
- Anna Chrzanowska
- Institute of Psychology, Polish Academy of Sciences, Warsaw, Poland
- * E-mail:
| | | | | | - Wojciech Pisula
- Institute of Psychology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
11
|
Cabral de Mel SJ, Seneweera S, de Mel RK, Medawala M, Abeysinghe N, Dangolla A, Weerakoon DK, Maraseni T, Allen BL. Virtual Fencing of Captive Asian Elephants Fitted With An Aversive Geofencing Device to Manage Their Movement. Appl Anim Behav Sci 2022. [DOI: 10.1016/j.applanim.2022.105822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Mapping Welfare: Location Determining Techniques and Their Potential for Managing Cattle Welfare—A Review. DAIRY 2022. [DOI: 10.3390/dairy3040053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
Several studies have suggested that precision livestock farming (PLF) is a useful tool for animal welfare management and assessment. Location, posture and movement of an individual are key elements in identifying the animal and recording its behaviour. Currently, multiple technologies are available for automated monitoring of the location of individual animals, ranging from Global Navigation Satellite Systems (GNSS) to ultra-wideband (UWB), RFID, wireless sensor networks (WSN) and even computer vision. These techniques and developments all yield potential to manage and assess animal welfare, but also have their constraints, such as range and accuracy. Combining sensors such as accelerometers with any location determining technique into a sensor fusion system can give more detailed information on the individual cow, achieving an even more reliable and accurate indication of animal welfare. We conclude that location systems are a promising approach to determining animal welfare, especially when applied in conjunction with additional sensors, but additional research focused on the use of technology in animal welfare monitoring is needed.
Collapse
|
13
|
Cabral de Mel SJ, Seneweera S, de Mel RK, Dangolla A, Weerakoon DK, Maraseni T, Allen BL. Current and Future Approaches to Mitigate Conflict between Humans and Asian Elephants: The Potential Use of Aversive Geofencing Devices. Animals (Basel) 2022; 12:2965. [PMID: 36359089 PMCID: PMC9653792 DOI: 10.3390/ani12212965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/15/2022] [Accepted: 10/25/2022] [Indexed: 12/02/2022] Open
Abstract
Asian elephants are a principal cause of human-wildlife conflict. This results in the death/injury of elephants and humans and large-scale crop and property damage. Most current human-elephant conflict (HEC) mitigation tools lack the flexibility to accommodate the ecological needs of elephants and are ineffective at reducing HEC in the long-term. Here we review common HEC mitigation tools used in Asia and the potential of Aversive Geofencing Devices (AGDs) to manage problem elephants. AGDs can be configured to monitor animal movements in real-time and deliver auditory warnings followed by electric stimuli whenever animals attempt to move across user-specified virtual boundaries. Thus, AGDs are expected to condition elephants to avoid receiving shocks and keep them away from virtually fenced areas, while providing alternative routes that can be modified if required. Studies conducted using AGDs with other species provide an overview of their potential in conditioning wild animals. We recommend that the efficacy and welfare impact of AGDs be evaluated using captive elephants along with public perception of using AGDs on elephants as a means of addressing the inherent deficiencies of common HEC mitigation tools. If elephants could be successfully conditioned to avoid virtual fences, then AGDs could resolve many HEC incidents throughout Asia.
Collapse
Affiliation(s)
- Surendranie Judith Cabral de Mel
- Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, QLD 4350, Australia
- National Institute of Fundamental Studies, Kandy 20000, Sri Lanka
| | - Saman Seneweera
- National Institute of Fundamental Studies, Kandy 20000, Sri Lanka
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Ruvinda Kasun de Mel
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, NSW 2351, Australia
| | - Ashoka Dangolla
- Department of Veterinary Clinical Sciences, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Devaka Keerthi Weerakoon
- Department of Zoology and Environmental Sciences, University of Colombo, Colombo 00300, Sri Lanka
| | - Tek Maraseni
- Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, QLD 4350, Australia
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Benjamin Lee Allen
- Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, QLD 4350, Australia
- Centre for African Conservation Ecology, Nelson Mandela University, Port Elizabeth 6034, South Africa
| |
Collapse
|
14
|
Kleanthous N, Hussain A, Sneddon J, Khan W, Khan B, Aung Z, Liatsis P. Towards a Virtual Fencing System: Training Domestic Sheep Using Audio Stimuli. Animals (Basel) 2022; 12:2920. [PMID: 36359044 PMCID: PMC9655435 DOI: 10.3390/ani12212920] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 09/08/2024] Open
Abstract
Fencing in livestock management is essential for location and movement control yet with conventional methods to require close labour supervision, leading to increased costs and reduced flexibility. Consequently, virtual fencing systems (VF) have recently gained noticeable attention as an effective method for the maintenance and control of restricted areas for animals. Existing systems to control animal movement use audio followed by controversial electric shocks which are prohibited in various countries. Accordingly, the present work has investigated the sole application of audio signals in training and managing animal behaviour. Audio cues in the range of 125-17 kHz were used to prohibit the entrance of seven Hebridean ewes from a restricted area with a feed bowl. Two trials were performed over the period of a year which were video recorded. Sound signals were activated when the animal approached a feed bowl and a restricted area with no feed bowl present. Results from both trials demonstrated that white noise and sounds in the frequency ranges of 125-440 Hz to 10-17 kHz successfully discouraged animals from entering a specific area with an overall success rate of 89.88% (white noise: 92.28%, 10-14 kHz: 89.13%, 15-17 kHz: 88.48%, 125-440 Hz: 88.44%). The study demonstrated that unaided audio stimuli were effective at managing virtual fencing for sheep.
Collapse
Affiliation(s)
- Natasa Kleanthous
- Department of Electrical Engineering and Computer Science, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Abir Hussain
- Department of Electrical Engineering, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Faculty of Engineering and Technology, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Jennifer Sneddon
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Wasiq Khan
- Faculty of Engineering and Technology, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Bilal Khan
- School of Computer Science and Engineering, California State University San Bernardino, 5500 University Parkway, San Bernardino, CA 92407, USA
| | - Zeyar Aung
- Department of Electrical Engineering and Computer Science, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Panos Liatsis
- Department of Electrical Engineering and Computer Science, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| |
Collapse
|
15
|
Mayes BT, Tait LA, Cowley FC, Morton JM, Doyle BP, Arslan MA, Taylor PS. Stocking density, restricted trough space, and implications for sheep behaviour and biological functioning. Front Vet Sci 2022; 9:965635. [PMID: 36246333 PMCID: PMC9556270 DOI: 10.3389/fvets.2022.965635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Stocking density and trough space allowance can potentially impact sheep welfare during live export voyages. The aim of this study was to assess the welfare implications for sheep housed at five allometric stocking densities, with either unrestricted or restricted trough space allowance. Merino wethers (n = 720) were housed in 40 pens of 18 heads for 18 days. Two 5-min continuous focal animal observations (n = 3/pen) were conducted on days 3, 5, 11, and 17. Scan sampling of standing and lying behaviours were conducted on the same days at hourly intervals. Live weights and immune cell counts were quantified at the start and end of the experiment, as well as faecal glucocorticoid metabolites (FGCMs), which were also assessed on days 6 and 12. Focal animals housed at higher stocking densities spent less time lying during one of the continuous observation periods, but no important effects on the overall number of animals lying or on the synchronicity of lying were evident. The scan sampling results indicated that the expression of some preferred lying positions was impaired at high stocking densities, and that high stocking densities also resulted in increased agonistic social interactions and displacement events at the start of the trial. There was a slight reduction in day 18 live weights for animals housed at higher stocking densities, but FGCM concentrations and immune cell counts were essentially unaffected. Trough space had no important effects on day 18 live weight, FGCM concentrations, or immune cell counts, and had limited effects on sheep behaviour. The lack of important impacts on biological fitness traits suggests that the behavioural responses observed were sufficient in allowing sheep to cope with their environment. However, we provide evidence that the provision of additional space is beneficial in reducing the time it takes for animals to adapt to their environment and to facilitate the expression of some preferred lying positions. While designed to emulate certain conditions relevant during live export voyages, some factors that may induce stress during this mode of transport were not present such as heat and ocean swell, so the conclusions must be interpreted in the context of the experimental conditions.
Collapse
Affiliation(s)
- Bonnie T. Mayes
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia,*Correspondence: Bonnie T. Mayes
| | - L. Amy Tait
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Frances C. Cowley
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | | | - Brendan P. Doyle
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Muhammad A. Arslan
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Peta S. Taylor
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| |
Collapse
|
16
|
Aaser MF, Staahltoft SK, Korsgaard AH, Trige-Esbensen A, Alstrup AKO, Sonne C, Pertoldi C, Bruhn D, Frikke J, Linder AC. Is Virtual Fencing an Effective Way of Enclosing Cattle? Personality, Herd Behaviour and Welfare. Animals (Basel) 2022; 12:ani12070842. [PMID: 35405832 PMCID: PMC8996897 DOI: 10.3390/ani12070842] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/13/2022] [Accepted: 03/23/2022] [Indexed: 02/01/2023] Open
Abstract
In modern nature conservation and rewilding there is a need for controlling the movements of large grazers in extensively managed areas. The inflexibility of physical fencing can be a limitation in nature management, and the physical boundaries created by physical fencing can have detrimental effects on wildlife. Virtual fencing systems provide boundaries without physical structures. These systems utilise collars with GPS technology to track animals and deliver auditory or electric cues to encourage the animals to stay within the predefined boundaries. This study aims to assess the use of virtual fencing (Nofence©) to keep twelve Angus cows (Bos taurus) within a virtual enclosure without compromising their welfare. As such, the study examines inter-individual differences between the cows as well as their herd behaviour, when reacting and learning to respond appropriately to virtual fencing. Moreover, the activity of the cows was used as an indicator of welfare. The virtual fencing was successful in keeping the herd within the designated area. Moreover, the cattle learned to avoid the virtual border and respond to auditory cues, where the cows received significantly more auditory warning and electric impulses per week throughout the first 14 days than the remaining 125 days (p < 0.001). The cows were found to express both inter-individual differences (p < 0.001) and herd behaviour. The cattle did not express any significant changes in their activity upon receiving an electrical impulse from the collar. Thus, indicating that there were little to no acute welfare implications associated with the use of virtual fencing in this study. This study clearly supports the potential for virtual fencing as a viable alternative to physical electric fencing. However, it also shows that both individual differences in personality and herd structure should be considered when selecting individuals for virtual fencing.
Collapse
Affiliation(s)
- Magnus Fjord Aaser
- Department of Chemistry and Bioscience—Section of Bioscience and Engineering, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark; (M.F.A.); (S.K.S.); (A.H.K.); (A.T.-E.); (C.P.); (D.B.)
| | - Søren Krabbe Staahltoft
- Department of Chemistry and Bioscience—Section of Bioscience and Engineering, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark; (M.F.A.); (S.K.S.); (A.H.K.); (A.T.-E.); (C.P.); (D.B.)
| | - Andreas Hein Korsgaard
- Department of Chemistry and Bioscience—Section of Bioscience and Engineering, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark; (M.F.A.); (S.K.S.); (A.H.K.); (A.T.-E.); (C.P.); (D.B.)
| | - Adam Trige-Esbensen
- Department of Chemistry and Bioscience—Section of Bioscience and Engineering, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark; (M.F.A.); (S.K.S.); (A.H.K.); (A.T.-E.); (C.P.); (D.B.)
| | - Aage Kristian Olsen Alstrup
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus, Denmark;
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 165, 8200 Aarhus, Denmark
| | - Christian Sonne
- Department of Ecoscience, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark;
| | - Cino Pertoldi
- Department of Chemistry and Bioscience—Section of Bioscience and Engineering, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark; (M.F.A.); (S.K.S.); (A.H.K.); (A.T.-E.); (C.P.); (D.B.)
- Aalborg Zoo, Mølleparkvej 63, 9000 Aalborg, Denmark
| | - Dan Bruhn
- Department of Chemistry and Bioscience—Section of Bioscience and Engineering, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark; (M.F.A.); (S.K.S.); (A.H.K.); (A.T.-E.); (C.P.); (D.B.)
- Skagen Bird Observatory, Fyrvej 36, 9990 Skagen, Denmark
| | - John Frikke
- Wadden Sea National Park, Havnebyvej 30, 6792 Rømø, Denmark;
| | - Anne Cathrine Linder
- Department of Chemistry and Bioscience—Section of Bioscience and Engineering, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark; (M.F.A.); (S.K.S.); (A.H.K.); (A.T.-E.); (C.P.); (D.B.)
- Correspondence:
| |
Collapse
|
17
|
Kearton T, Marini D, Lee C, Cowley FC. The influence of observing a maternal demonstrator on the ability of lambs to learn a virtual fence. ANIMAL PRODUCTION SCIENCE 2022. [DOI: 10.1071/an21180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Liu Q, Wu J, Zhang L, Sun X, Guan Q, Yao Z. The Relationship Between Perceived Control and Hypothalamic-Pituitary-Adrenal Axis Reactivity to the Trier Social Stress Test in Healthy Young Adults. Front Psychol 2021; 12:683914. [PMID: 34484038 PMCID: PMC8415907 DOI: 10.3389/fpsyg.2021.683914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
Psychological factors can modulate the hypothalamic-pituitary-adrenal (HPA) axis activity toward stressors. Animal studies demonstrated that uncontrollability was one critical factor associated with HPA axis stress response, but the results in human studies were inconsistent. The current study adopted a standardized laboratory stress induction procedure, the Trier Social Stress Test (the TSST), as the stressor to regulate the objective controllability level, and young adult participants were asked to rate their subjectively perceived control level toward the stressor and measured their cortisol stress responses (N=54; 19 females and 35 males) to address this concern. Results showed that participants' perceived control on the TSST was related to the cortisol stress response. In other words, under the stress of a certain objective controllability level, the lower the subjectively perceived control level, the greater the HPA axis response. This finding suggested that, in addition to objective controllability, subjectively perceived control is a psychological factor that regulates activation of the HPA axis in young adults.
Collapse
Affiliation(s)
- Qian Liu
- Center for Brain Disorder and Cognitive Science, Shenzhen University, Shenzhen, China.,Shenzhen Futian Foreign Languages School, Shenzhen, China
| | - Jianhui Wu
- Center for Brain Disorder and Cognitive Science, Shenzhen University, Shenzhen, China.,Shenzhen Institute of Neuroscience, Shenzhen, China
| | - Liang Zhang
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaofang Sun
- Department of Industrial Engineering, Tsinghua University, Beijing, China
| | - Qing Guan
- Center for Brain Disorder and Cognitive Science, Shenzhen University, Shenzhen, China
| | - Zhuxi Yao
- Center for Brain Disorder and Cognitive Science, Shenzhen University, Shenzhen, China
| |
Collapse
|
19
|
Lee C, Campbell DLM. A Multi-Disciplinary Approach to Assess the Welfare Impacts of a New Virtual Fencing Technology. Front Vet Sci 2021; 8:637709. [PMID: 33708813 PMCID: PMC7940360 DOI: 10.3389/fvets.2021.637709] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/26/2021] [Indexed: 11/13/2022] Open
Abstract
Virtual fencing involving the application of audio cues and electrical stimuli is being commercially developed for cattle. Virtual fencing has the potential to improve productivity through optimized pasture management and utilization by grazing animals. The application of virtual fencing initiates public concern for the potential welfare impacts on animals due the aversive nature of using an electrical stimulus. It is therefore important to provide welfare assurance of the impacts of virtual fencing on livestock. In this paper, we provide an overview of the welfare assessment and validation stages for virtual fencing which could be applied to other new technologies utilizing novel systems. An understanding of stress measures and their suitability for use in specific contexts is discussed, including the use of glucocorticoids to measure both acute and chronic stress, and behavioral responses and patterns to indicate welfare states. The importance of individual differences in relation to learning and cognition are also highlighted. Together, this multi-disciplinary approach to welfare assessment provides a tool kit that may be applied for welfare assurance of some new technologies and systems for farm animals.
Collapse
Affiliation(s)
- Caroline Lee
- CSIRO, Agriculture and Food, FD McMaster Laboratory, Armidale, NSW, Australia
| | | |
Collapse
|