1
|
Rojas CA, Park B, Scarsella E, Jospin G, Entrolezo Z, Jarett JK, Martin A, Ganz HH. Species-level characterization of the core microbiome in healthy dogs using full-length 16S rRNA gene sequencing. Front Vet Sci 2024; 11:1405470. [PMID: 39286595 PMCID: PMC11404154 DOI: 10.3389/fvets.2024.1405470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/09/2024] [Indexed: 09/19/2024] Open
Abstract
Despite considerable interest and research in the canine fecal microbiome, our understanding of its species-level composition remains incomplete, as the majority of studies have only provided genus-level resolution. Here, we used full-length 16S rRNA gene sequencing to characterize the fecal microbiomes of 286 presumed healthy dogs living in homes in North America who are devoid of clinical signs, physical conditions, medication use, and behavioral problems. We identified the bacterial species comprising the core microbiome and investigated whether a dog's sex & neuter status, age, body weight, diet, and geographic region predicted microbiome variation. Our analysis revealed that 23 bacterial species comprised the core microbiome, among them Collinsella intestinalis, Megamonas funiformis, Peptacetobacter hiranonis, Prevotella copri, and Turicibacter sanguinis. The 23 taxa comprised 75% of the microbiome on average. Sterilized females, dogs of intermediate body sizes, and those exclusively fed kibble tended to harbor the most core taxa. Host diet category, geographic region, and body weight predicted microbiome beta-diversity, but the effect sizes were modest. Specifically, the fecal microbiomes of dogs fed kibble were enriched in several core taxa, including C. intestinalis, P. copri, and Holdemanella biformis, compared to those fed raw or cooked food. Conversely, dogs on a raw food diet exhibited higher abundances of Bacteroides vulgatus, Caballeronia sordicola, and Enterococcus faecium, among others. In summary, our study provides novel insights into the species-level composition and drivers of the fecal microbiome in healthy dogs living in homes; however, extrapolation of our findings to different dog populations will require further study.
Collapse
|
2
|
Belà B, Coman MM, Verdenelli MC, Gramenzi A, Pignataro G, Fiorini D, Silvi S. In Vitro Assessment of Postbiotic and Probiotic Commercial Dietary Supplements Recommended for Counteracting Intestinal Dysbiosis in Dogs. Vet Sci 2024; 11:19. [PMID: 38250925 PMCID: PMC10819328 DOI: 10.3390/vetsci11010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 12/05/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024] Open
Abstract
Many environmental aspects influence the preservation of a beneficial microbiome in dogs, and gut dysbiosis occurs when imbalances in the intestinal ecosystem cause functional changes in the microbial populations. The authors evaluated the effects of two specific commercial dietary supplements: a combination of a postbiotic and prebiotics (Microbiotal cane®) and a probiotic product (NBF 1®) recommended for counteracting intestinal dysbiosis in dogs, on the gut canine microbiota composition and its metabolic activities (production of short-chain fatty acids). The investigation was performed using an in vitro fermentation system inoculated with dog fecal samples. Microbiotal cane® promoted a more immediate increase in Lactobacillus spp. after the first 6 h of fermentation, whereas NBF 1® promoted the increase at the end of the process only. The two supplements supported an increase in the Bifidobacterium spp. counts only after 24 h. The in vitro abilities of Microbiotal cane® and NBF 1® to increase selectively beneficial bacterial groups producing acetic, propionic, and butyric acids suggest a possible positive effect on the canine gut microbiota, even if further in vivo studies are needed to confirm the beneficial effects on the intestinal health.
Collapse
Affiliation(s)
- Benedetta Belà
- Department of Science of Veterinary Medicine Science, Public Health and Animal Wellness, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (B.B.); (A.G.); (G.P.)
| | - Maria Magdalena Coman
- Synbiotec Srl spin-off di UNICAM, Via Gentile III da Varano, 62032 Camerino, Italy; (M.M.C.); (M.C.V.)
| | - Maria Cristina Verdenelli
- Synbiotec Srl spin-off di UNICAM, Via Gentile III da Varano, 62032 Camerino, Italy; (M.M.C.); (M.C.V.)
| | - Alessandro Gramenzi
- Department of Science of Veterinary Medicine Science, Public Health and Animal Wellness, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (B.B.); (A.G.); (G.P.)
| | - Giulia Pignataro
- Department of Science of Veterinary Medicine Science, Public Health and Animal Wellness, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (B.B.); (A.G.); (G.P.)
| | - Dennis Fiorini
- School of Science and Technology, Chemistry Division, University of Camerino, Via Madonna delle Carceri 9/B, 62032 Camerino, Italy;
| | - Stefania Silvi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy
| |
Collapse
|
3
|
Hsu C, Marx F, Guldenpfennig R, Valizadegan N, de Godoy MRC. The effects of hydrolyzed protein on macronutrient digestibility, fecal metabolites and microbiota, oxidative stress and inflammatory biomarkers, and skin and coat quality in adult dogs. J Anim Sci 2024; 102:skae057. [PMID: 38442226 PMCID: PMC10959486 DOI: 10.1093/jas/skae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/04/2024] [Indexed: 03/07/2024] Open
Abstract
Research on protein hydrolysates has observed various properties and functionalities on ingredients depending on the type of hydrolysate. The objective of this study was to evaluate the effects of hydrolyzed chicken protein that was incorporated into diets on digestibility, gut health, skin and coat health, oxidative stress, and intestinal inflammation markers in healthy adult dogs. Five complete and balanced diets were manufactured: (1) CONd: 25% chicken meal diet; (2) 5% CLHd: 5% chicken liver and heart hydrolysate plus 20% chicken meal diet; (3) CLHd: 25% chicken liver and heart hydrolysate diet; (4) 5% CHd: 5% chicken hydrolysate plus 20% chicken meal diet; (5) CHd: 25% chicken hydrolysate diet. A replicated 5 × 5 Latin square design was used which included 10 neutered adult Beagles. Each of the 5 periods consisted of a 7-d washout time and a 28-d treatment period. All diets were well accepted by the dogs. Fecal butyrate concentration was higher while fecal isovalerate and total phenol/indole were lower in dogs fed CLHd than CONd (P < 0.05). Dogs fed CHd had higher fecal immunoglobulin A concentration when compared with CLHd (P < 0.05); however, both groups were comparable to the CONd. There was no difference among groups in serum cytokine concentrations, serum oxidative stress biomarkers, or skin and coat health analyses (P > 0.05). Fecal microbiota was shifted by CLHd with higher abundance in Ruminococcus gauvreauii group as well as lower Clostridium sensu stricto 1, Sutterella, Fusobacterium, and Bacteroides when compared with CONd (P < 0.05). There was also a difference in beta diversity of fecal microbiota between CLHd and CHd (P < 0.05). In conclusion, chicken protein hydrolysate could be incorporated into canine extruded diets as a comparable source of protein to traditional chicken meal. The test chicken protein hydrolysates showed the potential to support gut health by modulating immune response and microbiota; however, functional properties of protein hydrolysates are dependent on inclusion level and source.
Collapse
Affiliation(s)
- Clare Hsu
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Fabio Marx
- Kemin Industries, Inc., Des Moines, IA, 50317, USA
| | | | - Negin Valizadegan
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Maria R C de Godoy
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
4
|
McAtee R, Schmid SM, Tolbert MK, Hetzel S, Suchodolski JS, Pritchard JC. Effect of esomeprazole with and without a probiotic on fecal dysbiosis, intestinal inflammation, and fecal short-chain fatty acid concentrations in healthy dogs. J Vet Intern Med 2023; 37:2109-2118. [PMID: 37776099 PMCID: PMC10658524 DOI: 10.1111/jvim.16886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 09/15/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Proton pump inhibitors can cause diarrhea and a transient increase in fecal dysbiosis index in dogs. It is unknown if concurrent probiotic administration mitigates these effects. OBJECTIVE/HYPOTHESIS To assess the fecal Canine Microbial Dysbiosis Index (CMDI), fecal short chain fatty acid (SCFA), and fecal calprotectin concentrations in dogs administered esomeprazole with and without a probiotic. ANIMALS Eleven healthy dogs. METHODS Prospective, within-subjects before and after study. All dogs received 7-day courses of esomeprazole (1 mg/kg PO q 24h) alone followed by esomeprazole with a probiotic (15 billion CFU/kg), separated by a 4-week washout period. Data were compared between phases using mixed effects ANOVA or generalized estimating equations with post-hoc Holm adjustment for 2-way comparisons. RESULTS Compared to baseline (mean CMDI -2.66, SD 3.04), fecal CMDI was not different with esomeprazole administration alone (mean CMDI -1.48, SD 3.32, P = .08), but there was a significant increase (Diff 3.05, 95% CI [1.37, 4.74], P < .001, Effect size 2.02) when esomeprazole and a probiotic were administered concurrently (mean CMDI 0.39, SD 2.83). CMDI was significantly higher when esomeprazole was administered with a probiotic than alone (Diff 1.87, 95% CI [0.19, 1.87], P = .02, Effect size 1.24). Fecal calprotectin and SCFA concentrations did not differ between phases. The occurrence of vomiting and diarrhea was not different from baseline when esomeprazole was administered alone (36%/27%) or with a probiotic (46%/9%). CONCLUSIONS AND CLINICAL IMPORTANCE In healthy dogs, concurrent administration of a probiotic is unlikely to lessen adverse effects associated with esomeprazole administration.
Collapse
Affiliation(s)
- Rae McAtee
- Department of Medical SciencesUniversity of Wisconsin‐Madison School of Veterinary MedicineMadisonWisconsinUSA
| | - Sarah M. Schmid
- Department of Small Animal Clinical SciencesUniversity of Tennessee Knoxville College of Veterinary MedicineKnoxvilleTennesseeUSA
| | - M. Katherine Tolbert
- Gastrointestinal Laboratory, Department of Small Animal Clinical SciencesSchool of Veterinary Medicine & Biomedical Sciences, Texas A&M UniversityCollege StationTexasUSA
| | - Scott Hetzel
- Department of Biostatistics and Medical InformaticsUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Jan S. Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical SciencesSchool of Veterinary Medicine & Biomedical Sciences, Texas A&M UniversityCollege StationTexasUSA
| | - Jessica C. Pritchard
- Department of Medical SciencesUniversity of Wisconsin‐Madison School of Veterinary MedicineMadisonWisconsinUSA
| |
Collapse
|
5
|
Clark SD, Hsu C, McCauley SR, de Godoy MRC, He F, Streeter RM, Taylor EG, Quest BW. The impact of protein source and grain inclusion on digestibility, fecal metabolites, and fecal microbiome in adult canines. J Anim Sci 2023; 101:skad268. [PMID: 37555615 PMCID: PMC10464515 DOI: 10.1093/jas/skad268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/08/2023] [Indexed: 08/10/2023] Open
Abstract
This study was conducted to determine the effect of animal protein inclusion rate and grain-free or grain-inclusive diets on macronutrient digestibility, fecal characteristics, metabolites, and microbiota in mixed-breed hounds and Beagles. Four experimental extruded kibble diets were made with varying amounts of animal protein and carbohydrates: 1) high animal protein, grain-inclusive (HA-GI), 2) low animal protein, grain-free (LA-GF), 3) low animal protein, grain-inclusive (LA-GI), and 4) high animal protein, grain-free (HA-GF). Thirty-two Beagles and 33 mixed-breed hounds were assigned to 1 of the 4 treatment groups in a completely randomized design that lasted 180 d. All diets were similar in chemical composition and well-digested by the animals. In general, for fecal metabolites, mixed-breed hounds had a greater concentration of total short-chain fatty acid (SCFA) and ammonia and lower indole concentration than Beagles (P < 0.05). In mixed-breed hounds, LA-GF had a greater (P < 0.05) total SCFA concentration than HA-GI and LA-GI; however, this was not observed in Beagles. There were greater concentrations of ammonia, phenol, and indole in HA-GI than in LA-GF (P < 0.05). Breed-affected fecal primary bile acid (BA) concentration, as mixed-breed hounds had a greater concentration of cholic acid (CA) than Beagles (P < 0.05). Mixed-breed hounds fed LA-GF resulted in greater CA concentrations than HA-GI and LA-GI (P < 0.05). Dogs who consumed LA-GF had lower fecal secondary BA content than the other groups (P < 0.05). The distribution of the fecal microbiota community differed in LA-GF compared with the other groups, with lower α-diversity. However, dogs fed LA-GF had the largest difference in composition with greater Selenomonadaceae, Veillonellaceae, Lactobacillaceae, Streptococcus, Ligilactobacillus, Megamonas, Collinsella aerofaciens, and Bifidobacterium sp. than the other groups. A significant breed effect was noted on nutrient digestibility, fecal metabolites, and microbiota. A treatment effect was observed in LA-GF as it resulted in greater fecal SCFA, lower protein fermentative end products, greater fecal primary BAs, lower fecal secondary BA concentrations, and shifts in fecal microbiota.
Collapse
Affiliation(s)
| | - Clare Hsu
- Department of AnimalSciences, The University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | - Maria R C de Godoy
- Department of AnimalSciences, The University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Fei He
- Department of AnimalSciences, The University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
6
|
Kleber KT, Iranpur KR, Perry LM, Cruz SM, Razmara AM, Culp WTN, Kent MS, Eisen JA, Rebhun RB, Canter RJ. Using the canine microbiome to bridge translation of cancer immunotherapy from pre-clinical murine models to human clinical trials. Front Immunol 2022; 13:983344. [PMID: 36032113 PMCID: PMC9412231 DOI: 10.3389/fimmu.2022.983344] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/26/2022] [Indexed: 11/27/2022] Open
Abstract
The microbiome has clearly been established as a cutting-edge field in tumor immunology and immunotherapy. Growing evidence supports the role of the microbiome in immune surveillance, self-tolerance, and response to immune checkpoint inhibitors such as anti PD-L1 and CTLA-4 blockade (1-6). Moreover, recent studies including those using fecal microbial transplantation (FMT) have demonstrated that response to checkpoint immunotherapies may be conferred or eliminated through gut microbiome modulation (7, 8). Consequently, studies evaluating microbiota-host immune and metabolic interactions remain an area of high impact research. While observations in murine models have highlighted the importance of the microbiome in response to therapy, we lack sufficient understanding of the exact mechanisms underlying these interactions. Furthermore, mouse and human gut microbiome composition may be too dissimilar for discovery of all relevant gut microbial biomarkers. Multiple cancers in dogs, including lymphoma, high grade gliomas, melanomas and osteosarcoma (OSA) closely resemble their human analogues, particularly in regard to metastasis, disease recurrence and response to treatment. Importantly, dogs with these spontaneous cancers also have intact immune systems, suggesting that microbiome analyses in these subjects may provide high yield information, especially in the setting of novel immunotherapy regimens which are currently expanding rapidly in canine comparative oncology (9, 10). Additionally, as onco-microbiotic therapies are developed to modify gut microbiomes for maximal responsiveness, large animal models with intact immune systems will be useful for trialing interventions and monitoring adverse events. Together, pre-clinical mechanistic studies and large animal trials can help fully unlock the potential of the microbiome as a diagnostic and therapeutic target in cancer.
Collapse
Affiliation(s)
- Kara T. Kleber
- Division of Surgical Oncology, Department of Surgery, University of California Davis Medical Center, Sacramento, CA, United States
| | - Khurshid R. Iranpur
- Division of Surgical Oncology, Department of Surgery, University of California Davis Medical Center, Sacramento, CA, United States
| | - Lauren M. Perry
- Division of Surgical Oncology, Department of Surgery, University of California Davis Medical Center, Sacramento, CA, United States
| | - Sylvia M. Cruz
- Division of Surgical Oncology, Department of Surgery, University of California Davis Medical Center, Sacramento, CA, United States
| | - Aryana M. Razmara
- School of Veterinary Medicine, University of California Davis, Sacramento, CA, United States
| | - William T. N. Culp
- Center for Companion Animal Health Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, United States
| | - Michael S. Kent
- Center for Companion Animal Health Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, United States
| | - Jonathan A. Eisen
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, United States
| | - Robert B. Rebhun
- Center for Companion Animal Health Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, United States
| | - Robert J. Canter
- Division of Surgical Oncology, Department of Surgery, University of California Davis Medical Center, Sacramento, CA, United States
| |
Collapse
|